

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers

Yefeng Yao, Robert Graf, Hans Wolfgang Spiess

Max-Planck-Institute for Polymer Research, Mainz, Germany

Leibniz Institut für Polymerforschung, Dresden, January 15th 2008

Line Width in ¹H NMR Spectra

Resolution Enhancement in NMR

dipol-dipol coupling:

magic angle spinning:

$$\overline{\hat{R}}_{2,0} \rightarrow 0$$

 $\hat{H} = \hat{R}_{2,0} \cdot \hat{T}_{2,0}$ space spin $\hat{H} \propto \frac{1}{r_{ii}^3} \frac{1}{2} (3\cos^2 \theta_{ij} - 1) \qquad \gamma_i \gamma_j (3\hat{I}_{Z,i}\hat{I}_{Z,j} - \hat{I}_i \cdot \hat{I}_j)$

Anisotropic NMR Interactions

¹³C chemical shift anisotropy

Dipolar Sideband Pattern

Saalwächter et al., Solid State NMR, 22, 154 (2002).

Chemical Shift Anisotropy Pattern

Liu et al., J. Magn. Reson. ,155, 15 (2002).

Morphology and Chain Dynamics in PE

4

6

melt crystallized ultra high molecular weight PE

¹³C Chemical Shift Anisotropy

Temperature Dependence

solution crystallized UHMW-PE

melt crystallized UHMW-PE

Observation and Analysis of Chain Translation Motion with ¹³C NMR Experiments

Observation of Chain Translation

Time and Temperature Dependence

saturate ¹³ C	¹³ C relaxation / chain diffusion	acquisition
--------------------------	--	-------------

Quantification of Chain Translation

Determination of NMR Crystallinity

crystallinity C:

$$C = 1 / (A+1)$$

	x-ray	NMR
MC	39%	46%
SC	74%	75%
fiber	95%	90%

Chain Diffusion in Polyethylene

Activation Energy of Chain Motion

Chain Diffusion vs Local Jump Rate

Variation of Lamellar Thickness

Annealing lamellar, solution crystallized polyethylene close to the melting point leads to lamellar doubling.

Rastogi et al, Macromolecules 30, 7880 (1997).

Variation of Lamellar Thickness

Annealing lamellar, solution crystallized polyethylene close to the melting point leads to lamellar doubling.

Rastogi et al, Macromolecules 30, 7880 (1997).

Variation of Lamellar Thickness

Chain Diffusion in Drawn Samples

Weak deformations do

not change the local morphology

Stronger deformations change the thickeness of crystalline layers

Conclusions

Anisotropic NMR Interactions in SC-PE

- highly restricted dynamics
- almost temperature independent

Observation of Chain Translation

- local chain diffusion can be observed
- (NMR) crystallinity can be determined
- studies of local structure de/formation

Acknowledgements

Max-Planck-Institut für Polymerforschung

Dr. Yefeng Yao Prof. Dr. H.W. Spiess

University of Eindhoven

Prof. Dr. S. Rastogi Dr. D.R. Lippits