Welcome to the organic electronics research group. Our aim is to combine quantum, atomistic, and coarse-graining simulation techniques to predict macroscopic properties of organic semiconductors.

Publication highlights

Kernel-based machine learning for efficient simulations of molecular liquids

[toc] C. Scherer, R. Scheid, D. Andrienko, T. Bereau, J. Chem. Theory Comput. , 2020 [doi]

Current machine learning (ML) models aimed at learning force fields are plagued by their high computational cost at every integration time step. We describe a number of practical and computationally-efficient strategies to parametrize traditional force fields for molecular liquids from ML: the particle decomposition ansatz to two- and three-body force fields the use of kernel-based ML models that incorporate physical symmetries the incorporation of switching functions close to the cutoff and the use of covariant meshing to boost the training set size. Results are presented for model molecular liquids: pairwise Lennard-Jones three-body Stillinger-Weber and bottom-up coarse-graining of water. Here covariant meshing proves to be an efficient strategy to learn canonically averaged instantaneous forces. We show that molecular dynamics simulations with tabulated two- and three-body ML potentials are computationally efficient and recover two- and three-body distribution functions. Many-body representations decomposition and kernel regression schemes are all implemented in the open-source software package VOTCA.