

How Unstructured are Amorphous Polymer Melts? Solid-State NMR Studies of Local Dynamic Order in Amorphous Polymer Melts

Robert Graf

Max-Planck-Institut für Polymerforschung Mainz

Technische Universiteit Eindhoven February 17th, 2004

How Unstructured are Amorphous Polymer Melts? Solid-State NMR Studies of Local Dynamic Order in Amorphous Polymer Melts

Introduction • interactions in solid state NMR

- **Solid State NMR** resolution enhancement in solid state NMR, magic angle spinning, recoupling methods, double quantum NMR spectroscopy.
 - I. Schnell, K. Saalwächter, M. Feike, R. Graf

Polymer dynamics • Reptation model, polybutadiene, PEMA

Conclusions • How unstructured are amorphous polymers ?

Important NMR interactions:

Zeemann Interaction :

Electronic Shielding :

Η

$$\begin{split} \mathbf{H} &= \mathbf{H}_{\mathbf{Z}} + \mathbf{H}_{\mathbf{Q}} + \mathbf{H}_{\mathbf{CS}} + \mathbf{H}_{\mathbf{D}} + \mathbf{H}_{\mathbf{J}} \\ \text{Zeemann Interaction} : & \mathbf{H}_{Z} = -\sum_{i} \gamma_{i} \underline{\mathbf{B}}_{0} \underline{\mathbf{I}}^{i} \\ \text{Quadrupol Interaction} : & \mathbf{H}_{Q} = -\sum_{i} \frac{eQ}{2I(2I-1)\hbar} \underline{\mathbf{I}}^{i} \underline{\mathbf{V}} \underline{\mathbf{I}}^{i} \\ \text{Electronic Shielding} : & \mathbf{H}_{CS} = -\sum_{i} \gamma_{i} \underline{\mathbf{B}}_{0} \underline{\mathbf{\sigma}} \underline{\mathbf{I}}^{i} \\ \text{Dipol-Dipol Interaction} : & \mathbf{H}_{D} = -\sum_{i\neq j} \frac{\mu_{0}\hbar}{4\pi} \frac{\gamma_{i}\gamma_{j}}{r^{3}} \Big[\frac{3}{r^{2}} (\underline{\mathbf{I}}^{i} \cdot \underline{\mathbf{r}}) (\underline{\mathbf{I}}^{j} \cdot \underline{\mathbf{r}}) - \underline{\mathbf{I}}^{i} \cdot \underline{\mathbf{I}}^{j} \Big] \end{split}$$

Indirect Spin-Spin Interaction : $H_J = -\sum_{i \neq i} \underline{I}^i \cdot \underline{J}^{ij} \underline{I}^j$

¹H NMR Spectra in Liquid and in Solid State

Spectral Resolution Enhancement in Solid State NMR

dipol-dipol coupling:

magic angle spinning:

$$\overline{\hat{R}}_{2,0} \rightarrow 0$$

 $\hat{H} = \hat{R}_{2,0} \cdot \hat{T}_{2,0}$ space spin $\hat{H} \propto \frac{1}{r_{ij}^3} \frac{1}{2} (3\cos^2\theta_{ij} - 1) \qquad \gamma_i \gamma_j (3\hat{I}_{Z,i}\hat{I}_{Z,j} - \hat{I}_i \cdot \hat{I}_j)$

Double Quantum NMR Spectroscopy under MAS

properties of double quantum coherences :

Order Parameter in Liquid Crystalline Phases

Order Parameters in Liquid Crystalline Systems

Local Order Parameter in Liquid Crystals and Polymers

How Unstructured are Amorphous Polymer Melts? Solid-State NMR Studies of Local Dynamic Order in Amorphous Polymer Melts

Introduction • Interaction in solid state NMR

Solid State NMR • MAS, recoupling, double-quantum NMR

Polymer Dynamics • Reptations-model, scaling laws in polymer dynamics, influence of rigid confinements, conformational stability in PEMA melts.

T. Dollase, M. Neidhöfer, M. Wind, A. Heuer, R. Graf

Conclusions • How unstructured are amorphous polymers ?

DQ Measurements of Dynamics on Different Time Scales

$$I_{DQ} \propto \left\langle \int_{0}^{t} dt' \int_{t+t_1}^{2t+t_1} dt'' \left\langle D_{ij,eff} \right\rangle^2 \cdot d_{2,-m}^{(2)}(t') d_{2,m}^{(2)}(t'') \right\rangle$$

local order parameter :

static systems :

isotropic motion :

polymer network theory :

$$S_{ij}(t) = 1$$

$$S_{ij}(t) = 0$$

$$S \approx \frac{3}{5} N_e^{-1}$$

 $\mathbf{S}_{ij} = \left\langle \mathbf{D}_{ij,eff} \right\rangle / \mathbf{D}_{ij}$

Polybutadien : S $\approx \frac{3}{5} \frac{M_{Kuhn}}{M_e} \approx 0.03$

$$t = 0$$
 $t \approx \tau_e$ $t > \tau_e$

 $\left\langle d_{2,-m}^{(2)}(t'_{exc.}) \cdot d_{2,m}^{(2)}(t''_{rec.}) \right\rangle_{t}$ corresponds to *return-to-origin* probability C (t)

Dynamic order parameter **S** via residual dipolar couplings

Time Dependence of Local Order Parameter

double-quantum filtered experiments on 1,4 poly-butadien

Reptation-model predicts two scaling laws: $S \sim t^{-1/4}$ and $S \sim t^{-1/2}$

Molecular Weight Dependent Dynamics of PB Melts in PS-PB

Tethering a PB chain end to a rigid PS block stabilizes the t^{-1/4}-regime

Influence of Rigid Confinements on Polymer Dynamics

Polymer Dynamics in heterogeneous Polymer Melts

Variation of Dynamic Order Along the Polymer Chain

cooperation with Prof. Hadjichristidis / Athen.

a-PEMA: Isotropisation of Chain Dynamics

a-PEMA: Isotropisation of Chain Dynamics

Dynamic Models: Random Jump vs. Rotational Diffusion

Time Sclaes of Molecular Dynamics PEMA Melts

Arrhenius-diagram of dynamic processes in PEMA

Length Scale of Isotropisation Process

Organisation in Poly(Methacrylats): WAXS

extrapolated lokal structur: "Nano Layers"

 \ge

How Unstructured are Amorphous Polymer Melts? Solid-State NMR Studies of Local Dynamic Order in Amorphous Polymer Melts

Introduction • Interaction in solid state NMR

Solid State NMR • MAS, recoupling, double-quantum NMR

Polymer Dynamics • Reptation-model, polybutadiene, PEMA

Conclusions • How unstructured are amorphous polymers ?

Längenskalen lokaler Ordnung in Polymerschmelzen

Prof. Dr. Hans Wolfgang Spiess (\$, €, ...)

Prof. Dr. Andreas Heuer (Polymertheory, ...)

Dr. Thilo Dollase, Michael Neidhöfer (Polybutadien)

Dr. Michael Wind, Dr. Werner Steffen, Prof. Dr. Do Y. Yoon (PEMA)

Dr. Ingo Schnell, Dr. Kay Saalwächter, Dr. Martin Feike, Dr. Siegfried Hafner, Prof. Dr. Dan Demco. (NMR)

