Double-Quantum NMR Spectroscopy: Investigating Structure and Dynamics of Abundant Spin Systems.

Robert Graf

Max-Planck Institute for Polymer Research

Double-quantum NMR methods: investigating (supra) molecular structure

-3

_1

¹H-¹³C/¹⁵N heteronuclear

NMR methods: investigating molecular dynamics

motional correlation time [seconds]

Merging solid-state and solution-state NMR methods

Outline of the Talk

- ✓ Homonuclear DQ NMR spectroscopy under fast MAS
- ✓ Residual dipolar couplings and order parameters in nematic LC
- ✓ Multi-Spin Effects in abundant spin systems
 - \vee two spin approximation and it's limits
 - ✓ double-quantum relay in dipolar systems
 - ✓ multi-spin coherences envolving more than 2 spins
- ✓ Conclusions for homonuclear DQ NMR in dense spin systems
- ✓ Heteronuclear MQ NMR spectroscopy and REDOR
- ✓ Shape persistent polymers with dentritic sidegroups
- ✓ Inverse detection of ¹⁵N in natural abundance
- ✓ Conclusions

High Resolution Double-Quantum NMR in Solids

properties of double-quantum coherences :

high resolution solid-state NMR spectroscopy: @ average out dipolar coupling via

Multi pulse sequence (WAHUHA, MREV-8)

Magic Angle Spining (MAS)

Problem: Coupling between the spins is needed for double-quantum excitation !

excitation	evolution t ₁	reconversion	detection t ₂
ω _R ≈ 0	ω _R > D _{ij}	ω _R ≈ 0	ω _R > D _{ij}

Dipolar Couplings and Sample Rotation at the Magic Angle

Excitation of Double-Quantum Coherences under MAS

In the regime of fast MAS only recoupling techniques are applicable.

Recoupling Pulse Sequences

Average Hamiltonian of Pulse Sequences :

Laboratory-System Pulse Sequences examples: DRAMA, Back-to-Back, REDOR...

 ω/ω_{P}

orientation dependence of DQ exciation efficiency

$$H_{av}^{0} = \sum_{i < j} \omega_{PF} I_{i}^{+} I_{j}^{+} + \omega_{PF}^{*} I_{i}^{-} I_{j}^{-}$$

Rotor-System Pulse Sequences examples: C₇, POST C₇, MELODRAMA ...

Double Quantum Spectroscopy under fast MAS

The rotor modulation of the recoupled dipolar Hamiltonian due to t_1 -increments $\Delta t_1 \neq \tau_R$ leads to MAS sideband pattern in the t_1 dimension, which depend on the recoupling time and the dipolar coupling only.

Local Order in Nematic Liquid Crystals

Double-quantum measurements are in good agreement with ²H experiments

Dipolar Coupling and Order Parameters

Multi-Spin Effects in Double-Quantum Build-Up

2-spin approximation discribes only the initial behavior.

Multi-Spin Effects in Double-Quantum Build-Up

Multi-spin effects lead to exponential decay of the DQ intensities

Multi-Spin Effects in DQ Sideband Pattern

1st order sidebands are under estimated by 2-spin approximation

DQ Polarisation Transfer: 1. Order Relay

Double-quantum polarisation transfer leads to negative signal intensities

DQ Polarisation Transfer: 2. Order Relay

For longer double-quantum recoupling times coherences get delocalised and can obscure the double-quantum spectrum

Time Dependence of Dipolar DQ Relay Intensities

Dipolar couplings lead to more complicated realy behavior than J-coupling

Multi-Spin Coherences: 4 Spin 2 Quantum

Multi-spin DQ coherences can be observed, but are hard to analyse.

Conclusions for ¹H DQ NMR Spectroscopy

High resolution DQ spectra under fast MAS can be obtained using appropriate recoupling sequences.

DQ build-up behavior and DQ spinning sideband pattern provide quantitative information about dipolar couplings.

- Even though, multi-spin effects are observed, a carefull 2-spin analysis provides reasonable dipolar coupling values.

In favorable cases, multi-spin effects can be analyzed and additional information can be obtained.

DQ relay intensities due to dipolar couplings are harder to analyze than those due to J-couplings.

How dipolar interactions "explore" space

diffusive processes

Rotational Echo Double Resonance (REDOR)

Internuclear distances from REDOR curves

Coherent polarisation transfer

From deuterons to CH_n groups

Selectively placed **deuterons** as probes for molecular dynamics (quadrupole coupling of spin-1 nucleus)

Regular $\mathbf{CH}_{\mathbf{n}}$ groups

- use of dipole-dipole coupling between C and H
- no additional synthetic effort
 - ► no selective placement of probing nucleus
 - ► no isotopic enrichment
- assignment of dynamics by ¹³C chemical shifts
- \bullet handling of CH, $\rm CH_2$ and $\rm CH_3$ groups
- interferences of multiple C-H couplings
- decoupling from surrounding ¹H

Signal build-up versus rotor-encoding

Two alternative concepts for measuring recoupled interactions:

- following the signal intensity as a function of the recoupling time (resulting in build-up or dephasing curves)
- recording rotor-encoded signal (resulting in MAS sideband patterns)

Cylindrical self-assembly of dendritic sidegroups (I)

Cylindrical self-assembly of dendritic sidegroups (II)

Sensitivity enhancement by inverse (¹H) detection

Natural-abundance ¹⁵N-¹H correlation NMR

NH----O hydrogen bonds in L-histidine

700 MHz 1 H frequency, 30 kHz MAS, ~ 15 mg sample.

N-H bond stretching due to hydrogen bonding

Conclusions for heteronuclear methods

- Similarities of homo- and heteronuclear are sufficient to pursue the strategies known form ¹H DQ NMR.
 - Rotor encoding can be used to measure heteronuclear dipolar couplings with REDOR based techniques.
- The larger spread of chemical shifts of rare low γ nuclei provides site selective information about molecular dynamics.
- ¹H detection of low γ nuclei can increase the sensitivity and NMR measurements in natural abundance become feasible.

NMR on supramolecular systems

Homonuclear double-quantum measurements

✓ Dipolar couplings and order parameters in LC system Michael Neidhöfer
✓ Analysis of ¹H DQ relay Robert Graf

Heteronuclear method development in solid-state NMR

¹³C site-resolved dynamics of CH_n groups
^v natural abundance ¹⁵N-¹H correlation spectroscopy
^v N-H distance measurements

Kay Saalwächter Ingo Schnell

Investigations of complex systems

V Dynamics and self-assembly of dendritic sidegroups *Almut Rapp*