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ABSTRACT
We present the hydrodynamic and electrohydrodynamic equations for uni-
axial nematic liquid crystals and explain their derivation in detail. To derive
hydrodynamic equations, which are valid for sufficiently small frequencies
in the limit of long wavelengths, one identifies first the hydrodynamic vari-
ables, which come in two groups: quantities obeying conservation laws and
variables associated with spontaneously broken continuous symmetries. As
variables that characterize the spontaneously broken continuous rotational
symmetries of a nematic liquid crystal we have the deviations from the pre-
ferred direction, which is characterized by the director, a unit vector that
does not distinguish between head and tail.

To derive the hydrodynamic equations we make use of symmetry argu-
ments and irreversible thermodynamics. Among the symmetry properties
used are the behavior under time reversal and spatial parity, Galilean co-
variance, and the invariance under rotations and translations. In a first
step one writes down the Gibbs-Duhem relation and expands the thermo-
dynamic forces, which are defined via the Gibbs-Duhem relation, into the
hydrodynamic variables. In the second and final step to close the system
of hydrodynamic equations, one expresses the currents (and quasi-currents)
appearing in the conservation laws (and in the balance equations for the
variables associated with the broken symmetries) by the thermodynamic
forces. The currents and quasi-currents are split into two contributions, re-
versible ones that lead to vanishing entropy production and into dissipative
ones that are associated with positive entropy production.

We discuss how the effect of static and dynamic electric fields (as well
as static magnetic fields) can be combined with hydrodynamics to get the
electrohydrodynamic equations for uniaxial nematic liquid crystals. We will
critically examine which part of the Maxwell equations must be combined
with the hydrodynamic equations to get a consistent description at low
frequencies and long wavelengths.

We consider a number of additions to nematodynamics. First we investi-
gate how the electrohydrodynamic equations are modified when thermody-
namic fluctuations are taken into account and we analyze which additional
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terms have to be incorporated if highly nonlinear effects are present or if
one deals with spatially strongly inhomogeneous situations (in which case
higher order gradient terms enter the picture). In many situations, for ex-
ample close to phase transitions, when defects are present or for polymeric
systems, one must take into account additional variables in a macroscopic
description, that are not strictly hydrodynamic but relax sufficiently slowly
in the long wavelength limit. One such variable is the modulus of the order
parameter, whose spatio-temporal behavior becomes of macroscopic impor-
tance close to phase transitions (e.g. to the isotropic phase) or for lyotropic
nematic liquid crystals (multi-component systems, whose properties vary
predominantly with composition), for which the modulus can vary spatially,
since there are spatial variations in the concentration of the constituents.
Another example is the strain associated with the transient network in liquid
crystalline side-chain polymers for which the mesogenic units are attached
to the polymeric backbone via a flexible spacer. Finally we discuss biaxial
nematic liquid crystals, which are characterized by two (and thus three)
preferred directions. In contrast to uniaxial nematics, which are found for
rod-shaped and disk-shaped (discotic) molecules in thermotropic (properties
change predominantly as a function of temperature) low molecular weight
materials, biaxial nematic phases have been shown to exist mainly for ly-
otropic and polymeric systems so far.

We summarize briefly how the hydrodynamics of other liquid crystalline
phases with spontaneously broken continuous rotational symmetries is in-
fluenced by director type degrees of freedom. Among these systems are
cholesteric liquid crystals, which are characterized by a helical super-
structure, and various tilted smectic liquid crystalline phases that have
anisotropic in-plane fluidity: smectic C, CM , F, I and L phases and the ap-
propriate chiral phases. In the Appendix we give the complete set of electro-
hydrodynamic equations for uniaxial nematics in compact form and we show
how the present description is related to the frequently used continuum-type
approach of Ericksen and Leslie discussing critically the incompressibility
approximation inherent to this approach.

1 Introduction

Hydrodynamics of simple fluids (liquids and gases) is a classical textbook
subject that still bears a lot of interesting and unsolved problems (e.g. tur-
bulence) due to its inherent nonlinear nature. The use of computers and the
renewed interest in nonlinear phenomena (e.g. instabilities, pattern forma-
tion) has led to a revival of that classical subject. On the other hand it has
become possible to apply hydrodynamics also to more complex systems.
This was facilitated by a deeper understanding of hydrodynamics based
on symmetries and thermodynamics [1-4]. It can now be used as a gen-
eral method to describe macroscopically the dynamics of many condensed
systems including liquid crystals, superfluid liquids, crystals, magnetic sys-
tems etc. The foundations for the linear hydrodynamic description of liquid
crystals were laid in the ’70s [5-8], while in the ’80s this method was further
applied to nonlinear descriptions [9, 10] and to increasingly more complex
liquid crystal phases [11-16].

The hydrodynamic method is based on the observation that in most
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condensed systems there is only a small number of slow, long living pro-
cesses compared to the huge number of fast, microscopic degrees of freedom,
which can be discarded in a description of the macroscopic behavior. The
hydrodynamic variables describe cooperative phenomena that do not relax
in finite time in the homogeneous limit, i.e. for the Fourier transformed
modes the frequency ω vanishes for vanishing wavevector k

ω(k → 0) → 0 (1.1)

The point is that these hydrodynamic variables can uniquely be identified
using conservation laws (related to global symmetries) and broken sym-
metries (in the case of complex systems). For nematic liquid crystals this
choice of hydrodynamic variables and the general form of their dynamic
equations will be discussed in Secs. 2.1 and 2.2. For time and length scales,
on which all the fast, local microscopic degrees of freedom have relaxed to
their equilibrium value, this hydrodynamic description is exact.

In some cases a few of the non-hydrodynamic, relaxing processes become
so slow that their dynamics takes place on a macroscopic time scale as
well. Then it is appropriate to also include these non-hydrodynamic, but
slowly relaxing, variables in the dynamic description of such systems, thus
generalizing true hydrodynamics into a “macroscopic dynamics”. The first
example of this procedure was used to describe the (mean field) dynamics of
a superfluid near the phase transition to the normal fluid [3] by including
one soft mode (the order parameter strength). Similarly slowly relaxing
variables are also important for the dynamics near various phase transitions
in liquid crystals [17-27] and near liquid crystalline defects, although in the
latter case generally they are only used quasistatically [28-33]. In polymeric
and elastomeric (liquid crystal) systems [34-36] additional slowly relaxing
variables have to be considered. We will comment on these subjects in
Secs. 2.3 and 6.3, 6.4.

Since the microscopic degrees of freedom have reached their thermody-
namic equilibrium state (“local thermodynamic equilibrium”) on the hy-
drodynamic time scale, one can use thermodynamics (locally) to describe
the remaining slow variables (Sec. 3.1). This leads immediately to the en-
ergetics of the system (Sec. 3.2), i.e. a thermodynamic potential (e.g. the
energy) as a function of all variables, or equivalently the thermodynamic
conjugate quantities expressed by the variables using phenomenological
static susceptibilities (e.g. the density expressed by the pressure via the
compressibility). Of course, by this procedure the well known orientational
elasticity (gradient or Frank free energy [37-39]) for nematic liquid crystals
is regained.

In a second step (Sec. 4) the dynamics of the system is obtained by
expressing the currents or quasi-currents (defined in Sec. 3) by the thermo-
dynamic forces (the gradients of the thermodynamic conjugates). These
expansions contain dynamic phenomenological coefficients (transport pa-
rameters). Within the thermodynamic framework it is very fruitful to
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split up the currents and quasi-currents into additive reversible (entropy
conserving) and irreversible (entropy increasing) parts. A step beyond a
purely thermodynamic description consists in the use of fluctuating forces
making contact with statistical aspects (Sec. 6.1). As in the statics these
expansions are confined to the lowest order contributions (i.e. linear ir-
reversible thermodynamics), although the equations obtained are already
highly nonlinear. Higher order terms in the static and dynamic expansions
[40] will be discussed in Sec. 6.5.

Having thus demonstrated the method and derived the hydrodynamics of
nematic liquid crystals we will then introduce (Sec. 5) the electrical degrees
of freedom and the electric (and magnetic) field effects necessary to describe
the various electrohydrodynamic instabilities in nematics. Rather early it
was recognized [41] that the dynamics of free charges must be taken into
account [42, 43], to describe these instabilities. Flexoelectricity [44, 45], its
dissipative counter part, the dynamic flexoelectric effect [14], and nonlin-
ear electric effects [46] (Sec. 6.5) have been discussed. Generalizations of
electrohydrodynamics to various other phases have been given [47-53]. The
liquid crystal phases, which still have nematic-like (orientational) degrees
of freedom (biaxial nematics, cholesterics, smectics C, CM , F, I etc.) will
briefly be discussed (Secs. 6.2 and 7.2 - 7.4).

The main advantage of the hydrodynamic method rests in its high gen-
erality, which allows its application to very different systems. There are no
model dependent assumptions and only very fundamental symmetry and
thermodynamic arguments are used. The occurrence of phenomenological
parameters in the static and dynamic expansions, however, are the prize
one has to pay for this generality. A few remarks, which ones of these pa-
rameters have been measured, are given at the end of the Appendix. The
only restriction on the applicability of a hydrodynamic theory arises from
the validity of the static and dynamic expansions used. Going beyond hy-
drodynamics it is not possible to predict, if and which non-hydrodynamic
variables can become slow, although the generalized theory, which includes
such variables, is still a powerful theory albeit less fundamental than a
purely hydrodynamic theory.

There are other methods to derive macroscopic equations for nematic
liquid crystals [54-57]. Very often they are based on continuum mechani-
cal models amended by some dissipative processes. Generally they include
some irrelevant microscopic variables (which can, however, be adiabatically
removed to achieve agreement with purely hydrodynamic theories). Some-
times these theories lack the thermodynamic framework, i.e. the distinction
between reversible and irreversible processes is obscured. Being model de-
pendent a generalization or a transfer of these methods to more complex
liquid crystals (smectics, discotics) is very difficult if not impossible.

2 Symmetries and Broken Symmetries

2.1 Conservation Laws
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The first class of hydrodynamic variables is connected to local conservation
laws. Conserved quantities, like mass or momentum, cannot be created or
destroyed locally. They can be transported only. Thus, their dynamics is
of the form

d

dt

∫
ρ dV = −

∮
j·df (2.1)

Here the conserved quantity is written as a volume integral over its density
(e.g. ρ) and temporal changes are exactly given by the negative flux of that
quantity across the closed surface of the volume V . Since eq. (2.1) holds
for any volume (on the hydrodynamic length scale) it can be cast into the
local form

∂

∂t
ρ + div j = 0 (2.2)

It is obvious that in this description all quantities are fields, i.e. they de-
pend on time and space, ρ = ρ (r, t), although we will usually suppress this
dependence in the following. From the general structure of the local con-
servation law (2.2) it is evident that modes governed by such equations are
hydrodynamic, since their frequency vanishes when the wavevector goes to
zero.

Interpreting ρ as the mass density eq. (2.2) expresses mass conservation
locally and the (mass) current j ≡ ρv is identified with the momentum
density g, where v is the velocity field. The velocity of the material point
(at place r and time t) is thereby identical to v(r, t).

Apart from mass conservation we have in simple liquids (and in liquid
crystals) conservation of momentum and energy, which are written accord-
ing to eq. (2.1) as

∂

∂t
gi + ∇j σ′

ij = 0 (2.3)

and
∂

∂t
ε + div jε′ = 0 (2.4)

with ε the energy density [58]. In contrast to the local mass conservation
law, the currents in eqs. (2.3) and (2.4) (i.e. the stress tensor σ′

ij and the
energy current jε′) cannot be expressed exclusively by the velocity field,
since momentum and energy can be transported not only by material flow,
but e.g. also by diffusion. The part due to mass transport can be made more
explicit via σ′

ij = vjgi + σij and jε′ = [ε + p]v + jε [6] and the conservation
laws take the form

∂

∂t
gi + ∇j(vigj) + ∇j σij = 0 (2.5)

and
∂

∂t
ε + ~∇ · ([ε + p]v) + div jε = 0 (2.6)
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The remaining, still unknown parts of the currents (also called stress tensor
and energy current in the following) are discussed and specified in Sec. 4
on dynamics below. Another sometimes useful way of writing eqs. (2.2-6)
is

d

dt
ρ + ρ divv = 0 (2.7)

d

dt
vi +

1
ρ

∇j σij = 0 (2.8)

d

dt
(
ε

ρ
) +

1
ρ

div jε = 0 (2.9)

where d/dt ≡ ∂/∂t + vi∇i is the material derivative.
In simple liquids the only other conservation law is angular momen-

tum conservation. However, since the total angular (orbital) momentum
L scales with V 5/3 (as can be seen immediately inspecting its dimension),
there is no local (i.e. volume independent) angular momentum density,
whose volume integral would give L. Hence, there is no local conservation
law of the structure (2.1) for the angular momentum [6]. Locally angular
momentum is conserved, if (∂/∂t) εijkrjgk +∇l(εijkrjσkl) = εijkσjk is zero
or a divergence [59]. Thus, angular momentum conservation requires the
static condition

σij − σji = 2∇l φijl (2.10)

with any φijl = −φjil, i.e. the stress tensor is symmetric or its antisym-
metric part is a divergence [60]. In fluids with non-spherical particles the
reasoning is a bit more complicated. Such particles have an internal angu-
lar momentum s (connected to rotations of the particle about its center of
gravity) that adds to the orbital angular momentum, i.e. li = εijk rj gk +si.
Following [5] one can take over the discussion leading to condition (2.10),
if the momentum density gi is replaced by g̃i ≡ gi + (1/2)εijk∇jsk. This
replacement does not change the total momentum (

∫
g dV =

∫
g̃ dV ) and

leaves the structure of the momentum conservation law (2.5) unchanged.
However, g̃ is no longer equivalent to the mass current j = ρv. Neverthe-
less, the difference is a microscopic quantity that relaxes very quickly, so on
a hydrodynamic scale one can neglect that difference. Thus, eqs. (2.3) and
(2.10) will still describe momentum and angular momentum conservation
in nematics.

In complex fluids more conservation laws can exist. If charges are present,
charge conservation reads

∂

∂t
ρe + ~∇ · (ρe v) + div je = 0 (2.11)

with ρe the charge density and je the electrical current. We will come back
to charged systems in Sec. 5. Similarly, in a binary mixture (e.g. in a ly-
otropic liquid crystal or in liquid crystalline mixtures [61, 62]), where two
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(or N) different species are present and are not transformed by chemical
processes, there are two (or N) independent mass conservation laws. Usu-
ally one takes as variables the total mass (eq. (2.2)) and in addition the
concentration c of one (or N-1) species

∂

∂t
c + v · ~∇c +

1
ρ

div jc = 0 (2.12)

with jc/ρ the concentration current.

2.2 Broken Symmetries

There is a second class of hydrodynamic variables, which are not related to
conservation laws, but to spontaneously broken continuous symmetries [6].
This is easily explained for nematic liquid crystals, which is of course the
relevant example here. In an isotropic liquid (e.g. the isotropic phase of
a nematogen) the free energy (or the Hamiltonian) of the system and the
system itself are isotropic, i.e. rotationally invariant. Below the clearing
point nematic order occurs and a special direction (characterized by the
director n) exists. The system is no longer rotationally invariant. Any ro-
tation about an axis other than n leads to a different state distinguishable
from the non-rotated one. This 2-fold breaking of rotational symmetry [63]
is called spontaneous, since the energy is still rotational invariant and there
is no energy present (in an infinite system) that would bias one orientation
of n over another. All states with different orientations of the director are
energetically equivalent. This gives rise to a hydrodynamic mode: Rotat-
ing the director homogeneously does not cost energy and does not lead to a
restoring force (the dynamics is infinitely slow), while inhomogeneous rota-
tions (called bend, twist and splay, see below) cause restoring forces, which
are proportional to the strength of the inhomogeneity (the square of the
characteristic wave vector). The result is a hydrodynamic excitation with
ω(k → 0) → 0. This is a rather general statement: To any spontaneously
broken continuous [64] symmetry there is a hydrodynamic variable called
symmetry variable (except when long-range forces are present [6]).

For nematics the symmetry variables δn are rotations of the director,
i.e. changes of n with

δn · n = 0 (2.13)

Condition (2.13) is usually implemented using a normalized n (n2 = 1).
However, the use of a vector to describe the nematic state is not quite ap-
propriate, since only a direction is preferred in space, but no sense how to
go along this direction (up or down). The correct representation would be
a line rather than a vector (with an arrow). Thus the state is characterized
rather by a S = 2 spinor than by a vector. This is taken into account by us-
ing a (traceless, symmetric) second rank tensor, e.g. the mass quadrupolar
moment or the traceless part of any (symmetric) second rank material pa-
rameter. This full order parameter is of the form Qij = S(ninj − (1/3)δij),
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where S characterizes the strength of the nematic order (S = 0 for the
isotropic phase and S = 1 for perfectly oriented molecules). However, as
long as S is constant, i.e. far away from the isotropic to nematic phase
transition or far away from defect cores, it is easier to use n (instead of
Qij) with the additional condition that any formulas and expressions must
be invariant under the replacement of n by −n (“n → −n symmetry”).

Since δn is not related to a conservation law, its dynamic equation is
simply a balance equation of the form ṅi + Y ′

i = 0 or, if the transport by
flow is made explicit

∂

∂t
ni + vj∇jni + Yi = 0 (2.14)

where Yi is not a current (its surface integral is not a flux), but sometimes
called quasi-current. Because of eq. (2.13) it has to be orthogonal to n,
ni Yi = 0, and it must change sign under the n → −n symmetry. In a
coordinate system that rotates with a constant angular velocity ~ω, ∂ni/∂t
is replaced by (∂ni/∂t)+ εijk ωj nk. Thus Yi must contain the contribution
Yi = εijkωjnk describing the effect of rigid rotations on ṅi [65]. However
there are other contributions to Yi, which do not follow as straightfor-
wardly but rather from symmetry arguments, and which will be derived
systematically in Sec. 4.

2.3 Slowly Relaxing Variables

The hydrodynamic variables discussed so far do not relax in the homo-
geneous limit. Even for inhomogeneous excitations (e.g. sound waves)
their characteristic time scales are generally much larger than those for
the many microscopic degrees of freedom, which relax on microscopic time
scales. However, there are complex fluids or fluids in special circumstances,
where one (or a few) of these microscopic variables becomes slow [66-68],
i.e. their relaxation time is comparable to hydrodynamic time scales. Ex-
amples are elastic stress relaxation in polymers, order parameter relaxation
near second order (or weakly first order) phase transitions (giving rise to
soft modes), relative rotations of nematic side chains with respect to the
backbone segments in side-chain polymers etc. A strictly hydrodynamic
theory (considering only hydrodynamic variables) would be confined in its
applicability to times longer than such slow relaxation times and thus, be
insufficient for many purposes. In that situation it is reasonable to extend
hydrodynamics to “macroscopic dynamics” incorporating the slow relax-
ational variables. However, there are no general rules or arguments, when
or what kind of slowly relaxing variables exist in a given system. These
questions have to be discussed for the appropriate systems individually and
this will be done for the examples mentioned above in Secs. 6.3 and 6.4.

The general structure of the dynamic equation for these slowly relaxing
variables is of course not a conservation law, but a balance equation of the
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type (2.14), e.g. for variations δS of the nematic ordering strength

∂

∂t
S + vj∇jS + Z = 0 (2.15)

where Z is a quasi-current to be determined in Sec. 6.3. Thus, the difference
between these slowly relaxing variables and conserved quantities lies in the
form of the dynamic equations, while the difference to symmetry variables
arises in the statics, which will be discussed in the following Section.

3 Statics

3.1 Thermodynamics

We can now set up the thermodynamic framework for the hydrodynamics
of nematic liquid crystals. The hydrodynamic variables as discussed in the
preceding subsections are mass density (ρ), momentum density (g), energy
density (ε), charge density (ρe), concentration (c) and director rotations
(δn). All other degrees of freedom are relaxing to their equilibrium values
everywhere on the hydrodynamic time scale. In a thermodynamic descrip-
tion these degrees of freedom are represented summarily by the entropy
density (σ). The state of the system can therefore be described by a ther-
modynamic potential that is a function of all the variables listed above.
Taking the total energy (E) as thermodynamic potential we can write [69]

E = εV = E(V, ρV, gV, ρeV, ρV c, ρV ∇jni, ρ V δn, σV ) (3.1)

where the dependence on the volume V is shown explicitly. Since homo-
geneous changes of symmetry variables do not change the energy, only
∇jni should occur in the argument of eq. (3.1). Nevertheless, we have al-
lowed a dependence on δni itself, since we will deal with external fields, too
(cf. Sec. 5). With the help of Euler’s relation we obtain the Gibbs relation
(the local manifestation of the first and second law of thermodynamics)

dε = µdρ + T dσ + v · dg + Φ dρe + µc dc + Φij d∇jni + h′
i dni (3.2)

and the Gibbs-Duhem relation

p = −ε + µρ + Tσ + v · g + Φ ρe (3.3)

In (3.2) the thermodynamic quantities chemical potential (µ), temperature
(T ), velocity (v), electrical potential (Φ), relative chemical potential (µc)
[70] and “molecular fields” (Φij and h′

i) are defined as partial derivatives
of the thermodynamic potential with respect to the appropriate variable,
e.g. T = ∂ε/∂σ etc. Explicit expressions will be given below. In (3.3) the
pressure is defined as p = −∂E/∂V , where all other bulk variables are kept
constant.
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If surface effects are not considered, one can interchange in eq. (3.2)
Φijd∇jni with −(∇jΦij)dni and combine with the h′

i term into hidni,
where

hi = h′
i − ∇jΦij =

δE

δni
(3.4)

is the variational derivative of the energy with respect to the director [71].
Due to the orthogonality condition (2.13), also h has to be transverse to n,
i.e. n · h = 0, which can be made explicit by defining δE/δni ≡ hkδ⊥

ik where
the transverse Kronecker delta δ⊥

ik projects onto the plane perpendicular
to n: δ⊥

ik = δik − nink. Of course, hi has to vanish in the homogeneous
limit (in the absence of external fields), since δni is a symmetry variable.
For ∇jΦij this happens automatically by construction, while for h′

i this is
a restriction.

If we had taken into account a slowly relaxing variable, e.g. order pa-
rameter variations δS as in Sec. 2.3, the potential E would also depend on
ρ V δS and in the Gibbs relation (3.2) the additional contribution W dS
would occur with W the appropriate conjugate field. At this stage the
difference between such slowly relaxing and symmetry variables is obvious,
since W generally does not vanish in the homogeneous limit.

The equilibrium state is a maximum of the entropy [72], i.e. dσ = 0.
For a local thermodynamic description this means that two infinitesimally
small adjacent volumes, which can exchange mass, energy, momentum and
charge, are in equilibrium, if they have equal chemical potential, temper-
ature, velocity and electric potential. Thus, global equilibrium requires µ,
T , v, µc and Φ to be constant in space and time. The director n is constant
in an unconstrained equilibrium (as discussed in Sec. 2.2), while generally
hi = 0 or Φij = constant.

3.2 Energy and Thermodynamic Forces

The equilibrium state is a minimal energy state. Thus, the energy has to
be at least quadratic (bilinear) in the quantities that describe departures
from equilibrium. We will construct this excess energy density, ε(2) as a
bilinear function of the variables discussed in (3.1) except for the electric
degree of freedom, which will be considered in Sec. 5 in detail. Using the
general symmetry requirements (isotropy of the energy, uniaxiality of the
state, n → −n symmetry, inversion symmetry etc.) one gets

ε(2) =
T

2CV
(δσ)2 +

1
2ρ2κs

(δρ)2 +
γ

2
(δc)2 +

1
ραs

(δσ)(δρ) + βσ(δc)(δσ)

+ βρ(δc)(δρ) +
1
2

Kijkl(∇jni)(∇lnk) +
1
2ρ

g2 (3.5)

which yields the appropriate conjugate quantities describing deviations
from their constant equilibrium values

δT ≡ ∂ε(2)

∂σ
=

T

CV
δσ +

1
ραs

δρ + βσδc (3.6a)
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δµ ≡ ∂ε(2)

∂ρ
=

1
ρ2κs

δρ +
1

ραs
δσ + βρδc (3.6b)

δµc ≡ ∂ε(2)

∂c
= γδc + βσδσ + βρδρ (3.6c)

vi ≡ ∂ε(2)

∂gi
=

1
ρ

gi (3.6d)

Φij ≡ ∂ε(2)

∂∇jni
= Kijkl∇lnk (3.6e)

The Frank elastic tensor describing curvature elasticity of the director

Kijkl = K1δ
⊥
ijδ

⊥
kl + K2npεpijnqεqkl + K3njnlδ

⊥
ik (3.7)

contains 3 phenomenological susceptibilities (curvature elastic moduli) [73]
describing splay, twist and bend deformations, respectively [45]. Without
the n → −n symmetry a linear splay term occurs in (3.5) giving rise
to the possibility of a non-homogeneous director orientation even in the
ground state (splay phase) [74]. The transverse Kronecker tensors δ⊥

ij ≡
δij −ninj in (3.7) guarantee the orthogonality relation (2.13) to be fulfilled
in (3.6e). The conventional static susceptibilities contained in (3.5) are the
specific heat (at constant density) CV , the compressibility κs, the adiabatic
volume expansion coefficient αs and the appropriate susceptibilities γ, βσ

and βρ related to the concentration instead of the total mass density. The
condition of thermostatic stability requires the energy density (eq. (3.5)) in
equilibrium to be a positive (semi-)definite form. This leads to the following
restrictions on the susceptibilities: CV , κs, γ, K1, K2, K3, ρ, Tα2

s −CV κs,
Tγ − CV β2

σ and γ − ρ2κsβ
2
ρ are all positive [75]. If one of these positivity

relations is violated, e.g. for some effective susceptibilities in a constrained
system, the system is thermostatically unstable and a new ground state
(with lower energy) will arise. Deviations from this new ground state will
then again be governed by an energy of the form (3.5).

Eq. (3.5) has to be regarded as the beginning of an expansion in pow-
ers of the variables. For the symmetry variables this is at the same time
also an expansion in gradients. Higher than second order terms will be
discussed in Sec. 6.5. Very often the quadratic (or bilinear) approximation
(3.5) is already sufficient. Note that it is not harmonic (and the conjugate
quantities in (3.6) are not linear in the variables), since all phenomenolog-
ical susceptibilities are still functions of all scalar quantities of the system,
e.g. CV or K1 may still depend on temperature, pressure etc., and all ma-
terial tensors depend on the director n. The latter gives rise to a generally
non-vanishing h′

i

h′
i ≡ ∂ε

∂ni
=

1
2

∂Kpjkl(n)
∂ni

(∇lnk)(∇jnp) (3.8)
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which is zero in the homogeneous limit as it should be. Linearized equations
are obtained, when these dependences are neglected or when the variables,
which the susceptibilities and material tensors depend on, are replaced by
their constant equilibrium values.

As usual in thermodynamics the choice of the static potential is quite
arbitrary and any potential derived from the energy by a Legendre trans-
formation is equally well suited. E.g. we could have chosen the free energy
as the potential to start with, thereby replacing the entropy density by the
temperature as a variable. This arbitrariness is usually used to choose the
most practical set of variables for a given situation.

Since in equilibrium the thermodynamic conjugate quantities are con-
stant in space, any inhomogeneous distribution of these quantities will drive
the system away from equilibrium. For that reason gradients of the ther-
modynamic quantities (3.6) are called thermodynamic forces and thus ~∇µ,
~∇T , ~∇µc, ∇jvi and ∇jΦij (or hi) will cause (irreversible) motion in the
system (see Sec. 4.2 and for higher order gradient terms Sec. 6.5).

4 Dynamics

4.1 Reversible Currents

The dynamical part of the hydrodynamic equations consists of specify-
ing the currents and quasi-currents (defined in eqs. (2.5), (2.6), (2.12) and
(2.14)) in terms of the thermodynamic conjugate quantities (3.6). Thermo-
dynamically we can discriminate two classes of dynamics, one is reversible
(e.g. sound propagation) and the other is irreversible (e.g. heat conduc-
tion, sound damping). The latter increases the entropy of the system, while
the former does not change it. Thus, we can split the currents and quasi-
currents additively into a reversible part (superscript R) and an irreversible
part (superscript D) [76]

σij = σR
ij + σD

ij (4.1a)

jε = jεR + jεD (4.1b)

jc = jcR + jcD (4.1c)

Yi = Y R
i + Y D

i (4.1d)

where reversible (irreversible) parts are invariant (non invariant) under
time reversal, i.e. they have the same (opposite) behavior under the trans-
formation t → −t as the time derivatives of the appropriate variables.

We will now discuss the reversible dynamics and come back to the irre-
versible part in Sec. 4.2. If the dynamics is purely reversible, the entropy
of the system is a conserved quantity and follows a local conservation law

∂

∂t
σ + ~∇ · (vσ) + div jσR = 0 [reversible] (4.2)
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Of course, the entropy density σ is not an additional hydrodynamic vari-
able, but is expressed by the other variables via the Gibbs relation (3.2).
Whether one regards the entropy conservation (4.2) as an independent con-
servation law and then the energy conservation (2.6) as a consequence of
eq. (3.2) or vice versa, is a matter of taste. Inserting all dynamic equations
(2.2), (2.5), (2.6), (2.12), (2.14) and (4.2) into eq. (3.2) leads to the condi-
tions, which the reversible parts of the currents and quasi-currents have to
fulfill, in order to conserve the entropy. They are

∇k(jε
k

R −vi σR
ik −ΦikY R

i ) = T ∇kjσ
k

R +
µc

ρ
∇kjc

k
R −σ′′

ij∇jvi +hi Y R
i (4.3)

and
σR

ij = p δij + Φlj∇inl + σ′′
ij (4.4)

where the isotropic pressure p (defined by (3.3)) and the “Ericksen stress”
Φkj∇ink are the counter terms to the transport contributions (e.g. ∇iε vi)
in all the currents and quasi-currents, which we have already made ex-
plicit in the dynamic equations [77]. These convective terms are, of course,
reversible and are related to Galilean invariance.

The yet undetermined parts of the reversible currents and quasi-currents
are now expressed phenomenologically in terms of the thermodynamic con-
jugates. One finds

jσR = 0 = jcR (4.5)

due to time reversal symmetry and their vectorial nature, while

Y R
i = −1

2
λijk∇jvk (4.6)

and
σ′′

ij = −1
2
λkjihk (4.7)

conserve the entropy. The latter part involves an antisymmetric part in
the stress tensor, since (preliminarily) λijk = λ1δ

⊥
ij nk + λ2δ

⊥
ik nj . The

antisymmetric part of the stress tensor, however, has to be a divergence due
to angular momentum conservation. This condition reduces the number of
independent phenomenological parameters in λijk to one, since λ2 − λ1 =
2 is required. This relation is obtained as follows: The energy density
in eq. (3.2) has to be invariant under rotations of the coordinate frame.
However, the vectorial quantities are not constant under rotations, but
transform according to dni = Ωijnj etc., where Ωij is any antisymmetric
tensor. Thus, rotational invariance requires [78]

dε = 0 = h′
i δ⊥

ip Ωpj nj + Φij δ⊥
ip Ωjk∇knp + Φij δ⊥

ip Ωpk∇jnk (4.8)

which can be used to transform the antisymmetric part of the stress tensor

σR
ijεijm =

(
Φkj δ⊥

kp∇inp − 1
2
(λ1 − λ2) δ⊥

kj ni(h′
k − ∇lΦkl)

)
εijm (4.9)
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into

σR
ijεijm =

(
1
2
(λ1 − λ2)∇l(ni δ⊥

kj Φkl) + [1 +
1
2
(λ1 − λ2)]Φkj δ⊥

kl ∇inl

)
εijm

(4.10)
The bracket [1 + 1

2 (λ1 − λ2)] has to vanish, which gives the final form for
the material tensor λijk

λijk = (λ − 1)δ⊥
ij nk + (λ + 1)δ⊥

ik nj (4.11)

It contains one phenomenological (reversible) transport parameter λ, a
transport parameter that does not exist in simple fluids, but is common in
systems with broken rotational symmetry [79]. Temporal changes Yi of the
director orientation are coupled to symmetric velocity gradients (via the
coefficient λ) as well as to antisymmetric velocity gradients or the vorticity
2ωi = εijk∇jvk, where however no phenomenological parameter is involved.
This is in accordance with the discussion at the end of Sec. 2.2, where such
a behavior under rotations was already postulated from the fact that the
director is the symmetry variable due to broken rotational symmetry. The
parameter λ can have either sign and governs the flow alignment behavior
of nematics [45].

Finally, eq. (4.3) requires the nonlinear contributions in the energy cur-
rent

jε
k

R = viΦjk∇inj − 1
2
λlik hl vi − 1

2
λijl Φik∇jvl (4.12)

A complete listing of the dynamic equations (including the dissipative parts
and the electric degrees of freedom) is given in the Appendix.

4.2 Irreversible Currents

The second law of thermodynamics states that any irreversible dynamics
must increase the entropy. Thus, the entropy is not a conserved quantity
and in the general case eq. (4.2) has to be replaced by

∂

∂t
σ + ~∇ · (vσ) + div (jσR + jσD) =

2R

T
(4.13)

where the dissipation function R is positive (zero) for irreversible (re-
versible) processes. It can be interpreted as the energy (per unit time
and volume) dissipated into the microscopic degrees of freedom. Divided
by the temperature it serves as the source term (the entropy production)
in the dynamical equation for the entropy (4.13).

If eq. (4.13) is related to all the other dynamical equations (2.2), (2.5),
(2.6), (2.12) and (2.14) through the Gibbs relation (3.2), one gets

2R = − ∇i(jε
i
D − Tjσ

i
D − vjσ

D
ji − µcj

c
i
D + ΦjiY

D
j )

− jσ
i

D∇iT − σD
ij ∇jvi − jc

i
D∇iµc + hi δ⊥

ik Y D
k > 0

(4.14)
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Of course, only the dissipative parts of the currents and quasi-currents
(cf. (4.1)) add to the dissipation function. Eq. (4.14) requires first that the
dissipative energy current is given by

jε
i
D = Tjσ

i
D + vj σD

ji + µcj
c
i
D (4.15)

and second that the dissipative parts of all the other currents and quasi-
currents are functions of the thermodynamic forces ~∇T , ~∇µc, h and ∇jvi

introduced at the end of Sec. 3 [80]. The most efficient way to establish the-
ses relations between forces and irreversible currents and quasi-currents is
to set up phenomenologically the dissipation function as a positive definite
form of the forces. According to the symmetry requirements (e.g. n → −n
symmetry) the most general bilinear expression for R is

R =
1

2γ1
hi δ⊥

ij hj +
1
2

νijkl(∇jvi)(∇lvk) +
1
2

κij(∇iT )(∇jT )

+
1
2

Dij(∇iµc)(∇jµc) + DT
ij(∇iT )(∇jµc)

(4.16)

where γ−1
1 is sometimes called the rotational viscosity, νijkl is the viscos-

ity tensor and κij , Dij , and DT
ij describe heat conduction, diffusion and

thermodiffusion (related to the Dufour and Soret effect), respectively. The
latter three are of the uniaxial form

Dij = D⊥δ⊥
ij + D‖ninj (4.17)

while the explicit form of the viscosity tensor (containing 5 viscosities) is
listed in the Appendix. Positivity of R is guaranteed, if γ1, κ⊥, κ‖, D⊥,
D‖ and κ⊥D⊥ − (DT

⊥)2, κ‖D‖ − (DT
‖ )2 are all positive.

The dissipative currents and quasi-currents now follow from the dissipa-
tion function as partial derivatives [81] according to eq. (4.14)

jσ
i

D ≡ − ∂R

∂∇iT
= −κij∇jT − DT

ij∇jµc (4.18a)

jc
i
D ≡ − ∂R

∂∇iµc
= −Dij∇jµc − DT

ij∇jT (4.18b)

σD
ij ≡ − ∂R

∂∇jvi
= −νijkl∇lvk (4.18c)

Y D
k ≡ ∂R

∂hk
=

1
γ1

δ⊥
ik hi (4.18d)

Although we have used a bilinear form for the dissipation function R (linear
irreversible thermodynamics), the dissipative currents obtained are gener-
ally not linear, since the transport coefficients can depend on the scalar

29



Harald Pleiner and Helmut R. Brand

invariants of the system (e.g. temperature, pressure etc.) and since the
material tensors explicitly depend on the director n. A generalization of R
including expressions cubic and quartic in the thermodynamic forces will
be discussed in Sec. 6.5. A summary of the dynamic equations derived in
this Section is listed in the Appendix.

5 Electrohydrodynamics

5.1 External Fields

External fields are often used to drive a system out of equilibrium into a
new state via some kind of instability. The inclusion of external fields in
a hydrodynamic theory is therefore a necessity. As external fields one can
have electric and magnetic fields, gravity, externally applied temperature
and concentration gradients, externally induced shear and vortex flow and
even more complicated examples. Here we will concentrate on electric
fields, but allow for static external magnetic fields as well.

In a polarizable medium an external electric field induces a polarization
(a mean electric dipole moment) that is oriented by the external field. In
nematic liquid crystals, where the molecular dipole moments are more or
less rigidly oriented with respect to the geometric axes of the molecules,
this orienting effect of the external field on the induced polarization results
in an orienting effect on the director. This is obvious from the (completely
model independent) Legendre transform of the dielectric energy density
[82]

4πε̃diel = −1
2
εijEiEj = −1

2
ε⊥E2 − 1

2
εa(n · E)2 (5.1)

where εa (≡ ε‖ − ε⊥) describes the anisotropy of the (uniaxial) dielectric
tensor εij = ε⊥δ⊥

ij + ε‖ninj and E the electric field. Equilibrium states
according to minima of (5.1) are either n ‖ E (for εa > 0) or n ⊥ E (for
εa < 0). In the former case the orientational symmetry is already broken
externally by the electric field and any rotation of n (even a homogeneous
one) experiences a finite restoring force according to (5.1). Thus strictly
speaking, δn (with δn · n = 0) is no longer a hydrodynamic variable, since
its Fourier modes have a gap (ω(k → 0) → const. 6= 0) [83]. In the case εa <
0, which is strictly speaking biaxial, since there are two orthogonal preferred
directions, the field breaks (externally) the orientational symmetry twice,
while the director breaks spontaneously the orientational symmetry only
with respect to the third direction (orthogonal to E). Thus, only deviations
of the director with δn · n = 0 and δn · E = 0 are hydrodynamic, while
those with δn ‖ E acquire a gap in their Fourier spectrum.

However, the orienting effect of the external field is so weak (and the
appropriate gaps in the Fourier spectrum so small) that discarding director
rotations as variables would not make much sense [84]. We therefore keep
δn (with δn · n = 0) as macroscopic variables and also neglect the induced
biaxiality in the case εa < 0. However, due to the dielectric energy (5.1), the
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molecular field hi does not necessarily vanish in the homogeneous limit, but
its gradient independent part must vanish with the external field strength.

There is also an orienting effect on the director by an external magnetic
field due to the magnetic susceptibility anisotropy

2εmagn = −χa(n · H)2 (5.2)

Since the influence of magnetic fields is rather weak, one can neglect the
induced magnetization, i.e. there is no magnetic degree of freedom and H
is the external field, which we assume to be homogeneous. This is different
for external electric fields that create a sizeable polarization, which we
must take into account as an additional internal electric degree of freedom.
Using standard thermodynamic arguments [72] the energy differential to
be included in the Gibbs relation (3.2) due to electrical work is

dwel = − 1
4π

E · dD (5.3)

where E and D are the local (i.e. external plus internal) values of the elec-
tric field and the electric displacement vector, respectively. Thus, D seems
to be the natural candidate to be considered as dynamic variable. However,
inspection of Maxwell’s equation reveals that of the 6 dynamical equations
(for E and H, the magnetic field) one dynamical degree of freedom is re-
moved by gauge invariance (or because the magnetic flux density B has no
sources or sinks), one of them is the charge conservation law (2.11) related
to divD = 4πρe and the remaining four read

(curl Ė)i + ∇jπ
E
ij = −4π (curl je)i (5.4a)

(curl Ḣ)i + ∇jπ
H
ij = 4π cL ∇iρe (5.4b)

with πE
ij = cL∇jHi and πH

ij = −cL∇jEi where we have put E = D and
H = B for simplicity and where cL is the speed of light. Eqs. (5.4) are
inhomogeneous equations with curl je and grad ρe as source terms. Only
in vacuum, where ρe = 0 = je, they have the form of conservation laws for
E and H. However, the two doubly degenerate transverse electromagnetic
waves, which follow from them in that case, have frequencies that are far
beyond any reasonable hydrodynamic description. If matter is present,
however, the always non-zero conductivity leads to relaxation, i.e. to a non-
hydrodynamic behavior of these modes. Thus, curl H and curl E, which are
neither related to conservation laws nor to spontaneous broken symmetries,
are generally non-hydrodynamic variables, which we will not consider here
[85]. On the hydrodynamic time scale they are already relaxed to their
local equilibrium values and we can use the electrostatic conditions

curlE = 0 = curlH (5.5)
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in order to eliminate them as independent variables. In that case E = −~∇Φ
[86] and eq. (5.3) gives dwel = Φdρe, which we have already incorporated in
the Gibbs relation (3.2). Instead of using the electric potential Φ and the
charge density ρe we will express below the statics and dynamics in terms
of the fields in order to arrive at local expressions. The Gibbs relation (3.2)
then reads

dε = µdρ + T dσ + v · dg +
1
4π

E · dD + µc dc + hi dni (5.6)

and the pressure is given by

p = −ε + µρ + Tσ + v · g +
1
4π

E · D (5.7)

The condition (5.5) will be implemented by using E = −~∇Φ and H =
const.

5.2 Statics and Dynamics

We set up the statics by writing down the energy density, ε(D) = ε(0) +
εel(D)+ εmagn, as a sum of the field free part ε(0) (called ε in (3.5)), of the
electrical contribution εel(D),

4π εel =
1
2
ε−1
ij DiDj + eijkDk∇inj (5.8)

which contains the dielectric part (ε−1
ij = ε−1

⊥ δ⊥
ij + ε−1

‖ ninj) and the flexo-
electric part [45] (eijk = e1δ

⊥
ij nk +e3δ

⊥
jk ni) and of the magnetic part εmagn

(5.2). According to the Gibbs relation (3.2) and (5.6) the electric field then
follows from (5.8) by differentiation E = 4π(∂ε/∂D)

Ei = ε−1
ij Dj + ekji∇knj (5.9)

The molecular field hi (3.4) acquires electric field dependent contributions
due to (5.8) and a dependence on the external magnetic field due to (5.2)

hi(D) = hi(0) +
1
4π

δ⊥
il

(
(

1
ε‖

− 1
ε⊥

)Dl(n · D)

− ∇j(ejlkDk) + Dk(∇jnq)
∂ejqk

∂nl
− 4πχaHl(n · H)

) (5.10)

Since we have used D as variable, the susceptibilities in (5.8) and (3.5)
are taken at constant D. In order to come to the experimentally more
relevant susceptibilities at constant field E, one has to switch to the Leg-
endre transformed electric enthalpy ε̃(E) ≡ ε(D) − (1/4π)E · D, which is
then expressed as bilinear form of all variables including E instead of D
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(cf. Appendix). In that description the susceptibilities (denoted by a tilde)
are those taken at constant field E. Now D is obtained by differentiation,
D = −4π(∂ε̃/∂E), which can be compared to eqs. (5.9) and (5.10). This
gives the connection between susceptibilities at constant D and those at
constant E (with tilde)

ẽ1 = ε‖e1, ẽ3 = ε⊥e3, K̃1 = K1− 1
4π

ε‖e2
1, K̃3 = K3− 1

4π
ε⊥e2

3 (5.11)

when they are not identical. Thermostatic stability requires ε⊥, ε‖, K̃1 and
K̃3 to be positive, additionally.

The dynamics is obtained by specifying the electrical current density
je (defined in (2.11)) in terms of the generalized forces. The generalized
force due to the electric degree of freedom is the electric field E, since
it is the gradient of the thermodynamic conjugate quantity, the electric
potential (cf. eq. (3.2)). There is no reversible part of je, since the transport
contribution (vρe) is already present in (2.11). In order to give zero entropy
production the transport contribution has to be balanced by the Maxwell
stress, i.e. there is an additional field dependent contribution to σ′′

ij (cf. eqs.
(4.4) and (4.7)) [87]

σ′′
ij(E) = − 1

4π
DjEi (5.12)

Sometimes it is more favorable [88] to use a slightly different definition of
the pressure

p̃ ≡ p − 1
8π

E2 (5.13)

where p was given by (5.7). It is then possible to write the momentum
balance equation (2.5) in the form

∂

∂t
gi + ∇j(vigj) + ∇ip̃ + ∇j σ′

ij(0) = ρeEi + Pj∇jEi (5.14)

where σ′
ij(0) contains all the non-isotropic parts of the stress tensor that are

not connected to the electric field, where on the right hand side explicitly
the external forces (Coulomb and Kelvin) occur [89] with Pi = (1/4π)(Di−
Ei) is the macroscopic polarization. For a homogeneous external field the
Kelvin force is a nonlinear contribution.

To get the irreversible part, we add electric field dependent terms to the
dissipation function, R(E) = R(0) + Rel(E), where R(0) is the field free
part (called R in (4.16)) and

Rel(E) =
1
2

σE
ijEiEj + κE

ijEi∇jT + DE
ijEi∇jµc − ζE

ijkhi∇jEk (5.15)

contains all the terms quadratic in the forces, which are related to E. The
first 3 contributions are rather familiar describing electric conductivity,
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(Ohm’s law), thermoelectricity (Seebeck and Peltier effects [72]) and the
appropriate diffuso-electric effects. Of course, in nematic liquid crystals
these effects are all anisotropic, since the (symmetric, second rank) mate-
rial tensors are of the form σE

ij = σ⊥δ⊥
ij +σ‖ninj . The last term in eq. (5.15)

represents a dissipative dynamic crosscoupling between director rotations
and electric field [14]. This effect (“dynamic flexoelectric effect”) is analo-
gous to the (static) flexoelectric effect and the material tensor ζE

ijk is of the
form ζE

ijk = ζE(δ⊥
ijnk + δ⊥

iknj) containing one transport parameter [90].
The electrical current (density) then follows from the dissipation function

(5.15) by differentiation [91]

je
i

D =
∂R

∂Ei
= σE

ijEj + κE
ij∇jT + DE

ij∇jµc + ∇j(ζE
kjihk) (5.16a)

and the other dissipative currents and quasi-currents get the following field
dependent contributions

jσ
i

D(E) = jσ
i

D(0) − κE
ij Ej (5.16b)

jc
i
D(E) = jc

i
D(0) − DE

ij Ej (5.16c)

Y D
i (E) = Y D

i (0) − ζE
ijk∇jEk (5.16d)

jε
i
D(E) = jε

i
D(0) − Φ je

i
D (5.16e)

where the field free parts are given by eqs. (4.18a), (4.18b), (4.18d) and
(4.15), respectively. Due to the dynamic flexoelectric effect an inhomoge-
neous director field gives rise to a (dissipative) electric current (5.16a), or
vice versa, an inhomogeneous electric field leads to (dissipative) director
rotations (5.16d). Positivity of the entropy production requires σ⊥, σ‖,
κ⊥σ⊥ − (κE

⊥)2, κ‖σ‖ − (κE
‖ )2, D⊥σ⊥ − (DE

⊥)2, and D‖σ‖ − (DE
‖ )2 to be

positive.
In this Section we have restricted the discussion to bilinear forms of

both, the energy density and the dissipation function. Nevertheless, the
field dependent static and dynamic contributions are already nonlinear
with respect to the director due to the director dependence of the ma-
terial tensors and with respect to all scalar quantities (e.g. E2), which the
susceptibilities and transport parameters generally are functions of. Other
nonlinearities due to cubic and quartic energy and dissipation functionals
will be discussed in Sec. 6.5 [46].

6 Additions to Nematodynamics

6.1 Fluctuating Forces

In the preceding Sections we have presented hydrodynamics as a macro-
scopic and deterministic theory, i.e. all fields characterizing the state of the
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system have sharp and well defined values, which evolve according to (de-
terministic) differential equations. This level of description corresponds to
ordinary thermodynamics (which should rather be called thermostatics, of
course). However, hydrodynamics should come out of a very complicated
averaging process of the many-body dynamics present on the molecular
level. Thus, interpreting hydrodynamics as averaged equations, only lin-
earized hydrodynamics can also be viewed as dynamical equations for the
averages of the proper quantities. For this reason only linearized equations
will be considered in this Section.

In the framework of Statistical Mechanics it is straightforward to go be-
yond ordinary thermodynamics by allowing for fluctuations. In the same
spirit “fluctuating hydrodynamics” is obtained by assuming the relevant
fields {jtot

α } to be noisy, i.e. consisting of a mean part {jα}, which fol-
lows the deterministic (linearized) hydrodynamic equations, and a (small)
stochastic part {Jα} with zero mean

jtot
α = jα + Jα (6.1)

where all quantities are space-time fields and the Greek indices denote the
different quantities considered. As the easiest case we will assume the
stochastic parts to be given by δ-correlated white noise (Markovian) and
Gauss processes [92]

< Jα(r, t) >= 0 (6.2)

< Jα(r1, t1)Jβ(r2, t2) >= (cαβ + cβα)δ(r1 − r2)δ(t1 − t2) (6.3)

where < ... > denotes averaging over a proper equilibrium distribution and
all the higher moments are given by (6.2) and (6.3). The quantity cαα is a
measure for the strength of the fluctuations of quantity α and cαβ for α 6= β
describes the strength of the correlation between different fluctuations.

For thermal fluctuations near equilibrium (i.e. in the range of linear re-
sponse theory or linear irreversible thermodynamics) however, the coeffi-
cients cαβ are not new and independent parameters of a system, but are
rather given by the (dissipative) transport parameters already contained
in the hydrodynamic equations. This famous fluctuation-dissipation theo-
rem [72, 93] states that any dissipative process is accompanied by thermal
fluctuations (and vice versa) and both processes have a common root (the
very many microscopic degrees of freedom).

Now we have to go into detail and find out, which quantities actually
fluctuate in the hydrodynamic description. Since conserved quantities can-
not fluctuate in a classical theory, it is the currents (and quasi-currents)
that fluctuate, even more precisely, only the irreversible parts of them [94],
because of the fluctuation-dissipation theorem. Thus, the set of mean quan-
tities jα contains in our case (cf. 4.18 and 5.16)

{jα} = {jσ
i

D, jc
i
D, σD

ij , Y D
i , je

i
D} (6.4)
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while the appropriate fluctuating parts Jα will be called

{Jα} = {Jσ
i , Jc

i , Σij , Υi, Je
i } (6.5)

We now follow the procedure of ref. 93, 94 in expressing the correlation
matrix cαβ by the dissipative transport parameters contained in (4.18) and
(5.16). Defining generalized forces Fα by the total entropy production∫

R

T
dV ≡

∫
jαFα dV (6.6)

we can read off from (4.14) and [91]

{Fα} =
{−1

T
∇iT,

−1
T

∇iµc,
−1
T

∇jvi,
1
T

hi,
1
T

Ei

}
(6.7)

The dissipative constitutive equations (4.18) and (5.16) are now in the form
jα = γdiss

αβ Fβ , where γdiss
αβ is the matrix of dissipative transport coefficients

[95] and the fluctuation-dissipation theorem states

cαβ = kBγdiss
αβ (6.8)

where kB is Boltzmann’s constant. This leads to the following set of cor-
relation functions (6.3) for the fluctuating parts Jα [96]

< Jσ
i (r1, t1)Jσ

j (r2, t2) >=2kBT κij δ(r1 − r2)δ(t1 − t2) (6.9a)

< Jσ
i (r1, t1)Jc

j (r2, t2) >=2kBT DT
ij δ(r1 − r2)δ(t1 − t2) (6.9b)

< Jσ
i (r1, t1)Je

j (r2, t2) >= − 2kBT κE
ij δ(r1 − r2)δ(t1 − t2) (6.9c)

< Jc
i (r1, t1)Jc

j (r2, t2) >=2kBT Dij δ(r1 − r2)δ(t1 − t2) (6.9d)

< Jc
i (r1, t1)Je

j (r2, t2) >= − 2kBT DE
ij δ(r1 − r2)δ(t1 − t2) (6.9e)

< Je
i (r1, t1)Je

j (r2, t2) >=2kBT σE
ij δ(r1 − r2)δ(t1 − t2) (6.9f)

< Υi(r1, t1)Υj(r2, t2) >=2kBT δ⊥
ij

1
γ1

δ(r1 − r2)δ(t1 − t2) (6.9g)

< Σij(r1, t1)Σkl(r2, t2) >=2kBT νijkl δ(r1 − r2)δ(t1 − t2) (6.9h)

< Υi(r1, t1)Je
k(r2, t2) >=2kB ∇(1)

j

(
TζE

ijk δ(r1 − r2)
)
δ(t1 − t2) (6.9i)

Replacing the (mean) currents or quasi-currents jα in the linearized hy-
drodynamic equations (e.g. the linearized versions of (A.2-6)) by the fluctu-
ating ones (jtot

α ) (6.1), the set of (deterministic) hydrodynamic equations is
transformed into a set of Langevin equations with gradients of Jα (or Jα in
case of non-conserved variables) as generalized fluctuating forces. However,
the system is linearized and it requires only some linear algebra to express
the correlation function of any desired quantities by those given in eqs.
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(6.9). Some examples for correlation functions for nematic liquid crystals
in weakly nonequilibrium situations (shear flow, temperature gradient) are
given in [97, 98].

Besides the statistical mechanics aspect there is another more practical
reason for enlarging hydrodynamics to fluctuating hydrodynamics. Scat-
tering experiments of all kinds are very often described by correlation
functions of the type (6.3), e.g. the Fourier transformed density-density
correlation function is the dynamic structure factor obtained by inelastic
light scattering experiments [6, 99]. Quite generally, the information con-
tained in a set of correlation functions for all the hydrodynamic variables
is equivalent to that of all the linearized hydrodynamic Langevin equa-
tions. The correlation function formalism can be generalized to situations
of large wavevector and frequency [6] (not easily accessible for hydrody-
namic theories), while linearized hydrodynamics can be generalized to the
(deterministic) nonlinear regime [100] (hardly tractable by response func-
tion theories), thus giving access to large amplitude problems.

6.2 Biaxial Nematics

In the preceding Sections we have dealt with uniaxial nematic liquid crys-
tals. There, the systems develops spontaneously a preferred direction char-
acterized by the director ni. Rotational symmetry is broken twice, i.e. for
any rotation axis in the plane perpendicular to the director. The symmetry
variables are the two rotations δni of the director (ni δni = 0, cf. Sec. 2.2).
Rotations about ni, however, are still a symmetry element of the uniaxial
nematic phase. It has been theoretically recognized rather early [101-105]
that biaxial phases with a complete (threefold) spontaneous breaking of
rotational symmetry are possible. The system is then characterized by two
orthogonal directors ni and mi (or equivalently by a tripod of tree mutually
orthogonal unit vectors) [106], whose rotations as a whole, δni and δmi,
with

ni δni = 0, mi δmi = 0, ni δmi + mi δni = 0 (6.10)

are the three symmetry variables. The relative angle between ni and mi

is kept fixed by the condition (6.10), and thus excluded from the list
of variables, since it is not hydrodynamic (like e.g. the order parameter
strength T of the biaxial order, or the tilt angle in smectic C liquid crys-
tals, cf. Sec. 7.3). In addition to the n → −n symmetry an independent
m → −m symmetry (any formula must be invariant under the replacement
of m by −m) is assumed [107].

The structure of the nematic hydrodynamic equations for the biaxial case
[11] is quite similar to the uniaxial one. There is a gradient free energy con-
nected to distortions of both director fields n and m, a reversible coupling
of flow with director distortions giving rise to backflow and flow alignment
effects [20], and orientation of the director fields by external fields [11].
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The main differences are as follows: The additional director degree of free-
dom in the biaxial case gives rise to an additional shear/rotational diffusion
mode with a dispersion relation already known from the uniaxial case. The
second difference arises because of the different symmetries involved. For
the biaxial phase this implies generally a higher number of coefficients con-
tained in the material tensors [108]. For orthorhombic symmetry, which we
will assume in the following, there are three coefficients for each symmetric
second rank tensor (heat conduction κij , electric conductivity σE

ij , electric
(or magnetic) susceptibility εij , diffusion Dij , thermodiffusion DT

ij , thermo-
electric κE

ij and diffuso-electric effects DE
ij), three reversible flow alignment

parameters in λijk, three rotational diffusion coefficients (1/γ1, 1/γ2, 1/γ3),
nine ordinary viscosities (νijkl) and twelve (bulk) Frank constants in Kijkl

[11].
The electric effects not described by second rank tensors are flexoelec-

tricity and its dynamic counterpart. In accordance with eqs.(6.10) we use
as variables the triple

δΘα =

 δΘ1

δΘ2

δΘ3

 ≡
 m · δn

(n × m) · δn
(m × n) · δm

 (6.11)

with α = 1, 2, 3. The flexoelectric energy density can then be written
(choosing Ei instead of Di as variable)

ε(flex) = ẽkαiEi∇kΘα (6.12)

from which the dielectric displacement Di and the molecular fields due to
director variations, hα, follow by taking partial derivatives. The flexoelec-
tric tensor contains six coefficients [109]

ẽkαi = δα1(ẽ1nkmi + ẽ2mkni) + δα2

(
ẽ3(~n × ~m)kni + ẽ4(~n × ~m)ink

)
+ δα3

(
ẽ5(~n × ~m)kmi + ẽ6(~n × ~m)imk

)
(6.13)

The dissipative crosscoupling between director and field is described by
the following contribution to the dissipation function (cf. (A.17) for the
uniaxial case)

R(zeta) = −ζE
αjkhα∇jEk (6.14)

containing three dissipative dynamic flexoelectric transport parameters
[110]

ζE
αjk = δα1ζ

E
1 (njmk + nkmj) + δα2ζ

E
2 ((n × m)jnk + (n × m)knj)

+ δα3ζ
E
3 ((n × m)jmk + (n × m)kmj) (6.15)

where the electrostatic condition (5.5) has been used. The form of (6.13)
and (6.15) is governed by the n → −n and the m → −m symmetry.

38



Hydro- and Electrohydrodynamics

Although the structure of the hydrodynamic equations in the uniaxial
and the biaxial nematic case is very similar, there is one qualitative dif-
ference. In the uniaxial case director variations describe rotations in a
plane (perpendicular to the director), which are always commutative. In
the biaxial case, however, three-dimensional rotations are involved, which
are generally non-commutative. Therefore, Θα is not a vector. Only for
infinitesimal rotations (corresponding to a linearized theory) a rotation
vector exists (Θα with α = x, y, z as Cartesian components). In a non-
linear theory, however, the non-commutativity implies that mixed second
derivatives are not interchangeable, since

(δ1δ2 − δ2δ1)Θα = εαβγ(δ1Θβ)(δ2Θγ) (6.16)

where the Greek indices run over 1,2,3 and δ1, δ2 stand for any first order
differential operator like e.g. ∇i or ∂/∂t. This relation was used in the
hydrodynamics of superfluid 3He-A [111] and applied to biaxial nematics
first in [11]. It plays a crucial role by identifying the three surface contri-
butions in the gradient free energy among 15 terms allowed by symmetry
(thus giving 12 bulk contributions). In addition, the Ericksen stress like
terms (cf. (4.4) for the uniaxial case) are much more complicated in the
biaxial case due the nonholonomity relations (6.16).

Macroscopic descriptions of biaxial nematics based on the Leslie-Ericksen
approach [112] can be reconciled with the hydrodynamic description quite
similarly to the uniaxial case. Experimentally, the existence of biaxial
nematic phases has been proven for lyotropic systems [113], is very likely for
polymeric systems [114], but is still not generally accepted for thermotropic
low molecular weight systems [115].

6.3 Order Parameter Variable

In this Section we will take into account space-time variations δS of the
degree of nematic order S. As discussed in Sec. 2.3 this is not a true
hydrodynamic variable, but it is relaxing slowly enough under certain con-
ditions, in order to be relevant for a macroscopic description. This happens
e.g. near the phase transition to the isotropic phase (where the dynamics
of δS tends to become very slow), at very high frequencies (assuming the
short relaxation time of δS to be still longer than that of all the other
microscopic degrees of freedom), in a nematic texture with many defects,
and in polymeric systems (cf. the following Section).

Such a macroscopic theory near a phase transition (i.e. ordinary hydrody-
namics plus δS) should not be mixed up with a Ginzburg-Landau descrip-
tion of the phase transition. The latter starts with the lowest symmetry
and the least structure of any phase involved, adds appropriate order pa-
rameters to describe the structure and strength of more ordered phases and
ends up describing (even dynamically) fluctuations from one phase to an-
other. Ginzburg-Landau expansions have been introduced to liquid crystal
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phase transitions by de Gennes [116] and are still very popular [117, 118].
Its validity is restricted to the close vicinity of the phase transition (ex-
cluding the critical regime, however). A macroscopic theory near a phase
transition, on the other hand, describes variations of the order parameter
strength within a given phase (nematic in our case), i.e. the structure and
symmetry of that phase (one preferred direction and C2h symmetry) are
not changed. It is valid near the phase transition (the critical regime ex-
cluded) as well as far away from the transition, where it smoothly converges
into ordinary hydrodynamics. Of course, one could also set up a macro-
scopic theory near the other side of the phase transition (in the isotropic
phase) taking the structure and symmetry of that phase [119], and the two
macroscopic theories on the two sides of the transition would be different
and not directly connected to each other.

Since δS is a scalar quantity, it couples energetically to all scalar variables
(e.g. density, entropy density, concentration), and its gradient also to the
electric field and to director distortions. The S-dependent part of the
energy density reads [34, 36, 120, 121]

ε(S) =
a

2
(δS)2 + (bσ δσ + bρ δρ + bc δc) δS

+ ẽS
ij Ei ∇jδS + Mijk(∇jni)(∇kδS)

(6.17)

where the order-electric material tensor is of the usual uniaxial form (4.17)
containing two susceptibilities (eS

⊥ and eS
‖ ), while Mijk is of the form (A.14)

with one parameter (M). The appropriate conjugate quantity W and Di

follow from (6.17)

W ≡ ∂ε

∂δS
= a δS + bσ δσ + bρ δρ + bc δc − ∇k(Mijk∇jni + ẽS

ikEi) (6.18a)

Di = . . . − 4πẽS
ij∇jδS (6.18b)

and the other conjugate quantities (δT , δµ, δµc, Φij , cf. (3.6a-c,e)) acquire
corresponding additions.

Since δS is not conserved, the dynamic equation (2.15) is a balance
equation with Z the quasi-current. Its reversible part is

ZR = (β‖ ninj + β⊥ δ⊥
ij)∇jvi (6.19)

which requires an additional entropy preserving counter term in the re-
versible part of the stress tensor (4.7)

σ′′
ij = . . . + (β‖ ninj + β⊥ δ⊥

ij)W (6.20)

containing two reversible transport parameters (β⊥, β‖). The entropy pro-
duction connected with order parameter variations is

R(order) =
1
2
κwW 2 + (∇jW ) (λWT

ij ∇iT + λWµ
ij ∇iµc) + κW

ij Ei∇jW (6.21)
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adding seven irreversible transport parameters, since the second rank ten-
sors are again of the uniaxial form (4.17). Thus, the irreversible part of the
quasi-current Z is

ZD ≡ ∂R

∂W
= κwW − ∇j(λWT

ij ∇iT + λWµ
ij ∇iµc + κW

ij Ei) (6.22)

and the heat current (4.18a), the concentration current (4.18b), and the
electric current (5.16a) acquire the additions

jσ
i

D = . . . − λWT
ij ∇jW (6.23a)

jc
i
D = . . . − λWµ

ij ∇jW (6.23b)

je
i

D = . . . + κW
ij ∇jW (6.23c)

The irreversible terms in (6.23a,b) are of higher order in the gradients than
those already present in (4.18a,b); cf. also Sec. 6.5. A rather complete set
of equations can be found in [35] and [36].

Apart from crosscouplings to other variables, δS shows a relaxational
dynamics δS(t) = δS(0) exp(−aκwt) with the relaxation time τ = (aκw)−1

[122]. Comparing with a Ginzburg-Landau expansion near a second order
phase transition, one gets a ∼ (Tc − T )−1/2 thus demonstrating the in-
crease of the relaxation time, if the transition temperature is approached.
However, the isotropic to nematic phase transition is (weakly) first order
and the fluctuations are always finite.

The reversible crosscoupling of δS with flow leads to a very interesting
change of the sound mode spectrum at high frequencies. Of course, for
low frequencies (ωτ ¿ 1) order parameter variations have died out and
the usual sound spectrum ω = ±c k + (i/2)D(φ)k2 is obtained, where the
sound velocity c = c0 = (ρκs)−1/2 is isotropic and does not depend on the
angle φ between the sound wave vector k and n. This is changed at high
frequencies (ωτ À 1), since

c2 = c2
0 +

a

ρ

iω

iω + aκw
(β‖ cos2 φ + β⊥ sin2 φ)2 (6.24)

which shows an angle dependence for βa = β‖ − β⊥ 6= 0 [123]. This could
be the explanation for ultrasound experiments showing a slight anisotropy
in the sound velocity [124]. In addition, the anisotropy of (first) sound
velocity is intrinsically connected with the existence of transverse sound
(propagating shear waves). Indeed we find for the velocity c⊥ of transverse
sound (assuming c⊥ ¿ c0)

c2
⊥ =

a

ρ

iω

iω + aκw
βa cos2 φ sin2 φ (6.25)
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which is real for high frequencies (propagating waves). For low frequen-
cies c⊥ is imaginary and only contributes to the usual non-propagating
shear/rotational diffusion [125].

The static (6.18), as well as the dynamic (6.21), crosscoupling of δS with
the electric field, the static and dynamic order-electric effects, are quite
analogous to the flexoelectric (5.9) and the dynamic flexoelectric effects
(5.16a). Inhomogeneous fields give rise to static and dynamic order pa-
rameter variations, while inhomogeneous order parameter configurations
cause static electric displacements or fields and electric currents.

6.4 Side-Chain Polymers

Since their first synthesis [126] liquid crystalline side-chain polymers have
become a very important subject of basic and applied research. In this Sec-
tion we will briefly discuss the main differences between the hydrodynamics
of low molecular weight nematics and the macroscopic dynamic description
of polymeric side-chain systems. Since the full set of equations (including
electric effects) for polymeric and elastomeric systems has been published
recently [34, 35, 36], we will discuss here the basic features only.

Polymer solutions or melts differ from simple (low molecular weight) liq-
uids by their viscoelasticity. On short time and length scales they sustain
elastic stresses, while in the low frequency, long wavelength limit they flow
like a usual viscous fluid. This behavior can be accounted for by intro-
ducing a slowly relaxing field (in the sense of Sec. 2.3), which describes
the transient elasticity. Similarly to crystals and solids, whose permanent
elasticity is described by a second rank strain tensor, we also use a symmet-
ric second rank tensor as macroscopic variable in the polymeric case. In
crystalline material, however, strains are related to displacements of par-
ticles, which return to their original position in equilibrium and the strain
tensor is derived from a displacement vector (taking symmetrized gradi-
ents of it). This displacement vector is the symmetry variable of crystals
connected with the spontaneous breaking of translational symmetry due
to the appearance of a lattice. In polymers on the other hand, no such
equilibrium lattice exists and strains are not related to displacements, but
to dynamical entanglements of long chains. Thus we regard the slowly re-
laxing strain tensor in polymers as containing six independent macroscopic
variables, three of which transform into symmetry variables and three into
microscopic variables, when switching to permanent elasticity [127]. In the
linear domain this model is equivalent to a generalized Maxwell approach,
although taking the polymeric strain explicitly as a dynamical variable (in-
stead of using complex and frequency dependent transport parameters in an
ad hoc manner), allows the necessary generalizations to liquid crystalline or
otherwise complex systems. Especially the coupling to other macroscopic
variables is straightforward in the present approach, but hardly feasible in
the generalized Maxwell description. Shear thinning or thickening effects
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can be dealt with in principle by allowing the viscosities to depend on the
dynamic variables (cf. Sec. 6.5), while normal stress effects are not covered.

In liquid crystalline side-chain polymers the mesomorphic aspects are
localized in the side chains, while the polymeric aspects are based on the
long main chains. Despite the physical coupling between side chains and
the main chain, the two different aspects, nematic and visco-elastic, are well
separated and we can define independently the nematic (director rotations)
and the polymeric (strain-like tensor) dynamic degrees of freedom. Their
static and dynamic interaction is then described explicitly by static and
dynamic crosscouplings in the full set of macroscopic dynamic equations.
In addition we have kept the degree of nematic order (cf. Sec. 6.3) as a
macroscopic variable, since it may relax on a time scale comparable to the
polymeric strain and since its relaxation may be slowed down in polymeric
systems due to a steric interference of side-chain ordering with the main
chain conformation. The macroscopic dynamics of this model [34] shows
an anisotropy in the sound velocity at high frequencies (for experiments
cf. [128, 129]) with various anisotropic dispersion steps, and propagating
transverse sound (again anisotropic) at high frequencies.

Some time ago it has been recognized [130] in the context of nematic gels
or weakly crosslinked nematic elastomers that relative rotations between
the nematic side chains and the backbone segments, to which they are at-
tached, are possibly slowly relaxing quantities. In a macroscopic dynamics,
which takes into account these relative rotations [35], a further and rather
peculiar anisotropy in the high frequency transverse sound spectrum, a
complicated flow alignment behavior, and a retardation [131] in the relax-
ation of the director in external fields is found.

Electrohydrodynamic aspects in elastomeric systems are described in
[36]. They are equally important for polymeric side-chain nematics [132].
There are static couplings of inhomogeneous electric fields to both, the tran-
sient network as well as to relative rotations. Analogous couplings exist in
the dissipative part of the dynamics. In addition there are electrostrictive-
like effects (quadratic in the electric field) with respect to the transient
network and to relative rotations.

6.5 Nonlinearities and Higher-Order Gradient Terms

Nonlinearities are a hallmark of hydrodynamic theories. They play a cru-
cial role in situations far from equilibrium (e.g. turbulence and pattern
formation) and in any large amplitude motion. In complex fluids they are
even more abundant and arise for a variety of reasons, which we will discuss
consecutively below.

α) Implicit nonlinearities: All the phenomenological parameters (suscep-
tibilities, transport parameters) can be a function of (all) scalar quantities
in the system, like temperature T , pressure p, concentration c, order pa-
rameter strength S, field amplitude E2, or vorticity amplitude (curl v)2.
Important examples are the temperature dependence of the specific heat
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CV (T ) and of a(T ) (6.17) across and below the nematic to isotropic phase
transition, respectively, the field dependence of the dielectric susceptibility
ε⊥(E2) giving rise to nonlinear optical effects, or the temperature depen-
dence of the heat conduction κ⊥(T ) (4.18a), leading to non-Boussinesq
effects in the Benard instability [133]. Since the structure of the nonlin-
earities obtained by this implicit dependence on scalar quantities is rather
trivial, e.g. [κij + (∂κij/∂T )δT + . . .]∇jT in the entropy current (4.18a),
it is not necessary to give formulas explicitly.

β) Director dependence: All material tensors depend on the director ori-
entation, like e.g. the flexoelectric tensor eijk in (5.10). This gives rise
to nonlinearities in an inhomogeneous setting, where the director is not
constant. In the Carr-Helfrich [41] mechanism of the electrohydrodynamic
instability, for instance, the director dependence of the conductivity tensor
(5.16a) is crucial, ∇i(σE

ijEj) = σE
⊥δ⊥

ij∇iEj +σE
‖ ninj∇iEj +σE

a Ej∇i(ninj).
This director dependence of material tensors has been made apparent ev-
erywhere in this manuscript by writing down the explicit form of the ten-
sors.

γ) Convection and symmetry terms: In the reversible part of the cur-
rents and quasi-currents there are always nonlinear convective or transport
contributions, e.g. the charge transport ρev in the electric current (2.11).
They can also be interpreted as convective terms, i.e. reflecting the implicit
time dependence of field variables (at a given point in space) due to convec-
tion. These nonlinearities are shown explicitly in the dynamic equations
(A.1-6). Since the pressure and the Ericksen stress in the stress tensor
(4.4) are the counter term to the convective contributions in order to get
zero entropy production, they also give rise to nonlinearities, which for the
pressure is obvious from the expressions (5.7) or (A.16). In addition, sym-
metry variables show in their reversible quasi-currents generally nonlinear
contributions reflecting the nature of the broken symmetry they belong to
(cf. end of Sec. 2.2). For the director this is the rigid rotation contribution
εijkωjnk in the quasi-current Yi (4.6,11) and its counter term in the stress
tensor (4.7) [134].

δ) Anharmonic energy: For the thermodynamic potential (the total en-
ergy density) we have used an expression bilinear in the variables (cf. (3.5)
and (5.1)). Of course, for large amplitude situations this may not be suf-
ficient and cubic or quartic anharmonic contributions are needed. With
respect to the scalar variables such anharmonicities (e.g. (δσ)3 in (3.5))
can be interpreted in terms of an implicit dependence of the harmonic
susceptibility (CV in our example) on the entropy (case α). For vectorial
or tensorial variables, however, new types of contributions are possible,
e.g. K

(3)
ijklmpqr(∇jni)(∇lnk)(∇pnm)(∇rnq) or χ

(3)
ijklEiEjEkEl as additions

to (3.5) or (5.1). On the cubic level there are no such additions due to the
inversion symmetry of nematics, while for quartic contributions there is a
proliferation of new possible terms (replacing one or more E by ~∇σ or ~∇ρ
etc. in the example above), which we will not write down explicitly. Such
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terms would lead to cubic nonlinearities in the thermodynamic conjugate
quantities.

ε) Anharmonic entropy production: As for the energy we can introduce
anharmonic terms in the entropy production R (4.16) and (5.15). Here cu-
bic terms are possible leading to quadratic nonlinearities in the dissipative
currents. Examples are ζ

(2,x)
ijk hiXjXk with Xi ∈ {∇iT, ∇iµc, ∇iW, Ei} or

η
(2)
ijklmhi(∇jvk)(∇lvm), which give rise e.g. to new, but nonlinear dissipa-

tive couplings between director and temperature, electric field, flow etc..
The form of the material tensors involved is discussed in [10, 46].

ζ) Texture dependence: The material tensors can depend not only on
the director (case β), but also on gradients of the director. This can be of
importance in textures, where the director field is stationary, but inhomoge-
neous due to external constraints. The nonlinearities so obtained are similar
to those of type δ) or ε), but not identical. They are interesting, if they pro-
vide new types of crosscouplings, not allowed linearly or by other types of
nonlinearities. Examples are additions to the entropy production R (4.16)
and (5.15) of the form [10, 46] π

(X)
ij hiXj with Xi ∈ {∇iT, ∇iµc, ∇iW, Ei},

where π
(X)
ij = (π(X)

1 δ⊥
klδ

⊥
ij +π

(X)
2 δ⊥

il δ
⊥
jk +π

(X)
3 δ⊥

ikδ⊥
jl +π

(X)
4 δ⊥

iknjnl)∇lnk. Of
course, any material tensor (static or dynamic), even a scalar one, can be
generalized using the scheme νijkl → νijkl + ν

(3)
ijklpqrs(∇qnp)(∇snr), thus

introducing cubic nonlinearities in the currents or the thermodynamic con-
jugates.

η) Higher order gradient terms: The various nonlinear terms introduced
in δ) to ζ) contain an increasing number of gradients. This is inevitable
when dealing with symmetry variables, since their conjugate quantities
already carry gradients. It is therefore consistent to consider linear con-
tributions of higher order in the gradients together with the nonlinearities
shown above. For the statics we have additions to the total energy den-
sity (3.5) and (5.1) of the form [46] γ

(y)
ijk(∇iy)(∇jnk) and e

(y)
ij Di∇jy with

y ∈ {ρ, σ, c, S}. The quite similar flexoelectric effect, eijkDk∇inj , has al-
ready been incorporated in (5.8) [135]. For the dissipative dynamics the
appropriate additions to the entropy production (4.16) and (5.15) are [46]
γ

(X)
ijk hi∇jXk with Xi ∈ {∇iT, ∇iµc, ∇iW, Ei}, where the last term, the

dynamic flexoelectric contribution, −ζE
ijkhi∇jEk, is already contained in

(5.15) [136].
ϑ) Energy current density: In simple fluids the energy current density,

jε
i , carries a nonlinear contribution describing heating due to viscous flow.

In complex fluids the energy current accumulates a lot of reversible and
irreversible nonlinearities due to the conditions R = 0 and R > 0, respec-
tively (cf. (4.12), (4.15) and (5.16e)). Using the dynamic equation for the
entropy density (4.2) instead of that for the energy density (2.6), the source
term of the former, R/T , contains the appropriate nonlinearities, since R
is at least quadratic, cf. (4.16) and (5.15).
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Having sketched the generalization of hydrodynamics into the nonlinear
and higher order gradient regimes, some remarks are in order. Using cu-
bic nonlinearities in the energy density ε or in the entropy production R
destroys the static (ε > 0) or the dynamic stability (R > 0) of the system.
Clearly, quartic contributions have to be supplied additionally, in order to
get positive definite forms again. As long as the cubic contributions are
only small corrections to the bilinear ones, stability is no problem, but if
they are of comparable importance, the quartic ones are inevitable [137].

By introducing cubic and quartic contributions in the entropy production
R one is leaving the solid grounds of (linear) irreversible thermodynamics,
whose validity is well founded on Statistical Mechanics. No such foun-
dations are known for nonlinear generalizations of irreversible thermody-
namics, nor can one make use of such powerful tools as the fluctuation-
dissipation theorem or linear response theory in the nonlinear regime.
Thus, some caution is necessary in the nonlinear case, although no ex-
ample is known, where such a generalization definitely leads to unphysical
results.

A more fundamental question arises, when higher order gradient terms
are involved. Hydrodynamics can be viewed as an expansion in powers of
gradient terms. Such an expansion exists, if energy density and entropy
production are analytical functions. In the microscopic domain this cannot
be the case and the expansions in powers of gradient terms must break
down somewhere going from the macroscopic to the microscopic domain.
However, it is not known, when this will happen. Thus a reasonable notion
is to interpret hydrodynamic expansions as asymptotic expansions, valid
and sensible for small wave vectors, but unreliable for large wave vectors.
This clearly limits the use of higher order gradient terms, which get unim-
portant in the k → 0 limit. It may also depend on the nature of the system,
to what order in the gradient expansion one reasonably can go. Hints for
the breakdown of gradient expansions can be found in the long time tails
of correlation functions [138] and in low dimensional systems, where hy-
drodynamics strictly speaking does not exist. But even in that case the
use of ordinary hydrodynamics can make sense in practice as is the case
for smectic systems [45].

7 Director-Type Degrees of Freedom

7.1 Smectic A Liquid Crystals

Although smectic A liquid crystals have no director-type degree of free-
dom, we will briefly discuss here its hydrodynamics, which also applies to
the more complicated smectic phases, whose additional rotational degrees
of freedom will be discussed in Secs. 7.3 and 7.4. Smectic systems are char-
acterized by a one-dimensional density wave (two-dimensional for discotic
liquid crystal phases and three-dimensional for ordinary crystals), which
is manifest in a layered structure. Thus, translational symmetry along
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the layer normal is broken spontaneously, since the underlying Hamilto-
nian or free energy is translational invariant. The symmetry variable is
the displacement vector u (of the layers), which in the case of smectics has
only one component uA = u · k along the layer normal k. Since homoge-
neous translations cost no energy, only gradients of uA enter the energy (as
is common for symmetry variables) describing one-dimensional elasticity
(layer compression or dilation energy ∼ (ki∇iuA)2). However, rotational
symmetry is broken, too, because of the existence of k. Rotations of k, δk,
are not independent degrees of freedom, but described by (transverse) gra-
dients of uA, δki = −(δij−kikj)∇juA in lowest order. Since a homogeneous
rotation of k (i.e. a solid body rotation of the structure as a whole) costs
no energy, first order transverse gradients of uA are forbidden in the energy
functional. Only in the next order transverse gradients are allowed. They
describe layer undulations, which in terms of k can be interpreted as splay
∼ ((δij −kikj)∇i∇juA)2 and bend ∼ (δij −kikj)(kl∇l∇iuA)(km∇m∇juA),
the bend contribution being usually neglected compared to layer compres-
sion [139]. The long axes of the molecules are also orientationally ordered
in the mean along the director n. However, n is coupled to the layer normal
(n ‖ k is enforced in smectics A energetically) and rotations of n (relative to
k) are non-hydrodynamic degrees of freedom, which become slow near the
nematic phase transition [140]. Quite similar considerations apply to dis-
cotic liquid crystals [11], where the symmetry variable is a two-dimensional
displacement vector.

The lack of linear transverse gradient terms in the energy functional is
the reason, why the positional order of the layers cannot be truly long-
ranged. Undulatory fluctuations lead to an algebraic decay of positional
correlations over large distances (Landau-Peierls instability) [141]. Thus,
a hydrodynamic description strictly does not exist, since – at least within
nonlinear fluctuation theory – there is a small (logarithmic) dependence
of the compressional modulus on the wave vector [142] and a singular-
ity in some of the viscosities at small frequencies [143]. Nevertheless, the
hydrodynamic description has been proven fruitful for practical purposes.
Since the symmetry variable is related to translations, it influences the
sound mode spectrum quite substantially, e.g. allowing a certain kind of
transverse sound (“second sound”) propagating obliquely to the layers and
involving layer undulations [45]. Another specific feature is permeation
[144], the dissipative mass flow across the layers, which is similar to va-
cancy diffusion in ordinary crystals [5], and which leads to plug flow [145].
Characteristic are also layer defects (focal conics, edge and screw disloca-
tions [28]) and layer instabilities due to mechanical stresses (undulation
instability) or due to external (magnetic) fields (Helfrich-Hurault instabil-
ity) [146]. These effects are also present in the more complicated smectic
phases discussed in Secs. 7.3 and 7.4. In addition, the hydrodynamics of
smectic A liquid crystals is (almost) isomorphic to that of cholesteric liquid
crystals discussed in the following Section.
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7.2 Cholesteric Liquid Crystals

When nematic liquid crystals are chiralized, the director orientation
changes from homogeneous to helicoidal, i.e. the mesogens are oriented
parallel in the mean within one plane, but this orientation changes slightly
by going from one layer to the next [45]. The existence of a helix breaks
translational symmetry along the helix axis pi, since the helix defines a
periodic one-dimensional array of layers with the wavelength of the heli-
cal pitch, which is π/q0 with q0 the helical wavevector. Simultaneously,
also rotational symmetry is broken spontaneously due to the presence of
the helical axis. The appropriate symmetry variable is therefore a trans-
lation u ≡ u · p along the helix axis, while rotations of the helical axis,
δpi with piδpi = 0, are not independent but given (in lowest order) by
δpi = −δtr

ij ∇ju [5] with δtr
ij = δij − pipj . Of course, a translation of a helix

(along its axis) is equivalent to a rotation of the helix (about its axis) and
u can be expressed by changes of the helical phase δφ = q0u.

In this conventional picture the structure of the hydrodynamic equations
for cholesteric liquid crystals is almost identical to that for smectic A ones
[147]. There are, however, big quantitative differences due to the very dif-
ferent length scales involved [148]. This truly hydrodynamic description is
a global one, i.e. all dynamic effects within a layer (pitch length) that do
not change the thickness or the orientation of that layer are not described
by it. At least for large pitch systems it is sometimes preferable to go to a
local description, where the dynamics of the director is considered, directly.
This local description of cholesterics [45] is almost identical to the hydro-
dynamics of nematics with the exception that twist deformations of the
homogeneous state (n·curln) in nematics are replaced by twist deforma-
tions of the helix (n·curln+q0) in cholesterics [149]. One effect obtained in
the local description is the Lehmann rotation [150] of the helical structure
(about its axis) under the influence of a temperature gradient or an electric
field along the helix axis [48].

It has been shown [7] that by averaging over many pitch lengths the lo-
cal description smoothly turns into the global (hydrodynamic) one. Being
locally nematic-like one can expect convective instabilities in large pitch
cholesterics [151] when driven by temperature gradients or electric fields,
while for small pitch cholesterics the smectic-like undulation instabilities
driven by layer dilatation due to temperature gradients [152, 153] or elec-
tric fields [47] should occur with an interesting competition between these
instabilities for systems in between.

It is well known that by the formation of a helix a small biaxiality is
induced [154] with the second preferred axis m = n × p. Usually this in-
duced biaxiality is neglected. If on the other hand a biaxial nematic is
chiralized where biaxiality is present even without the helix, a (locally)
biaxial cholesteric is obtained, which is different from the (almost) uni-
axial one [25]. The biaxial cholesteric is described locally as a biaxial
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nematic (Sec. 6.2) with one extra chiral term in the gradient energy (linear
in n·curln = m·curlm) describing the combined twist of n and m around
the helix axis [29]. In a global description the difference between uniaxial
and biaxial cholesterics vanishes and both are of the D∞ symmetry.

Such conventional structures (with a helical n and m = n × p) however,
are not the only possible ones. Chiralizing a biaxial nematic the resulting
structure can also be conic helical, where both n and m spiral conic heli-
cally about a common axis (p 6= n × m) [155]. This is due to a frustration
effect, since the preferred directions n and m want to spiral independently
(about different axes and with different pitches) in order to minimize the
energy, but cannot do this for topological reasons. Depending on some
Ginzburg-Landau parameters the unconventional structure (conic helical)
can be the equilibrium one. Under somewhat more restrictive conditions
even uniaxial nematics can become conic helical upon chiralization while
in polymeric and elastomeric systems unconventional structures are more
likely due to the presence of the backbone or the network [156]. These
unconventional cholesteric structures are globally of C∞ and locally of C1

symmetry in general. Thus, there is no up-down symmetry of the helix
axis (no p → −p symmetry) and new effects are possible. Apart from a
less important reversible coupling between elongational flow and director
rotations ( the gij terms in [9, 25, 40, 47]) and a reversible coupling be-
tween the stress tensor and temperature gradients or electric fields [46], the
most prominent additional feature in these unconventional structures (not
present in the conventional ones) is a longitudinal piezoelectric or pyro-
electric effect, i.e. the connection between mechanical strains and stresses
(along p) and electric fields or polarizations (along the same direction)
[46, 47, 120, 157, 158]). The experimental finding of a longitudinal piezo-
electric effect in cholesteric elastomers [159] shows the existence of such
unconventional structures in the latter systems.

A rather peculiar system are compensated cholesterics, i.e. cholesteric
mixtures that have an infinite pitch (q0 = 0) at a specific point in phase
space (at a given temperature, pressure and concentration). Although
structurally identical to nematics in that state, their hydrodynamic descrip-
tion has to include deviations from equilibrium into the cholesteric domain,
which would be absent in a true nematic system [160]. Related systems
are isotropic liquids near the cholesteric phase transition (pre-cholesteric
effects) and isotropic liquids containing macroscopic chiral objects [161].

7.3 Smectic C, C ∗, CM and C ∗
M Liquid Crystals

In smectic C liquid crystals the molecules are arranged in layers and their
mean orientation n is tilted with respect to the layer normal k. The exis-
tence of layers and thus of a density wave breaks translational symmetry
spontaneously and the appropriate symmetry variable is a displacement
u ≡ u · k along the layer normal. Longitudinal gradients, ki∇iu, describe
layer compression or dilation, while transverse gradients, (δij − kikj)∇ju,
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are related to rotations of the layer normal, i.e. to layer undulations. Ori-
entational symmetry is also broken because of n, but since the tilt angle is
fixed energetically, rotations of n that change the tilt angle, cost energy and
are not hydrodynamic. Near the phase transition to the smectic A phase
changes of the tilt angle become very slow (“soft”) and can be taken into
account as slow macroscopic variable (cf. Secs. 2.3 and 6.3). The direction,
to which the director n is tilted (the tilt direction c), is not fixed, however,
and can be any direction within the layers. Since any smectic C liquid
crystal shows a specific tilt direction of the molecules, this constitutes a
spontaneous breaking of rotational symmetry and the appropriate symme-
try variable is a rotation of c, (k × c) ·δc or equivalently δn3 ≡ (k × n) ·δn
[162]. The hydrodynamic equations of these variables have been given first
in [5] and some additions concerning electric effects can be found in [15,
46]. For fixed flat layers the dynamics of δn3 is equivalent to that of a
two-dimensional nematic system. Assuming the layer thickness to be con-
stant, but allowing layer undulations [163], the system resembles a biaxial
nematic (with preferred directions k and c), although in the latter sys-
tem we would have a k → −k and c → −c symmetry individually, while in
smectic C liquid crystals only the combined symmetry k → −k ∧ c → −c
is present. Recently, a dynamic theory for smectic C liquid crystals with
constant layer thickness has been given [164] using the Leslie-Ericksen ap-
proach. In contrast to the case of uniaxial and biaxial nematics the results
do not quite coincide with the hydrodynamic theory [5].

If smectic C liquid crystals, which have C2h symmetry, are chiralized, the
director n spirals about the layer normal, i.e. it is conic helical because of
the finite tilt angle. Due to the lower symmetry (C2 locally) compared to
smectic C, an in-plane polarization Ps exists, which spirals together with
n, but in a simple helical, non-conic fashion (Ps · k = 0) [165]. Averaging
over many pitch lengths the symmetry is D∞ and the polarization vanishes.
This so-called ferroelectric (but actually helielectric [166]) smectic C∗ phase
is of some importance for applications. The hydrodynamics of this phase
[14] contains two symmetry variables (uA and uC) corresponding to the two
spontaneously broken symmetries: the translational symmetry along the
layer normal (identical to the helix axis) is broken twice and independently
by the existence of the layers and by the helix. The helical wavelength
and the layer spacing are incommensurate and not locked energetically
and the two displacements uA and uC are independent. Since uC describes
translations of the helix (equivalent to helix rotations), it is quite similar
to the symmetry variable in cholesterics (Sec. 7.2), but slightly different
from uA, since translations of the layers are not related to any rotation. A
local description using the director dynamics, directly, is also possible and
is then almost identical to that of the smectic C phase with some chiral
terms added.

Besides the true hydrodynamic degrees of freedom there are some (more
or less) slowly relaxing modes [49-51], which can be seen in high frequency
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dielectric spectroscopy due to the electric properties of this phase [167].
Changes of the tilt angle, accompanied by appropriate changes of the ab-
solute value of Ps, are soft (very slow) near the smectic C∗ to A transition.
Changes of the absolute value of Ps (at constant tilt angle, however) are
always faster and well outside the hydrodynamic regime. Rotations of Ps,
in-plane (relative to c) [168] and out-of-plane (relative to k), are even faster
processes violating the symmetry of the C∗ phase.

The conventional structure of smectic C∗ liquid crystals described above
(with local C2 and global D∞ symmetry) is again not the only possible
one and more complicated (unconventional) structures (with local C1 and
global C∞ symmetry) can occur especially in polymeric and elastomeric
systems [169, 170]. They show longitudinal piezoelectricity, pyroelectric-
ity and true ferroelectricity, i.e. a spontaneous polarization that does not
vanish when averaged over many pitch lengths.

In liquid crystalline polymers with side-on side chains an untilted, but
biaxial smectic phase, the CM phase, has been found [171]. The bulky
side chains order positionally in smectic layers (with normal k) and or-
der orientationally along an axis m (m · k = 0) within the layers. The
system resembles orthorhombic biaxial nematics (Sec. 6.2), since there are
k → −k and m → −m symmetries, independently (in contrast to the smec-
tic C phase), but of course, k is not a free axis but the normal of the layers.
The symmetry variables are the layer displacement uA and the in-plane ro-
tations of m, i.e. δmi with miδmi = kiδmi = 0. Rotations of the layer
normal (layer undulations) described by transverse gradients of uA and
out-of-plane rotations of m are not independent (kiδmi = −miδki). The
complete hydrodynamics and electrohydrodynamics of that phase can be
found in [16]. This phase can be identified by its defects [33] and allows
rather interesting phase transitions (smectic A to CM , CM to C, biaxial
nematic to CM ) [172]. Upon chiralization the m vector spirals about k in a
non-conic helical fashion. There is no spontaneous polarization, because of
the individual k → −k and m → −m symmetries, which imply D2 symme-
try, locally [16]. Thus the C∗

M phase resembles a cholesteric phase rather
than a C∗ phase. The piezoelectricity described in [16] is therefore possible
in unconventional structures, only.

7.4 Smectic F, I, and L Liquid Crystals

In the liquid crystal phases considered above the rotational symmetry is
broken by a director n, i.e. by ordering molecular axes in the mean. Rota-
tions of n are therefore related to rotations of the molecules about their cen-
ter of mass. However, there is another way of breaking rotational symmetry.
The vectors between the centers of mass of adjacent molecules in a given
plane can be ordered along certain directions and thus break rotational
symmetry [173]. This bond orientational order plays an important role in
the theories of defect mediated melting, especially in two dimensions [174].
In two dimensions it is not perfectly long-ranged, but quasi-long-ranged
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(it shows an algebraic decay of the correlations). For three-dimensional
stacked systems, where the stacked layers are coupled, the bond orienta-
tional order is long ranged like the nematic order. The preferred bond ori-
entational directions generally are 6-fold degenerate, i.e. there are 6 such
directions in a plane, 60 degrees apart. Obviously, a combined rotation
of these bond orientational directions (about their common normal), δθ,
is the symmetry variable in those systems, where this bond orientational
order occurs spontaneously. Examples are the hexatic B phases (smectic
Bhex liquid crystals) [175], which can be viewed as smectic A phases having
bond orientational order in the layers, additionally. Smectic Bhex phases
are still uniaxial, since the six-fold degenerate bond directions only influ-
ence material tensors of rank 6 and higher, which usually do not occur.
The additional hydrodynamic variable δθ couples to rotational flow only,
but not to elongational flow. Therefore, the bond orientations show no
flow alignment in simple shear flows. The complete hydrodynamics can
be found in [15] including the non-commutativity relations (cf. (6.16)) of
rotations of the bond directions with rotations of the layer normal (layer
undulations).

An interesting situation occurs, if both, nematic orientational and bond
orientational order are present in the same system. This is the case in smec-
tic F and I liquid crystals [176], which can be viewed as smectic C phases
with bond orientational order in the layers additionally. Since δθ is con-
nected with displacements of the centers of mass of adjacent molecules, it is
independent from δni, which is connected to molecular rotations about the
center of masses and, thus, these are generally two independent symmetry
variables. However, in smectic F and I liquid crystals the tilt direction of
the director, c, and the bond directions are locked [177], i.e. there is a finite
energy related to relative rotations between them. Thus, only combined
rotations (about the layer normal k), δθ + (k × c) · δc are hydrodynamic,
while relative rotations, δθ − (k × c) · δc, experience a finite restoring force
even in the homogeneous limit due to the lock-in energy. If this energy
is small enough, the relative rotation can be taken as (slowly) relaxing
macroscopic variable giving rise to the “optical mode” [178]. The structure
of the true hydrodynamic equations in smectic F and I is quite similar to
that of smectic C [15]. In addition, it has been shown [174] that the tilt
in the smectic C phase induces a small bond orientational order. Thus,
strictly speaking smectic C and smectic F (or I) are structurally identical,
although the small induced bond orientational order is usually neglected
in the C phase. Meanwhile a smectic L liquid crystal has been identified
[179] in an amphiphilic bilayer film. In this phase the tilt direction c and
the bond directions are locked at a fixed but arbitrary angle between 0 and
30 degrees. No three-dimensional system of this type is known yet. The-
oretically also incommensurate systems have been predicted [180], where
the tilt direction and the bond directions are not locked. In such a phase
both, the rotation of c and the rotation of the bond directions, δθ, would be
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true hydrodynamic variables, since rotational symmetry would be broken
twice independently, as is the case for translational symmetry in smectic
C∗ phases (Sec. 7.3) and incommensurate crystalline systems [21].

Appendix

In this Appendix we give a complete list of all the static and dynamic
equations for nematic liquid crystals including mixtures or lyotropic and
charged systems. These equations were derived and explained in Secs. 2 -
5. The hydrodynamic equations are (cf. eqs. (2.7,8,11,12,14), (4.13) and
(5.14)):

(
∂

∂t
+ vi∇i) ρ + ρ divv = 0 (A.1)

ρ (
∂

∂t
+ vj∇j) vi + ∇j σij = ρeEi + Pj∇jEi (A.2)

∂

∂t
Di + vj∇jDi + (D × ~ω)i + JD

i = 0 (A.3a)

with JD
i = 4πje

i + Di divv − DjAij (A.3b)

(see Note added in 8/2000 on p. 59)

(
∂

∂t
+ vi∇i) c +

1
ρ

div jc = 0 (A.4)

(
∂

∂t
+ vj∇j)ni + Yi = 0 (A.5)

∂

∂t
σ + ~∇ · (vσ) + div jσ =

R

T
(A.6)

with the charge density ρe = (1/4π) divD, the polarization Pi =
(1/4π)(Di − Ei), elongational flow Aij = (1/2)(∇jvi + ∇ivj), and the
vorticity ~ω = (1/2) curlv. The currents and quasi-currents are given in
terms of the thermodynamic forces by (cf. eqs. (4.4-7), (5.6,12,13,16))

σij = p̃ δij + Φlj∇inl − 1
2
λkji hk − νijkl ∇lvk (A.7)

Yi = −1
2
λijk∇jvk +

1
γ1

δ⊥
ik hk − ζE

ijk∇jEk (A.8)

jσ
i = −κij∇jT − DT

ij ∇jµc − κE
ij Ej (A.9)

jc
i = −Dij∇jµc − DT

ij ∇jT − DE
ij Ej (A.10)

je
i = σE

ij Ej + κE
ij ∇jT + DE

ij ∇jµc + ∇j(ζE
kji hk) (A.11)
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The second rank material tensors κij , Dij , DT
ij , DE

ij , κE
ij , and σE

ij are of the
standard uniaxial form each containing two dissipative transport parame-
ters

αij = α⊥δ⊥
ij + α‖ninj = α⊥δij + αaninj (A.12)

The third rank tensors λijk and ζE
ijk contain one transport parameter each,

a reversible one (flow alignment parameter λ)

λijk = (λ − 1)δ⊥
ij nk + (λ + 1)δ⊥

ik nj (A.13)

and an irreversible one (dynamic flexoelectric parameter ζE)

ζE
ijk = ζE (δ⊥

ijnk + δ⊥
iknj) (A.14)

while the fourth rank viscosity tensor contains five (dissipative) viscosities
[181], [182]

νijkl =ν2 (δjlδik + δilδjk) + 2(ν1 + ν2 − 2ν3)ninjnknl

+(ν3 − ν2)(njnlδik + njnkδil + ninkδjl + ninlδjk)
+(ν4 − ν2) δijδkl + (ν5 − ν4 + ν2)(δijnknl + δklninj)

(A.15)

The pressure p̃ occurring in eq. (A.7) is defined by eqs.(5.7) and (5.13),
and its gradient is given by [183]

∇ip̃ = ρ∇iµ + σ∇iT + ρ vj∇ivj − µc∇ic − hj∇inj + Pj∇iEj (A.16)

The irreversible parts of the currents and quasi-currents (A.7-11) are de-
rived from the dissipation function R

R =
1

2γ1
hi δ⊥

ij hj +
1
2

νijkl(∇jvi)(∇lvk) +
1
2

κij(∇iT )(∇jT )

+
1
2

Dij(∇iµc)(∇jµc) + DT
ij(∇iT )(∇jµc)

+
1
2

σE
ij EiEj + κE

ij Ei ∇jT + DE
ij Ei ∇jµc − ζE

ijkhi ∇jEk

(A.17)

The second law of thermodynamics requires R to be a positive definite form,
which leads to the positivity of the following combinations of transport
parameters: γ1, ν2, ν3, ν2+2ν4, (ν2+2ν4)(2ν1+2ν5+ν2−ν4)−2(ν5+ν3)2,
ν2 − ν4 + 2(ν1 + ν5), κ⊥, κ‖, D⊥, D‖, κ⊥D⊥ − (DT

⊥)2, κ‖D‖ − (DT
‖ )2, σE

⊥ ,
σE

‖ , κ⊥σE
⊥ − (κE

⊥)2, κ‖σE
‖ − (κE

‖ )2, σE
⊥D⊥ − (DE

⊥)2, and σE
‖ D‖ − (DE

‖ )2.
In order to compare the hydrodynamic equations with those of the Leslie-

Ericksen approach, we rewrite the director reorientation equation (A.5) in
the form of a balance equation for the torque n × ṅ

εijknj

(
hk + γ1N

′
k − γ1λnmAkm − γ1ζ

Enm(∇kEm + ∇mEk)
)

= 0 (A.18)
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where N′ = ṅ+(v · ~∇)n+n × ~ω. For E = 0 and neglecting the convective
term in N′ a direct comparison with eq. (5.32) of [45] yields (note [71])

γ2 = −γ1λ (A.19)

The stress tensor σij (A.7) can be directly compared to the Leslie-Ericksen
form, if in (A.7) hi is expressed by N ′

k (and Aij etc.) via (A.18) and (A.5)
yielding

σij = p̃ δij + Φlj∇inl − νijkl Akl

− γ1

2
λkji

(−N ′
k + λnmAmk + ζE nm(∇kEm + ∇mEk)

) (A.20)

Comparing the Nk- and Aij-dependent parts of (A.20) with −σ′
ji [184] in

eq. (5.31) of [45] results in

α1 =2 (ν1 + ν2 − 2ν3) − γ1λ
2 (A.21a)

2α2 = − γ1(1 + λ) (A.21b)
2α3 = γ1(1 − λ) (A.21c)
α4 =2ν2 (A.21d)

2α5 =4(ν3 − ν2) + γ1λ(λ + 1) (A.21e)
2α6 =4(ν3 − ν2) + γ1λ(λ − 1) (A.21f)

Equations (A.19) and (A.21) contain the Onsager relations (for the Leslie-
Ericksen parameters)

α3 − α2 = γ1 (A.22a)
α3 + α2 = γ2 (A.22b)
α6 − α5 =α3 + α2 (A.22c)

which are automatically obtained in the hydrodynamic description using
R = 0 and R > 0 for reversible and irreversible processes, respectively.
However, the expression for the stress tensor in the Leslie-Ericksen theory
is incomplete, since it lacks the contributions (ν4−ν2) δijAkk and (ν5−ν4+
ν2)(δijnknlAkl +ninjAkk). The absence of Akk = divv is explained [45] by
the incompressibility assumption (Akk = 0), which is inherent to the Leslie-
Ericksen approach, and δijnknlAkl is thought of being incorporated into
the pressure. If incompressibility is meant to eliminate all contributions
Akk from the stress tensor, then the relations

ν2 = ν4 ν5 = 0 (A.23a)

would do this (and would eliminate δijnknlAkl at all). If eqs.(A.23a) were
applicable, complete equivalence of the Leslie-Ericksen description with
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hydrodynamics were obtained. On the other hand, if one would require
the contributions Akk to be absent from ∇jσij , which enters the dynamics
rather than σij , then one would get the different relations

ν3 + ν5 = 0 ν4 = 0 (A.23b)

However, even if eqs. (A.23a,b) are interpreted as purely formal relations
(i.e. they are not met experimentally by real substances) and introduced
only to eliminate Akk from the stress tensor or its divergence, they do
not guarantee incompressibility of the system, although they are used so
in textbooks [45]. The true condition for incompressibility to hold for all
times is (∂/∂t) divv = 0 provided Akk = 0 and ρ = const. at a certain time.
From eqs. (A.2) and (A.7) (both linearized and without the electric degree
of freedom to simplify the argument) one finds that this latter condition
can be fulfilled using the formal relations [185]

ν1 + ν2 = 2ν3 ν1 + ν5 = ν4 λ = 0 (A.24)

Clearly the last condition of (A.24) is intolerable and has drastic conse-
quences on other parts of the dynamics of nematic liquid crystals [186].
This shows that incompressibility (Akk = 0 and ρ = const.) is not a solu-
tion of the dynamic equations in nematics and cannot be postulated with-
out any additional approximations. This is in contrast to isotropic simple
fluids, where incompressibility can be postulated independently from other
aspects of the dynamics [187], but is rather similar to the case of solids
that are of lower than isotropic symmetry [188].

Instead of using the relations (A.24) with their far reaching consequences,
the proper way to introduce the approximation “incompressibility” is to
put the compressibility, the thermal expansion coefficient and other static
susceptibilities to zero (cf. (A.37) below)

κT = 0 αp = 0 βc = 0 (A.25)

which guarantees ρ = const.. Thereby the pressure is eliminated from the
static equations, i.e. it is undetermined statically. This arbitrariness can
then be used to determine the pressure (by (A.7) and (A.2)) in such a
way that (∂/∂t) divv = 0 (provided Akk = 0) becomes an identity. In the
linearized version this condition on the pressure reads

∆p̃ = ρe div E + λnk∇k divh + (2 ν3 − ν2 − ν4 + ν5)nknj∇j∆vk

+2(ν1 + ν2 − 2 ν3)ninjnknl∇i∇j∇k vl

(A.26)

Thus the approximation (A.25) together with eq. (A.26) for the pressure
guarantees incompressibility thereby avoiding the unphysical conditions
(A.24) as well as the inappropriate relations (A.23a,b) [189]. Of course,
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the pressure is a measurable quantity, it plays an important role for the
boundary conditions and is part of the dynamics via (A.26) and therefore
cannot be neglected in a hydrodynamic description.

Our system of equations (A.1-11) is closed by expressing thermodynamic
conjugates by the variables (cf. eqs. (3.3,6,8), (5.9,10))

δT =
T

CV
δσ +

1
ραs

δρ + βσδc (A.27)

δµ =
1

ρ2κs
δρ +

1
ραs

δσ + βρδc (A.28)

δµc = γ δc + βσδσ + βρδρ (A.29)

Ei = ε−1
ij Dj + ekji∇knj (A.30)

hi = − Kijkl∇j∇lnk + δ⊥
iq(

∂Kpjkl

2 ∂nq
− ∂Kqjkl

∂np
) (∇lnk)(∇jnp)

− χa δ⊥
il Hl nkHk − 1

4π
ejik∇jDk

+
1
4π

δ⊥
iq

(
(

1
ε‖

− 1
ε⊥

)Dq nkDk + (
∂ejpk

∂nq
− ∂ejqk

∂np
)Dk∇jnp

) (A.31)

Φij = Kijkl∇lnk +
1
4π

ejikDk (A.32)

The material tensors containing the static susceptibilities are of the form

Kijkl =K1δ
⊥
ijδ

⊥
kl + K2npεpijnqεqkl + K3njnlδ

⊥
ik (A.33a)

ε−1
ij =ε−1

⊥ δ⊥
ij + ε−1

‖ ninj (A.33b)

eijk =e1δ
⊥
ij nk + e3δ

⊥
jk ni (A.33c)

Instead of using the mass and entropy density and the dielectric dis-
placement as variables we can partially invert the system (A.27-32) and
use the experimentally more favorable variables temperature, pressure and
electric field. As usual in thermodynamics a change of variables is per-
formed by Legendre transformations. In order to get the pressure (instead
of the chemical potential) as variable one should switch from densities per
unit volume to those per unit mass. Thus, the thermodynamic potential
to start with is now

e ≡ ε + p′ − Tσ

ρ
− 1

4π ρ
EiDi (A.34)

with the slightly redefined pressure

p′ ≡ p − 1
4π

EiDi = p̃ +
1
8π

EiEi − 1
4π

EiDi (A.35)
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The Gibbs relation then reads

d e =
1
ρ

dp′ +
µc

ρ
dc + vi d(

gi

ρ
) − 1

4π ρ
Di dEi +

hi

ρ
δ⊥
ij dnj − σ

ρ
dT (A.36)

and the static equations of state are

ρ δ(
1
ρ
) = −κT δp′ + αp δT + βp δc (A.37)

ρ δ(
σ

ρ
) =

Cp

T
δT − αp δp′ − βT δc (A.38)

ρ δ(
µc

ρ
) = γ̃ δc + βp δp′ + βT δT (A.39)

Di = εijEj − ẽkji∇knj (A.40)

hi = − K̃ijkl∇j∇lnk + δ⊥
iq(

∂K̃pjkl

2 ∂nq
− ∂K̃qjkl

∂np
) (∇lnk)(∇jnp)

− χa δ⊥
il Hl nkHk − 1

4π
ẽjik∇jEk

+
1
4π

δ⊥
iq

(
−εaEq nkEk + (

∂ẽjpk

∂nq
− ∂ẽjqk

∂np
)Ek∇jnp

) (A.41)

Φij = K̃ijkl∇lnk +
1
4π

ẽjikEk (A.42)

The thermal expansion coefficient αp, the isothermal compressibility κT ,
the specific heat per volume at constant pressure Cp [190], and all the other
static susceptibilities are now taken at constant electric field. The tensors
K̃ijkl and ẽijk are given by eqs. (A.33a,c) if there the replacements

K1 → K̃1 ≡ K1 − 1
4π

e2
1ε‖

K3 → K̃3 ≡ K3 − 1
4π

e2
3ε⊥

e1 → ẽ1 ≡ e1ε‖
e3 → ẽ3 ≡ e3ε⊥

(A.43)

are performed. Thermostatic stability requires the total energy to be pos-
itive, i.e. ε/ρ to be a positive definite form of its variables. This trans-
lates into positivity requirements for the following expressions: Cp, κT ,
CpκT − Tα2

p, γ̃, κT γ̃ − β2
p , Cpγ̃ − Tβ2

T , K1, K2, K3, K̃1, K̃3, ε⊥, and ε‖.
Most of the parameters that enter the hydrodynamic and electrohydrody-

namic equations have been measured for a number of compounds showing
a uniaxial nematic phase. These include the Frank elastic constants [45,
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191-193], the compressibility, the specific heat, the flow alignment param-
eter λ [45], the viscosities ν1, . . . , ν5 [45] (note, however, the discussion on
the question of incompressibility further up in this Appendix), the inverse
of the diffusion constant of the director, γ1 [45], the thermal conductivity
[194], the anisotropy of the dielectric tensor and of the magnetic suscepti-
bility [45, 191-193], as well as of the electric conductivity σE

ij [45, 191-193],
where in nematics, however, the latter is sensitively dependent on the im-
purity concentration, which is sometimes varied on purpose (doping).

Concerning the flexoelectric coefficients e1 and e3 the experimental sit-
uation is somewhat more complicated. The inverse flexoelectric effect (an
applied electric field leads to a distortion of the director field) was de-
tected early on by Schmidt, Schadt and Helfrich in a static experiment
[195]. However, many of the subsequent experiments performed to deter-
mine the flexoelectric coefficients in uniaxial nematics (e.g. refs. [196-201])
were either completely or at least partially dynamic in nature. Under these
circumstances, however, not only the static flexoelectric coefficients e1 and
e3 enter the picture, but also the “dynamic flexoelectric” coefficient ζE

(cf. eq. (5.15)). A straightforward analysis shows (details will be given in
ref. [202]) that typically a linear combination of static and dynamic flexo-
electricity occurs, e.g. (cf. (A.8) and (A.41)) (−1/4πγ1) ẽjik + ζE

ijk. Thus
all dynamic experiments that have been carried out to determine the sign
and magnitude of the static flexoelectric coefficients e1 and e3 must be
reanalyzed taking into account the existence of the “dynamic flexoelectric
effect” ∝ ζE .

In order to transform the formula of this Appendix (and Sec. 5) from
Gaussian units to MKSA units, one has to multiply [203] the electric field
Ei, the electric potential Φ and the flexoelectric tensor eijk by (4πε0)1/2, the
dielectric displacement Di and the flexoelectric tensor ẽijk by (4π/ε0)1/2,
the electric current density je

i , the polarization Pi, the charge density ρe

and all dissipative material tensors related to electric crosscoupling effects
(ζE

ijk, DE
ij and κE

ij) by (4πε0)−1/2, the conductivity tensor σE
ij by (4πε0)−1,

the dielectric tensor εij by ε−1
0 , the magnetic field Hi by (4πµ0)1/2, and the

magnetic susceptibility χa by (4πµ0)−1, where ε0 and µ0 are the vacuum
dielectric constant and the vacuum magnetic permeability, respectively,
with (ε0µ0)−1/2 = cL, the speed of light in vacuum.

Note added in 8/2000:

The form of Eq. (A.3a) is fixed by two requirements. First, it has to be
compatible with the charge conservation law (2.11). This is manifestly ac-
chieved by rewriting (A.3a) as (∂/∂t)Di+vi divD+(curl [D×v])i+4πje

i =
0. The original form of the dynamic equation for the dielectric displace-
ment, however, is more lucent showing the convection of D with velocity
v as well as the correct transformation under rotations. Secondly, Eq.
(A.3a) must not obstruct angular momentum conservation. The counter-
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term in the stress tensor necessary to give zero entropy production for the
reversible terms in Eq. (A.3a) is given by (5.12). Its antisymmetric part,
together with the other (non-electric) antisymmetric parts of the stress ten-
sor, can be brought to the required form of a divergence (cf. Eq. (2.10))
using the rotational invariance of the energy density (5.6) expressed by
dεrot = ((1/4π)EiDj + h′

inj + φki∇jnk + φik∇knj) aij = 0 for any arbi-
trary antisymmetric matrix aij .

References

1 L.P. Kadanoff and P.C. Martin, Ann.Phys. 24, 419 (1963).
2 P. Hohenberg and P.C. Martin, Ann.Phys. 34, 291 (1965).
3 I.M. Khalatnikov, Introduction to the Theory of Superfluidity, Benja-

min, New York (1965).
4 N.N. Bogoljubov, Phys.Abhandl.SU 6, 229 (1962).
5 P.C. Martin, O. Parodi and P. Pershan, Phys.Rev. A6, 2401 (1972).
6 D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Corre-

lation Functions, Benjamin, Reading, Mass. (1975).
7 T.C. Lubensky, Phys.Rev. A6, 452 (1972).
8 M.J. Stephen and J.P Straley, Rev.Mod.Phys. 46, 617 (1974).
9 H.R. Brand and H. Pleiner, J.Phys.(Paris) 41, 553 (1980). Unfortu-

nately, this paper contains various typos and errors.
10 H. Pleiner and H.R. Brand, Phys.Rev. A25, 995 (1982).
11 H.R. Brand and H. Pleiner, Phys.Rev. A24, 2777 (1981) and A26,

1783 (1982), A30, 1548 (1984).
12 W.M. Saslow, Phys.Rev. A25, 3350 (1982).
13 M. Liu, Phys.Rev. A24, 2720 (1981).
14 H.R. Brand and H. Pleiner, J.Phys.(Paris) 45, 563 (1984).
15 H. Pleiner and H.R. Brand, Phys.Rev. A29, 911 (1984) and H. Pleiner,

Mol.Cryst.Liq.Cryst. 114, 103 (1984).
16 H.R. Brand and H. Pleiner, J.Phys.II 1, 1455 (1991).
17 M. Liu, Phys.Rev. A19, 2090 (1979).
18 K.A. Hossain, J. Swift, J.-H. Chen and T.C. Lubensky, Phys.Rev. B19,

432 (1979).
19 B.S. Andereck and J. Swift, Phys.Rev. A25, 1084.
20 H.R. Brand and H. Pleiner, J.Phys.(Paris) 43, 853 (1982).
21 H.R. Brand and P. Bak, Phys.Rev. A27, 1062 (1983).
22 H.R. Brand and J. Swift, J.Phys.Lett.(Paris) 44, 333 (1983).
23 H.R. Brand, Mol.Cryst.Liq.Cryst.Lett. 4, 23 (1986).
24 H.R. Brand, Phys.Rev. A33, 643 (1986).
25 H.R. Brand and H. Pleiner, J.Phys.Lett.(Paris) 46, L 711 (1985).
26 H. Pleiner and H.R. Brand, Phys.Rev. A39, 1563 (1989).
27 H.R. Brand and K. Kawasaki, J.Phys.II 2, 1789 (1992).
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