

Investigation of local Dynamics via ²H Solid-State MAS NMR

Christoph Deller Robert Graf, Lothar Brombacher, Gunther Brunklaus and Hans-Wolfgang Spiess

- ²H-NMR spectroscopy under MAS
- Motional broadening The effect of molecular motion on ²H-MAS spectra
- Application to model systems with one ²H-site
- Application to crystalline sample with more than one ²H-site
- Application to amorphous samples with more than one ²H-site

M. Schulz-Dobrick, I. Schnell, Central European Journal of Chemistry **3**, 245 (2005)

Principle: Reorientation of quadrupolar tensor with "jump rate" k = k(T)

MAS: Formation of the echo at the end of the rotor period is perturbated

M. Cutajar, S. E. Ashbrook, S. Wimperis, *Chemical Physics Letters* **423**, 276 (2006).

0

0

0

40 kHz

40 kHz

40 kHz

fast limit

Principle: Reorientation of quadrupolar tensor with "jump rate" k = k(T)

MAS: Formation of the echo at the end of the rotor period is perturbated

M. Cutajar, S. E. Ashbrook, S. Wimperis, *Chemical Physics Letters* **423**, 276 (2006).

RS vs. NRS ²H-MAS Spectra

- ²H-NMR spectroscopy under MAS
- Motional broadening The effect of molecular motion on ²H-MAS spectra

Application to model systems with one ²H-site

- Application to crystalline sample with more than one ²H-site
- Application to amorphous samples with more than one ²H-site

5 4 3 2 1 0 -1 -2 -3 -4 kHz

- ²H-NMR spectroscopy under MAS
- Motional broadening The effect of molecular motion on ²H-MAS spectra
- Application to model systems with one ²H-site

Application to crystalline sample with more than one ²H-site

• Application to amorphous samples with more than one ²H-site

Selective Deuteration of acidic protons: Histidine HCI Monohydrate

Selective Deuteration of acidic protons: Histidine HCI Monohydrate

D₂O, DCI

Recrystallization from D₂O :

- 1. Distinction of acidic and non-acidic positions in the compound
- 2. Peak assignement
- Resolution enhancement due to reduction of homonuclear ¹H-¹H coupling network
- 4. Exploring of structural features using correlation techniques

RS-²H-MAS NMR Spectroscopy

Structural Features: ¹H - ²H Correlation Measurements

M. Schulz-Dobrick, I. Schnell, Central European Journal of Chemistry **3**, 245 (2005)