

NMR Studies of Polyethylene: From Chemical Characterization Towards the Organization of Semi Crystalline Polymers

Robert Graf

Max-Planck-Institute for Polymer Research, Mainz, Germany

Outline

Chain Branching

- ¹³C NMR Branch Quantification
- ¹³C NMR Optimisation
- Hardware Setup
- Method

Applications

Chain Dynamics & Morphology Anisotropic NMR Interactions NMR and Chain Translation Applications

NMR Branch Quantification

Solution-State NMR

Direct quantification via ratio of integrals:

- branch content *: δ or $\alpha/3:\delta$

Disadvantages:

- maximum 20 wt % solubility
- up to 2,000,000 scans for 3–8 per 100,000 CH₂

Optimised NMR Branch Quantification

Strategies for Optimisation

Measurement of bulk polymer:

- more NMR active nuclei per volume
- more signal per unit time
- faster branch quantification

Type of NMR:

- solid-state NMR
- melt-state NMR

Parameters Investigated:

- external magnet field
- coil geometry
- pulse sequence
- recycle delay
- decoupling method

Resolution Enhancement

- magic angle spinning (MAS)
- high-power heteronuclear dipolar-decoupling
- motional averaging of anisotropic interactions

Solid-State MAS NMR

semi-quantitative at low temperature (-15°C)

Melt-State Static NMR

Highest sensitivity but with reduced resolution

- large detection coils at 300 MHz
- high degree of detection coil filling

Melt-State MAS NMR

Compromise between sensitivity and resolution

– ¹³C-¹H optimised 7 mm MAS probehead at 500 MHz

Direct Polarisation

Hardware Limits

Quantitative but limited by T₁^C

Short Recycle Delays I

Short recycle delays

- saturation effects on branch carbons 1,2 and 3
- enhancement of backbone signals *, $\alpha,\ \beta$ and δ

Transient NOE

- residual proton polarisation from decoupling
- enhancement dependent on nuclear relaxation times

Short Recycle Delays III

Short recycle delay

- backbone carbons better suited for quantification

J-Mediated Methods I

J-Mediated polarisation transfer

- limited by T_1^H not T_1^C
- access to attached proton tests

J-Mediated Methods II

Both INEPT and DEPT

- overestimate branch content
- show less effect of recycle delay on branch content
- show potential for branch quantification (*, α , β)

J-Mediated Methods III

Not fully quantitative

– branch content dependent on $\rm J_{CH}$

Decoupling Method I

Advantages

- longer acquisition possible
- less artificial line-broadening / more T₂-based line-widths

Decoupling Method II

Optimum decoupling method

- π -decoupling at short recycle delay
- extended duty cycle

Decoupling Method III

Reduction of $FWHH_{\delta}$

- 40 Hz to 10 Hz at 2 s

Applications

Comonomer Content

Melt-State PE8-C 70 s / SNR $_{\alpha}$ = 58

Comonomer contents: 2–15 per 1000 CH₂

- Standard solution-state: 12 h per sample
- Optimised melt-state: 70 s 16 min per sample

Comonomer Distribution

Comonomer incorporation

- quantification of double, triple and non-consecutive

Low Branch Content

Access to branch contents of 7–8 per 100,000 CH₂

- Optimised solution-state:
 - 50,000 to 2,000,000 scans (15 & 300 h)
- Optimised melt-state:
 - 21,500 scans (13 h)

Klimke et al., Macromol. Chem. Phys. 207, 382–395 (2006).

Conclusions

Melt-state MAS

-compromise of resolution & sensitivity
-SPE more suitable than J-mediated methods
-highly time efficient due to short recycle delays

π -decoupling

-most aplicable at short recycle delays-reduced FID truncation with extended duty cycle-significantly improves resolution

Applicable to wide range of model/industrial polyolefins