

Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR

Robert Graf

Max-Planck-Institut für Polymerforschung Mainz

March 2nd, 2005

Max Planck Institute for Polymer Research

founded 1983, 450 co-workers, on campus of the University of Mainz,

interdisciplinary fundamental research of polymers

Scientific Activities of the MPI-P Spectroscopy Group

Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR

Introduction • interactions in solid state NMR

- **Solid State NMR** resolution enhancement in solid state NMR, magic angle spinning, recoupling methods, double quantum NMR spectroscopy
- **Polymer dynamics** Polyelectrolyte layers, polybutadiene, PEMA
 - **Conclusions** Pro and Contra of Solid State NMR investigations

Important NMR interactions:

Zeemann Interaction :

Electronic Shielding :

Η

$$\begin{split} \mathbf{H} &= \mathbf{H}_{\mathbf{Z}} + \mathbf{H}_{\mathbf{Q}} + \mathbf{H}_{\mathbf{CS}} + \mathbf{H}_{\mathbf{D}} + \mathbf{H}_{\mathbf{J}} \\ \text{Zeemann Interaction} : & \mathbf{H}_{Z} = -\sum_{i} \gamma_{i} \underline{\mathbf{B}}_{0} \underline{\mathbf{I}}^{i} \\ \text{Quadrupol Interaction} : & \mathbf{H}_{Q} = -\sum_{i} \frac{eQ}{2I(2I-1)\hbar} \underline{\mathbf{I}}^{i} \underline{\mathbf{V}} \underline{\mathbf{I}}^{i} \\ \text{Electronic Shielding} : & \mathbf{H}_{CS} = -\sum_{i} \gamma_{i} \underline{\mathbf{B}}_{0} \underline{\mathbf{\sigma}} \underline{\mathbf{I}}^{i} \\ \text{Dipol-Dipol Interaction} : & \mathbf{H}_{D} = -\sum_{i\neq j} \frac{\mu_{0}\hbar}{4\pi} \frac{\gamma_{i}\gamma_{j}}{r^{3}} \Big[\frac{3}{r^{2}} (\underline{\mathbf{I}}^{i} \cdot \underline{\mathbf{r}}) (\underline{\mathbf{I}}^{j} \cdot \underline{\mathbf{r}}) - \underline{\mathbf{I}}^{i} \cdot \underline{\mathbf{I}}^{j} \Big] \end{split}$$

Indirect Spin-Spin Interaction : $H_J = -\sum_{i \neq i} \underline{I}^i \cdot \underline{J}^{ij} \underline{I}^j$

¹H NMR Spectra in Liquid and in Solid State

Spectral Resolution Enhancement in Solid State NMR

dipol-dipol coupling:

magic angle spinning:

$$\overline{\hat{R}}_{2,0} \rightarrow 0$$

 $\hat{H} = \hat{R}_{2,0} \cdot \hat{T}_{2,0}$ space spin $\hat{H} \propto \frac{1}{r_{ij}^3} \frac{1}{2} (3\cos^2\theta_{ij} - 1) \qquad \gamma_i \gamma_j (3\hat{I}_{Z,i}\hat{I}_{Z,j} - \hat{I}_i \cdot \hat{I}_j)$

Double Quantum NMR Spectroscopy under MAS

properties of double quantum coherences :

Molekulare Stuktur von Silikat-Schichten

2

²⁹Si double quantum spectrum: DQ intensity \propto r⁻⁶ => coordination shells

Analysis of layered silicates via next nearest neighbor relations

Molecular Structure of Layered Silicates

²⁹Si double-quantum spectrum: DQ-Intensities => coordination spheres

structure of layered silicates from analysis of spatial proximities

N. Hedin et al., J. Am. Chem. Soc. 126, 9425 (2004).

Polybenzoxazines

2

Unusual Properties Useful Properties • Low water absorption • High T_a • Low volumetric expansion on curing • Good mechanical properties • High modulus Excellent UV and chemical resistance OH ОН Ring Opening R X Hydrogen-bonded network What is the nature of the network?

Benzoxazine Oligomers Studied by ¹H DQ NMR

Changes in hydrogen bonding structure evident from changing ¹H resonances and DQ contacts

Hydrogen Bonds Assigned via DFT-Based Chemical Shift Calculations

G. R. Goward et al., J. Am. Chem. Soc. 125, 5792 (2003).

Order Parameter in Liquid Crystalline Phases

Order Parameters in Liquid Crystalline Systems

Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR

Introduction • Interaction in solid state NMR

Solid State NMR • MAS, recoupling, double-quantum NMR

Polymer Dynamics • Polyelectrolyte multi layers, reptations-model, scaling laws in polymer dynamics, influence of rigid confinements, conformational stability in PEMA melts.

Conclusions • Pro and Contra Solid State NMR investigations

Polyelectrolyte Multi-Layers

interdigitated but still stratified chains

DQ NMR Investigation of Structure: PEM vs. PEC

Localization of Water in Polyelectrolyte Multilayers

¹H MAS NMR Spectra

¹H Chemical Shift

M. McCormick et al., *Macromolecules* **36**, 3616 (2003).

S. Pawsey et al., J. Am Chem. Soc. 125, 4174 (2003).

DQ Measurements of Dynamics on Different Time Scales

$$I_{DQ} \propto \left\langle \int_{0}^{t} dt' \int_{t+t_1}^{2t+t_1} dt'' \left\langle D_{ij,eff} \right\rangle^2 \cdot d_{2,-m}^{(2)}(t') d_{2,m}^{(2)}(t'') \right\rangle$$

local order parameter :

static systems :

isotropic motion :

polymer network theory :

$$S_{ij}(t) = 1$$

$$S_{ij}(t) = 0$$

$$S \approx \frac{3}{5} N_e^{-1}$$

 $\mathbf{S}_{ij} = \left\langle \mathbf{D}_{ij,eff} \right\rangle / \mathbf{D}_{ij}$

Polybutadien : S $\approx \frac{3}{5} \frac{M_{Kuhn}}{M_e} \approx 0.03$

$$t = 0$$
 $t \approx \tau_e$ $t > \tau_e$

 $\left\langle d_{2,-m}^{(2)}(t'_{exc.}) \cdot d_{2,m}^{(2)}(t''_{rec.}) \right\rangle_{t}$ corresponds to *return-to-origin* probability C (t)

Dynamic order parameter **S** via residual dipolar couplings

Time Dependence of Local Order Parameter

Reptation-model predicts two scaling laws:

S~t^{-1/4} and S~t^{-1/2}

R. Graf et al., Phys. Rev. Lett. 80, 5738 (1998).

Molecular Weight Dependent Dynamics of PB Melts in PS-PB

Tethering a PB chain end to a rigid PS block stabilizes the t^{-1/4}-regime

Influence of Rigid Confinements on Polymer Dynamics

Polymer Dynamics in heterogeneous Polymer Melts

Variation of Dynamic Order Along the Polymer Chain

a-PEMA: Isotropisation of Chain Dynamics

a-PEMA: Isotropisation of Chain Dynamics

Dynamic Models: Random Jump vs. Rotational Diffusion

M. Wind et al., Solid State NMR 27, 132-139 (2005).

Time Sclaes of Molecular Dynamics PEMA Melts

Arrhenius-diagram of dynamic processes in PEMA

Length Scale of Isotropisation Process

M. Wind et al., *Macromol. Chem. Phys.* 206, 142 (2005).

Organisation in Poly(Methacrylats): WAXS

extrapolated lokal structur: "Nano Layers" d ld III \mathbf{H}

M. Wind et al., J. Chem. Phys. 122, 14906 (2005).

Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR

Introduction • Interaction in solid state NMR

Solid State NMR • MAS, recoupling, double-quantum NMR

Polymer Dynamics • polyelectrolyte layers, polybutadiene, PEMA

Conclusions • solid state NMR investigations

Pro and Contra of Solid State NMR Investigation

ω, [ppm]

- needs expertise
- expensive

Prof. Dr. H. W. Spiess (\$, €, ...)

Dr. I. Schnell, Dr. K. Saalwächter, Dr. M. Feike, Dr. S. Hafner, Prof. D. Demco. (NMR)

Prof. B. Chmelka, Dr. N. Hedin (layered silicates)

Prof. K. Ishida, Dr. D. Sebastiani (polybenzoxazines)

Prof. L. Reven, Dr. M. McCormick (polyelectrolytes)

Prof. A. Heuer (polymer theory, ...)

Dr. T. Dollase, Dr. M. Neidhöfer (polybutadiene)

Dr. M. Wind, Dr. W. Steffen, Prof. Do Yoon (PEMA)

