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ABSTRACT
We present the macroscopic dynamic description of a ferromagnetic nematic, where the nematic part and the magnetic part can move
relative to each other. The relative velocity that describes such movements can be a slowly relaxing variable. Its couplings to the nematic
and the magnetic degrees of freedom are particularly interesting since the symmetry properties (behavior under spatial inversion and
time reversal) of the three vectorial quantities involved are all different. As a consequence, a number of new crosscouplings involving the
relative velocity exist. Some of them are discussed in more detail. First, we demonstrate that transverse temperature gradients generate
transverse relative velocities and, vice versa, that transverse relative velocities give rise to temperature gradients. Second, we show that a
simple shear flow in the relative velocity with the preferred direction in the shear plane can lead in a stationary situation to a tilt of the
magnetization.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0080118

I. INTRODUCTION

Hydrodynamics is the prototype for a macroscopic description
of the dynamics of condensed systems, e.g., fluids. The variables used
are long-lived conserved variables (such as mass, momentum, and
energy) and symmetry variables connected to spontaneously broken
(continuous) symmetries (such as director rotations in a nematic liq-
uid crystal, magnetization rotations in a ferromagnetic liquid, and
displacements in a crystal).1,2 For more complex systems or more
complicated situations, variables come into play that do not belong
to the strictly hydrodynamic case but live long enough to take part in
the dynamics of a macroscopic system. The concept of slowly relax-
ing variables has been pioneered by Pitaevskii3 for the relaxation
of the order parameter modulus near the λ-transition in superfluid
4He. These slowly relaxing variables are well-known from, e.g., order
parameter relaxation near second order phase transitions,4,5 strain
relaxation in polymers,6,7 rotations of a nematic orientation relative
to the elastomeric matrix,8,9 chemical reactions in binary mixtures
(compare, for example, Ref. 10), and many other systems.

A rather special type of relaxational variable can occur in a two-
phase system when the constituents are able to move relative to each
other. The relative velocity (the difference of the individual veloc-
ities of the two phases) generally is a relaxing quantity since it is
neither related to a conservation law nor to a broken symmetry.11

Exceptions are superfluids, where the second (superfluid) velocity
is due to the broken gauge symmetry.4,12,13 In the non-superfluid
case, which will be dealt with here, there is always friction during
relative motion and the momenta of the two constituents are not
conserved. If the relative velocity is slowly relaxing, it constitutes a
rather specific additional variable, odd under spatial inversion and
odd under time reversal, that considerably influences the structure of
the appropriate hydrodynamics. For a broader discussion of the rela-
tion between the symmetry of phases (variables) with the structure
of the hydrodynamics, cf. Refs. 14 and 15.

The advantages of a two-fluid model when compared to a
one fluid approach are clear: One allows for a relative motion of
the constituents relative to each other, thus resulting in a more
mesoscopic description, which is also applicable to shorter length
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scales and/or higher frequencies. The price to be paid is also appar-
ent: One has additional relaxing variables and, as a result, more
phenomenological parameters entering the description.

Macroscopic two-fluid descriptions have already been given
for nematic liquid crystals in an isotropic solvent,11 for isotropic
elastic media in an isotropic solvent11,16 with application to the
cluster dynamics above the glass transition,17 for nematic liquid
crystals in the presence of smectic order to describe the breakdown
of flow alignment,18 for a magnetic fluid in an isotropic solvent
to describe magnetorheological fluids,19 for fluids with tetrahedral
order in an isotropic solvent,20 and for a mixture of two isotropic
elastic media.21 In this paper, we give a two-fluid description of fer-
romagnetic nematics, where the nematic part and the magnetic part
can move relative to each other.

Ferromagnetic nematics have been suggested very early by
Brochard and de Gennes,22 and the single-fluid Landau and hydro-
dynamic descriptions were given in Refs. 23–25. Experimentally,
stable ferromagnetic nematics were obtained in the form of a sus-
pension of ferromagnetic platelets in a nematic liquid crystal26,27

recently. In addition to a number of static properties,26–28 vari-
ous optical and flow properties were discussed theoretically and
successfully compared with experiments.29–31

For the two-fluid description of ferromagnetic nematics, we
restrict ourselves to the case that in equilibrium the nematic director
and the magnetization (and an external magnetic field) are collinear.
The material tensors involved will be given in uniaxial approxima-
tion. We first characterize the nematic and magnetic subsystems and
introduce the framework to describe relative motion (Sec. II). The
macroscopic dynamics includes the static part (Sec. III), the dynamic
equations (Sec. IV), and the dissipative and reversible currents
(Secs. IV B and IV C). A discussion of some physical implications
of the two-fluid aspects is given in Sec. V, which is followed by
conclusions and perspective (Sec. VI).

II. SETTING UP THE SYSTEM
We consider a mixture of a nematic liquid and a ferromagnetic

one. The nematic liquid shows a preferred direction ni according to
the order parameter Qij = (S/2)(ninj − [1/3]δij)with S being a mea-
sure of the strength of the orientational order.32 It is assumed to be a
fast relaxing variable that is on the hydrodynamic time scale always
in equilibrium. The director ni can be used like an axial unit vector
if the invariance ni → −ni of the appropriate equations is ensured.
In the ground state (in the absence of any boundaries or external
fields), the orientation of n0

i is arbitrary and constitutes therefore a
spontaneously breaking of rotational symmetry. An external mag-
netic field Hi can orient the director, either parallel or perpendicular
to the field, depending on the sign of the diamagnetic anisotropy,32

εa = −(1/2)χa(n ⋅H)
2.

The ferromagnetic liquid is characterized by a finite magneti-
zation, Mi =Mmi, with M being its magnitude and the axial unit
vector mi denoting its orientation. It changes sign under time rever-
sal and also breaks rotational symmetry. In the ground state, m0

i is
arbitrary. In the presence of a (homogeneous) magnetic field, Hi,
the magnetization orients along the field, m0

i ∥Hi, due to ferromag-
netic coupling εf = −Mm ⋅H. With the field, M0 increases to M0(H).
We will take this material function from experiment. Similar to the

nematic case, we will assume that M is fast relaxing and is always
given by its (field-dependent) equilibrium value.

We will concentrate on the case, where in the ground state,
the director, the magnetization, and, if present, the field are
collinear. This is achieved by choosing χa > 0 a coupling energy
εc = −(1/2)A1(n ⋅m)2 with A1 > 0. The latter term describes the
coupling between the nematic director and the magnetic particles.
This strong interaction was observed in a series of experiments33–35

studying the Fredericks transition in ferronematics. For the experi-
mentally accessible systems existing so far, the magnetization direc-
tion of the ferromagnetic platelets, m, and the nematic director, n,
are parallel in the ground state without external fields. In case a
ground state is observed experimentally for which the director and
the magnetization direction are not parallel in equilibrium, one has
to deal with a biaxial system. In this case, all property tensors will be
biaxial in nature.

We assume the two subsystems to be able to move relative to
each other. Thus, we need for a macroscopic dynamic description
two mass densities, ρn and ρm, and two momenta, gn

i and gm
i . Since

the nematogens and the magnetic particles are distinct entities, both
densities are conserved individually. In order to simplify the anal-
ysis, we will later assume the total mass density, ρ = ρn + ρm, to be
constant. As the remaining variable, we take the concentration of
the magnetic part, ϕ = ρm/ρ.

The partial momenta are not conserved since by moving
around the two subsystems can exchange momentum. Only the total
momentum density, gi = gn

i + gm
i , is conserved. Therefore, it makes

sense to use it as a variable. As the second variable, one takes, instead
of the momenta difference, the velocity difference, wi = vn

i − vm
i ,

with vn
i = gn

i /ρn and vm
i = gm

i /ρm, which is easier to account for in
experiments. The mean velocity, vi = gi/ρ, is a weighted sum of the
two velocities, vi = (1 − ϕ)vn

i + ϕvm
i .

We assume that the thermal degree of freedom, the entropy
density σ, is common to both subsystems, meaning that there is only
one temperature.

III. STATICS
The first law of thermodynamics, a generalized energy conser-

vation law, governs the static aspects of macroscopic dynamics. With
the relevant variables discussed in Sec. II, and all others in thermody-
namic equilibrium, the differential form of the first law reads (Gibbs
relation)1,5,36

dε = Tdσ + μdρ +Πdϕ + vidgi + hw
i dwi + hm′

i dmi

+Φm
ij d(∇jmi) + hn′

i dni +Φn
ijd(∇jni), (1)

with ε being the density of the total energy. The appropri-
ate conjugate quantities are temperature (T), chemical potential
(μ), relative chemical potential (Π), and mean velocity (vi). The
“molecular fields” hw

i , hm′
i , and hn′

i , and Φm
ij and Φn

ij are conjugate
to wi, mi, and ni and to∇jmi and∇jni, respectively. Throughout this
paper, we focus on bulk phenomena. Surface and interface effects
can be rather specific and are to be considered on a case to case basis
separately.

In the absence of orienting external fields or boundaries, hm′
i

and hn′
i have to be zero since ni and mi are symmetry variables and

homogeneous rotations do not cost energy. Often, the “molecular”
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fields can be combined,

hn
i = hn′

i −∇jΦn
ij and hm

i = hm′
i −∇jΦm

ij . (2)

In case the deviations of the amount of magnetization are taken into
account, an extra term hMdM is added to Eq. (1).

The static behavior of our macroscopic system is conveniently
described by the energy functional ∫ ε dV that describes the ener-
gies related to deviations from the equilibrium values. It contains
thermal and concentration deviations from their equilibrium values
σ0 and ϕ0 (with density variations already suppressed), Frank-type
contributions due to orientational deformations of the director and
the magnetization, the kinetic energies of the subsystems, and the
field-orienting contributions,

ε = T
2CV
(δσ)2 + 1

2κϕ
(δϕ)2 + 1

αϕ
(δϕ)(δσ) + 1

2
Kn

ijkl(∇jni)(∇lnk)

+ 1
2

Km
ijkl(∇jmi)(∇lmk) + K̃ ijkl(∇jni)(∇lmk) +

1
2ρ

g2 + 1
2

αw2

+ 1
2

M0Hδ�ij δmiδmj +
χa

2
H2δ�ij δniδnj

+ 1
2

A1δ�ij (δni − δmi)(δnj − δmj) (3)

with the transverse Kronecker symbol δ�ij = δij − ninj. We note that
the positivity of ε in Eq. (3) guarantees linear stability around the
ground state assumed here. However, Eq. (3) is not suitable to
describe the transition to another ground state. In this case, another
method such as, for example, a Ginzburg–Landau approach is called
for.24

The rotational elastic material tensors read in uniaxial approx-
imation (∗ ∈ {n.m}),

K∗ijkl = K∗1 δ�ij δ�kl + K∗2 npnqϵijpϵklq + K∗3 njnlδ
�
ik, (4)

K̃ ijkl = K̃δ�ik(njml + nlmj). (5)

Generally, all material coefficients are functions of the state
variables, such as temperature, pressure, and concentration, but also
of M0 (or the external field strength). Only for a linearized descrip-
tion, valid for small deviations from equilibrium, are the coefficients
constant.

For the kinetic energies, one finds (1/2ρn)(gn)2

+ (1/2ρm)(gm)2 = (1/2ρ) g2 + (α/2)w2, revealing the stiffness
coefficient for relative velocities to be

α = ϕ(1 − ϕ)ρ. (6)

Since 0 < ϕ < 1, there is 0 < α < ρ/2.
From Eq. (3), the conjugate fields follow by taking variational

derivatives according to the Gibbs relation, Eq. (1),

δT = T
CV

δσ + 1
αϕ

δϕ, (7)

Π = 1
κϕ

δϕ + 1
αϕ

δσ +w ⋅ g + ρw2(1 − 2ϕ), (8)

Φn
ij = Kn

ijkl∇lnk + K̃ ijkl∇lmk, (9)

Φm
ij = Km

ijkl∇lmk + K̃ ijkl∇lnk, (10)

hn′
i = χaH2δ�ij δnj + A1δ�ij (δnj − δmj), (11)

hm′
i =M0Hδ�ij δmj + A1δ�ij (δmj − δnj), (12)

hw
i = αwi, (13)

where the wi-dependence of the osmotic pressure is due to the ϕ-
dependence of α, Eq. (6).

IV. DYNAMICS
A. The dynamic balance equations

The dynamical equations for the relevant variables have the
form

ϵ̇ +∇i(ϵ + p)vi +∇i(jεR
i + jεD

i ) = 0, (14)

σ̇ +∇i(σvi + jσR
i + jσD

i ) = 2R/T, (15)

ρ̇ +∇i(ρvi) = 0, (16)

ϕ̇ + vj∇jϕ +∇i(ϕ(1 − ϕ)wi) + ∇i(jϕR
i + jϕD

i ) = 0, (17)

ġi +∇j(givj) + ∇j(σth
ij + σ R

ij + σ D
ij ) = 0, (18)

ẇi + vj∇jwi +∇i(ρ−1Π) + ZR
i + ZD

i = 0, (19)

ṁi + vj∇jmi + (m × ω)i + XR
i + XD

i = 0, (20)

ṅi + vj∇jni + (n × ω)i + YR
i + YD

i = 0, (21)

with the vorticity 2ωi = ϵijk∇jvk and R being the energy dissipation
function.

The set of dynamic equations contains two distinct parts. First,
there are the phenomenological currents with superscripts R and D
denoting reversible and dissipative contributions, respectively. They
will be given in Secs. IV B and IV C using general symmetry argu-
ments. The second part consists of the transport and convective
derivatives including the isotropic pressure, p, as well as σth

ij .
Zero entropy production requires σth

ij in Eq. (18) to take the
form

σth
ij = p δij − BjHi +Φn

lj∇inl +Φm
lj ∇iml −

1
2
(njhn′

i − nihn′
j )

− 1
2
(mjhm′

i −mihm′
j ), (22)
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which can be rewritten as5,37

2σth
ij = 2 p δij − (BjHi + BiHj) +Φn

ki∇jnk +Φn
kj∇ink +Φm

ki∇jmk

+Φm
kj∇imk +∇k(njΦn

ik − niΦn
jk +mjΦm

ik −miΦm
jk), (23)

having used the requirement of rotational invariance of the Gibbs
relation,1 Eq. (1),

0 = ϵijk(hm′
j dmk +Φm

jl ∇lmk +Φm
lj ∇kml + hn′

j dnk

+ Φn
jl∇lnk +Φn

lj∇knl). (24)

In Eq. (23), σth
ij is either symmetric or a divergence of an antisym-

metric part. The latter can be brought into a manifestly symmet-
ric form by some redefinitions,1 thus demonstrating local angular
momentum conservation.

We note that the reversible and irreversible phenomenologi-
cal parts of the stress tensor, σR

ij and σD
ij , turn out to be manifestly

symmetric [see Eqs. (42) and (35)].
In the Maxwell stress, the field Bi = Hi +Mi by definition.
Putting all dynamic equations into the Gibbs relation, one

finds that the non-phenomenological contributions add up to zero
entropy production, as is required for reversible contributions. For
the phenomenological parts of the currents, one gets (neglecting
surface effects)

R = −j σ∗
i ∇iT − jϕ∗

i ∇iΠ − σ ∗ij ∇jvi + hw
i Z∗i + hm

i δ�ikX∗k + hn
i δ�ikY∗k ,

(25)
and the second law of thermodynamics requires R ≥ 0 with the equal
sign (> sign) for ∗ = R (∗ = D).

The energy conservation law Eq. (14) is redundant due to the
Gibbs relation, and the continuity equation, Eq. (16), reduces to∇ivi
in the constant density approximation. The incompressibility condi-
tion (constant density approximation) implies that we are restricting
ourselves throughout the rest of the paper to velocities that are small
compared to the velocity of sound. In addition,11 it also means, in the
two-fluid context, that the concentration ϕ is a conserved variable,
while this is, in general, no longer the case if the incompressibility
condition is not implemented.

In the whole set of dynamic equations, the mean velocity vi
has been chosen as the transport/convective velocity for all vari-
ables. This ensures zero entropy production of those contributions.
However, in a simplified model, one would expect that variables con-
nected with the magnetization (with the nematic degree of freedom)
are convected with the velocity vm

i (vn
i ). This can be achieved by a

special choice for the values of some reversible transport parame-
ters, thereby preserving zero entropy production. This will be done
in Sec. IV C.

B. Dissipative dynamics
The dissipative parts of the currents introduced in

Eqs. (15)–(21) can be deduced from a potential, the dissipa-
tion function R. Within linear irreversible thermodynamics, R is a
bilinear form of the generalized forces, which are either gradients
of those conjugate quantities that are constant in equilibrium, or
otherwise the conjugate quantities themselves,

2R = κij(∇iT)(∇jT) +Dij(∇iΠ)(∇jΠ) + 2DT
ij (∇iT)(∇jΠ)

+ νijklAijAkl + 2ν c
ijklAij∇lh

w
k + ν w

ijkl(∇jhw
i )(∇lh

w
k )

+ ξijhw
i hw

j +
1
γ1

hn
i hn

j δ�ij + bDhm
i hm

j δ�ij + λD
ijkhn

i Ajk

+ cD
ijkhm

i Ajk + χD
ij hm

j hn
i + ξT

ij hw
i ∇jT + ξΠ

ij hw
i ∇jΠ

+ ξwm
ijk (∇khw

j )hm
i + ξwn

ijk (∇khw
j )hn

i (26)

with 2Aij = ∇jvi +∇ivj.
In uniaxial approximation, the symmetric second rank tensors

κij, Dij, DT
ij , ξij are of the standard form

κij = κ∥ninj + κ�δ�ij , (27)

with two coefficients each. The rank-4 tensors, viscosity νijkl and
relative velocity diffusion νwijkl, contain five parameters,5,38 while
the mixed one νc

ijkl contains six parameter due to the lack of the
νc

ijkl = νc
klij symmetry.11,39

The couplings described by χD
ij , cD

ijk, and λD
ijk have already been

given before for ferronematics.24 In the present case for which we
use mi instead of Mi with constant magnitude M0, the number of
independent coefficients in the property tensors is overall greatly
reduced, and we obtain

χD
ij = χD(npmpδij − nimj), (28)

cD
ijk = cD(ϵipknj + ϵipjnk)np, (29)

λD
ijk = λD(ϵipknj + ϵipjnk)mp. (30)

The novel tensors associated with crosscouplings of the velocity
difference with temperature and concentration gradients, ξT

ij and ξΠ
ij ,

both take the form (∗ ∈ {T, Π})

ξ∗ij = ξ∗ϵijkmk. (31)

The rank-3 tensors ξwm
ijk and ξwn

ijk describe couplings of gradients
of the relative velocity with hm

i and hn
i and read

ξwm
ijk = (ξwm

1 ϵipknj + ξwm
2 ϵipjnk)np, (32)

ξwn
ijk = (ξwn

1 ϵipknj + ξwn
2 ϵipjnk)mp. (33)

We note that ξwn
ijk and λD

ijk are structurally quite similar, as are
ξwm

ijk and cD
ijk. However, in contrast to λD

ijk and cD
ijk, ξwn

ijk and ξwm
ijk are

not symmetric in j and k.
The positivity of R requires appropriate positivity conditions

on the dissipative transport parameters, e.g., κ� > 0, ξ� > 0, and κ�ξ�
− (ξT

�)2 > 0.
From Eq. (26), the following dissipative currents are obtained:

jσD
i = −(∂R)/(∂∇iT)
= −κij∇jT − ϕ(1 − ϕ) dT

ij∇jΠ − ξT
ji hw

j , (34)

σ D
ij = −(∂R)/(∂Aij)
= −νijkl Akl − cD

kijh
m
k − λD

kijh
n
k − ν c

ijkl∇lh
w
k , (35)
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ZD
i = (∂R)/(∂hw

i )
= ξij hw

j + ξT
ij∇jT + ξΠ

ij ∇jΠ −∇j(ν w
ijkl∇lh

w
k + ν c

klij Alk)
− ∇k(ξwm

jik hm
j ) − ∇k(ξwn

jik hn
j ), (36)

Y D
i = (∂R)/(∂hn

i )

= 1
γ1

δ�ij hn
j + λD

ijkAjk + χD
ij hm

j + ξwn
ijk (∇khw

j ), (37)

jϕD
i = −(∂R)/(∂∇iΠ)
= −Dij∇jΠ − ϕ(1 − ϕ) dT

ij∇jT − ξΠ
ji hw

j , (38)

XD
i = (∂R)/(∂hm

i )
= bDδ�ij hm

j + χD
ji hn

j + cD
ijkAjk + ξwm

ijk (∇khw
j ), (39)

where thermodiffusion is written in the usual way with DT
ij = ϕ(1

− ϕ)dT
ij . Since the relative velocity is not related to any broken

symmetry nor to a conservation law, it always relaxes with αξ�
and αξ∥, the inverse transverse and longitudinal relaxation times,
respectively.

C. Reversible dynamics
For the reversible dynamics, there is no potential to derive

the reversible currents. Instead, one expands the currents into the
forces taking into account time reversal symmetry, spatial inversion
symmetry, and the ni → −ni invariance. We get

jσR
i = βij hw

j − κR
ij∇jT −DTR

ij ∇jΠ, (40)

jϕR
i = γijhw

j −DR
ij∇jΠ −DTR

ij ∇jT, (41)

σ R
ij = 2β2 hw

i wj − νR
ijklAkl − cR

kijh
m
k − λkjih

n
k , (42)

ZR
i = −β1hn

j ∇inj + β2 wj(∇ivj +∇jvi) + β3hw
j (∇jwi −∇iwj)

+ β4wj(∇jvi −∇ivj) − β5hm
j ∇imj −∇j(λwkjih

n
k) − ∇j(τR

kjih
m
k )

+ κwR
ij hw

j + βij∇jT + γij∇jΠ, (43)

YR
i = β1 hw

j ∇j ni − λijkAjk − λwijk∇jhw
k + bnR

ij hn
j + χR(n × hm)i, (44)

XR
i = β5hw

j ∇jmi − cR
ijkAjk − τR

ijk∇jhw
k + bmR

ij hm
j + χR(n × hn)

i
, (45)

containing all possible contributions linear in the forces but also
some nonlinear ones (∼β1,2,3,4,5) as well as two couplings involving
gradients of hw

i . Such terms are used below to tackle the question of
transport and convection velocities.

The second rank tensors βij, γij are of the standard uniaxial
form, Eq. (27), while the reversible analogs of (the dissipative) heat
conduction κR

ij , diffusion DR
ij , thermodiffusion DTR

ij , relative velocity

relaxation κwR
ij , director bnR

ij , and magnetization relaxation bmR
ij are

all of the form24

κR
ij = κRϵijkmk. (46)

In contrast to the analogous dissipative tensors, they are antisym-
metric, e.g., κR

ij = −κR
ji , leading to R = 0, and they contain a factor ∼mi

to account for the correct time reversal behavior.23

The third rank tensors λijk and cR
ijk describe the rotation of ni

and mi, respectively, due to the flow of the mean velocity,

2λijk = λ (δ�ij nk + δ�iknj), (47)

2cR
ijk = cR(δ�ij mk + δ�ikmj), (48)

with λ being the well-known flow alignment parameter of nemat-
ics. Analogous effects due to the flow of the relative velocity are
described by the material tensors λwijk and τR

ijk,

λwijk = λw1 δ�ij nk + λw2 δ�iknj, (49)

τR
ijk = τR

1 δ�ij mk + τR
2 δ�ikmj, (50)

which are not necessarily symmetric in the last two indices. We note
that the sign of the coefficients in Eqs. (49) and (50) can change
depending on the shape of the molecules. This is already known to
be possible40,41 for rod-like vs disk-like molecules for the flow align-
ment parameter λ in usual low-molecular weight nematics. When
applying Eqs. (49) and (50), a more complex behavior for flow
alignment will result, in general.

The reversible analog of the (dissipative) viscosity tensor, νR
ijkl,

has eight components and is given in Ref. 23. It is antisymmetric
in the exchange of the first pair of indices with the second one,
thus guaranteeing zero entropy production, and every component
of it contains a factor ∼mi to account for the correct time reversal
behavior.

Finally, we discuss how we get the model, where all mag-
netic (nematic) degrees of freedom are transported/convected with
the appropriate velocities vm

i (vn
i ). For the conserved densities, we

already have taken the individual mass currents as ρmv
m
i and ρnv

n
i ,

leading to Eqs. (16) and (17). Therefore, jϕR
i , Eq. (41), must not con-

tain any term that would change this, and we have to put γ� = 0 = γ∥.
Similarly, we assume the entropy to be transported by the mean
velocity, and therefore, we put βij ≡ 0.

In order to get ni transported by vn
i and mi by vm

i , we have to
choose β1 = 1/ρn and β5 = −1/ρm. In Eqs. (21) and (20), the convec-
tion terms for ni and mi involve the vorticity of the mean velocity.
In order to use the appropriate velocities instead, one has to choose
λwc = 1/ρn and τR

c = −1/ρm. For the partial momenta, the appropriate
transport velocities require β2 = 1/2 = β4 and β3 = 1/ρm − 1/ρn.11,16

V. SELECTED EFFECTS OF THE RELATIVE VELOCITY
A. Heat and concentration currents

Here, we discuss the implication of the dissipative coupling
between the relative velocity and the thermal degree of freedom
described by the material tensor ξT

ij , Eq. (31). It should be noted
that this type of crosscoupling is possible only if at least one of the
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subsystems is the magnetization or any other system described by a
vorticity-like quantity. A similar analysis applies to the solutal degree
of freedom involving ξΠ

ij .
Taking the preferred direction to be the z-axis and neglect-

ing other crosscouplings, a transverse temperature gradient triggers
a dynamical change of the transverse relative velocity, Eq. (19),
given by

ẇx = −ξT∇yT − ξ�αwx + κwRαwy, (51)

ẇy = ξT∇xT − ξ�αwy − κwRαwx, (52)

where we have also taken into account the transverse relaxation ξ�,
Eq. (36), and its reversible counterpart κwR, Eqs. (43) and (46). In
the stationary limit, a finite relative velocity is generated,

w0
x =

ξTα−1

ξ2� + (κwR)2 (−ξ�∇yT + κwR∇xT), (53)

w0
y =

ξTα−1

ξ2� + (κwR)2 (ξ�∇xT + κwR∇yT), (54)

which is perpendicular to the preferred direction and, in the limit ξ�
≫ ∣κwR∣, also to the temperature gradient, while the reversible κwR

adds a component along the temperature gradient.
The inverse effect of the crosscoupling ξT

ij , the generation of
a temperature gradient in the presence of a relative velocity (all in
the plane perpendicular to the preferred direction), is found along
the same lines as above. Using the entropy currents, Eqs. (34) and
(40), and assuming that vertical boundaries block a constant entropy
current, the temperature gradients read

∇xT = ξTα
κ2� + (κR)2 (κ�wy + κR wx), (55)

∇yT = ξTα
κ2� + (κR)2 (−κ�wx + κR wy), (56)

with κ� being the transverse heat diffusion and κR being its reversible
counterpart. Thus, in the limit κ�≫ ∣κR∣, the temperature gradient is
perpendicular to the relative velocity, with the reversible κR adding
a component along the relative velocity.

B. Director and magnetization rotations
We discuss the implication of the coupling between the rel-

ative velocity and rotations of the magnetization described by the
dissipative material tensor ξwm

ij , Eq. (39), and the reversible one
τR

ijk, Eq. (45). In contrast to Sec. V A, here gradients of the relative
velocity are involved. A similar analysis applies to director rotations
involving ξwn

ij and λwijk.
Assuming a simple shear flow in the relative velocity with the

preferred direction in the shear plane,

∇ywz = K, (57)

the force ∇yhw
z enters the (dissipative and reversible) dynamics

of the magnetization. Neglecting couplings to other variables, the
magnetization currents are given by

X0
x = bDhm

x + bmRhm
y − ξwm

1 αK, (58)

X0
y = bDhm

y − bmRhm
x − τR

1 αK, (59)

where bD is the magnetization relaxation, bmR is its reversible ana-
log, and ξwm

1 and τR
1 are the dissipative and reversible coefficients

appropriate to the external force.
In the stationary limit, X0

i = 0 leads to the constant magnetic
forces,

hm0
x =

αK
N
(bDξwm

1 − bmRτR
1 ), (60)

hm0
y =

αK
N
(bDτR

1 + bmRξwm
1 ) (61)

with N ≡ (bD)2 + (bmR)2. These forces have to be compensated by
the external magnetic field, Eq. (12), leading to a finite tilt of the
magnetization,

m0
x =

hm0
x

M0H
and m0

y =
hm0

y

M0H
. (62)

There is a similar tilt effect on the nematic director due to K,
which can be obtained from Eqs. (60)–(62) by the replacements
ξwm

1 → ξwn
1 , bD → 1/γ1, bmR → bnR, τR

1 → λw1 , and M0H → χaH2.
However, the director and magnetization tilt are coupled statically
[via A1 in Eqs. (11) and (12)] and dynamically [via χD

ij in Eqs. (37)
and (39)], rendering the final expressions to be rather complicated.

VI. CONCLUSIONS AND PERSPECTIVE
In this paper, we have studied two-fluid effects on the macro-

scopic dynamic behavior of a rather recent soft matter system, fer-
romagnetic nematics. It turns out that the relative velocity between
the two subsystems, namely, the nematic solvent and the magnetic
platelets, gives rise to a number of reversible and dissipative dynamic
crosscoupling terms. Several of these should be detectable experi-
mentally. Among these effects, we have studied in some detail two
groups of effects. One is the reversible and dissipative coupling
between temperature and concentration gradients to the relative
velocity. The other type of effect is related to the vorticity in the
magnetization and its coupling to gradients in the relative velocity.

Throughout this paper, we have assumed that the nematic
director, n̂, and the direction of the ferromagnetic magnetizations,
m̂, are parallel in the ground state. We note, however, that this
degeneracy can be lifted by applying electric and magnetic fields.
We mention as an example the case of an electric field, which has
already been studied experimentally in the static limit.28 For exter-
nally applied electric or magnetic fields, the ferromagnetic nematic
will become biaxial. As a consequence, all property tensors presented
in the present paper will also assume a biaxial form. This can be
implemented practically very easily by drawing on the experience
with the macroscopic behavior of other biaxial fluid systems such as
for biaxial nematics42,43 and biaxial ferronematics.44

As a perspective, we would like to mention briefly that the
two-fluid approach presented here can be generalized in several
directions. One is ferromagnetic liquid crystalline gels and elas-
tomers. While uniaxial ferromagnetic gels and elastomers have been
reported a number of years ago already,45,46 ferromagnetic liquid
crystalline elastomers have been synthesized only quite recently for
a mainchain polymer system.47
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Another one is the incorporation of chirality concerning two-
fluid aspects. Ferromagnetic cholesterics have been synthesized and
characterized quite recently,48 and the macroscopic dynamics of fer-
rocholesterics has been given.49 For the approach of macroscopic
dynamics, macroscopic chirality leads to the existence of a pseu-
doscalar quantity, the pitch q0, which changes sign under spatial
inversion and thus makes possible in many instances a lower order
in spatial gradients for crosscoupling terms.

We close by pointing out that another direction to go into for
the macroscopic consequences of two-fluid effects in the domain of
liquid crystals will be ferroelectric nematics, which are the analog of
ferromagnetism in the electric domain.
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