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Introduction

The initial formulation of density-functional theory (DFT) in the middle of the twen-
tieth century [1, 2] has unlocked the door to developing practical independent-particle
approaches for the ab-initio study of structural and electronic properties of solids. Sim-
ple proofs show that many properties of a system of interacting particles can be derived
from their ground state density %(r). As the DFT is a formally exact theory for correlated
many-body systems, %(r) contains all the information about the ground state and also all
excited states. However, no exact expression for the functional is known for more than a
single-electron system.
Despite their simplicity, approximate functionals for the exchange-correlation (XC) en-
ergy within the Kohn-Sham approach based on the solution of the homogenous electron
gas, like the local-density approximation (LDA) or the generalized-gradient approxima-
tion (GGA), have turned out to be remarkably successful in studying the fundamental
properties of many-body systems, including bulk crystals, clean and adsorbate-covered
surfaces as well as more complicated nanostructures. There are, however, some sig-
nificant drawbacks: firstly, the energetics of highly correlated electrons, like localized
(semicore) d-electrons, are underestimated. Secondly, and more importantly, the funda-
mental energy gap between occupied and empty bands in semiconductors and insulators
is systematically underestimated by about 50%. In order to illustrate this problem Fig. 0.1
shows the theoretical band gaps as resulting from standard LDA calculations for the bulk
crystals that will be studied in this work against their respective experimental values, as
far as they are known.
Many approaches have been made to rectify this problem. For example, quasiparti-
cle approaches based on the GW approximation [3, 4] (GWA), which treat one-particle
excitations using electron Green functions, have been particularly successful in this re-
gard [5–8]. Compared to standard LDA, however, the numerical effort for GWA calcula-
tions is considerably higher. This is particularly true when systems with broken transla-
tional symmetry are described by large unit cells containing many atoms. In such cases
GWA calculations become extraordinarily demanding computationally.
Other approaches concentrate on improving the functionals themselves. Various general-
ized-gradient approximations have been developed, which take not only the local charge
density but also its gradient into account evaluating the XC potential and energy, respec-
tively. Others try to account for non-local contributions leading to the average density
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Figure 0.1: Calculated band gap energies of ma-
terials studied in this work as result-
ing from standard LDA calculations
compared to their respective experi-
mental values.

(ADA) and weighted density approximations (WDA) [9]. Optimized effective potential
(OEP) techniques introduce orbital-dependent functionals. The energy is defined as a
funtional of the potential V instead of the particle density n. Notably, the particular ap-
plication of the OEP to the Hartree-Fock exchange leads to the so called exact exchange
(EXX) functional. Such can be used, for instance, in hybrid functionals, which are widely
used by chemists. They are a combination of orbital-dependent Hartree-Fock and an ex-
plicit density functional [10–12].
These numerous approaches are of different quality but all that go beyond LDA or GGA
share a common significant drawback. From a computational point of view, the numerical
effort to evaluate these functionals is higher than in LDA/GGA, often even considerably
so. This fact limits their applicability to comparatively small systems. This is all the more
critical as the scientific interest focuses on configurations that are modeled using large
unit cells containing a large number of atoms, e.g. in studies of surfaces, nanostructures,
or defects. Technological applications usually exploit the properties of these structures
making them particularly interesting and relevant. It is therefore vital to describe them
most accurately from a theoretical point of view. Due to the high calculational demands
of the methods mentioned above, these properties are not accessible by them except for
isolated cases.
In this work a different approximate treatment of the electronic structure shall be em-
ployed. Perdew and Zunger [13] have very early realized that in the case for isolated
atoms the errors in the electronic structure arise from spurious self-interactions inher-
ent in the LDA functional. They heuristically defined a self-interaction correction (SIC)
for such systems leading to an orbital-dependent formulation of the energy functional.
As it turns out, the use of these corrections massively improves the agreement between
calculated term values and experimental binding energies for free atoms. The direct appli-
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Figure 0.2: The idea of constructing SIC pseu-
dopotentials illustrated for LiF. On
the left hand side, a standard LDA
calculation underestimates term val-
ues of the free atoms leading to a too
small level distance in the combined
spectrum. Accordingly constructed
pseudopotentials carry this error into
the solid and the bulk gap results too
small. An atomic SIC calculation
in contrast yields a much improved
combined spectrum and – via an ap-
propriate pseudopotential construc-
tion – a realistic bulk band gap.
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cation of the SIC functional in calculations for solids is difficult for many reasons as will
be discussed later (cf. Chapter 3). Among some other intricacies, the orbital-dependence
renders it computationally very demanding, as well.
The approach in this work tries to bridge this gap and transfer the well-defined atomic cor-
rections to the solid using the pseudopotential approach. The idea of using self-interaction
corrected pseudopotentials has been proposed previously and has been used in different
modifications [14–20]. Its fundamental idea is illustrated in Fig. 0.2 for the case of LiF.
On the left hand side, the two highest occupied term values of lithium (cation) and flu-
orine (anion) are shown as calculated within LDA. Due to the self-interaction error, the
level positions are too high and their distance results too small. When standard LDA pseu-
dopotentials are constructed based on these results, this term value distance translates into
the bad gap in LiF, which results too small compared to experiment. On the right hand
side of Fig. 0.2, the effect of SIC on the atomic term values is shown. As a result of the
self-interaction correction, both term values of the free atoms are found lower in energy
as compared to LDA. Most importantly, the level distance is increased. If it is now pos-
sible to construct pseudopotentials based on this improved spectrum, one can transfer the
atomic SIC effect to the solid without any additional computational costs. This approx-
imate SIC has mostly been applied to bulk solids with strongly-localized valence states,
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Introduction

e.g. semicore d-states, before. The aim of this work is twofold: Firstly, the applicability
of the SIC pseudopotential approach to usual sp-bonded solids shall be scrutinized. An
important aspect in this regard is also the performance of such calculations for systems
with reduced periodicity, most notably surfaces. Therefore, in this work, the structural
and electronic properties of a multitude of bulk crystals, surfaces, and related nanos-
tructured matter will be investigated using self-interaction corrected pseudopotentials. In
particular, selected non-polar and polar surfaces of silicon carbide (SiC) will be studied.
SiC is a compound semiconductor of large application potential for the use in micro- and
optoelectronic devices. Compared to silicon it has many advantageous features such as
high possible operating temperatures combined with high mechanical strength, a higher
electric breakdown field, higher thermal conductivity, lower intrinsic carrier concentra-
tion, and a larger saturated electron drift velocity, among others. These can be exploited,
for instance, in MOSFETs where the use of silicon carbide instead of silicon offers in-
creased switching speeds and lower losses. In addition to its technological relevance, SiC
is also interesting from a more fundamental point of view. The compound exists in a
large number of different polytypes, ranging from purely cubic to purely hexagonal ones
with various mixed stacking sequences in between. This offers a variety of qualitatively
different geometries that can be studied. As SiC is a highly reactive material, it represents
a workhorse for a number of fundamental studies with regards to surface reconstructions,
adsorption properties etc. The availability of experimental and beyond-LDA reference
data for selected surfaces of the cubic modification 3C-SiC allows for a sound assessment
of the SIC pseudopotential approach for such systems. Of particular interest in this regard
is the effect on surfaces on which higher reconstructions lead to characteristic differences
in the electronic structure between bulk and surface, e.g. by dimer formation.
Another class of materials that shall be studied in this work are the alkaline-earth metal
oxides BeO, MgO, CaO, SrO, and BaO. For these highly ionic compounds, the SIC pseu-
dopotential method can be expected to work extremely well. Such a study is motivated by
the technological relevance of these oxides, e.g. as supports in catalysis, on the one hand,
and by more fundamental aspects on the other hand. Going from beryllium to barium in
the second group of the periodic table of elements the chemical properties change consid-
erably. For the heavier cations in the oxide compounds, the energy separation between the
valence (N)s and core (N-1)p electrons decreases in such a fashion that the derived bands
reside close to the oxygen valence bands in the solid. Such semicore p-bands of filled
inner shells are very important to account for and should be influenced by self-interaction
corrections as well. Quasiparticle calculations and experimental reference will serve to
assess the results of SIC calculations of the bulk crystals. In case of the respective (001)
surfaces, a quasiparticle calculation [21] reported the occurrence of loosely bound image
potential states (IPS) at the MgO(001) surface. It will be investigated whether the SIC
pseudopotential approach yields an accurate description of such states and whether IPS
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also occur on the other alkaline-earth metal oxide surfaces.
Since the initial discovery of carbon-based nanotubes in the early 1990s [22], there has
been an ever growing interest in studies of such one-dimensional systems. An interesting
feature of these tubular structures is that they can be formed in different helicities span-
ning a significant range of diameters from about 4 to possibly several hundred angstroms.
For the use in microelectronic devices knowledge of their electronic structure is vital.
It can easily be fathomed that the electronic structure is intimately related to geometric
properties such as the helicity and the diameter. An investigation of the band gap progres-
sion in silicon carbide nanotubes based on standard LDA [23] has found that for small
diameters the gap of so-called zigzag nanotubes vanishes. In this work, the structural and
electronic properties of a significant number of nanotubes based on silicon carbide, boron
nitride, and beryllium oxide will be studied using SIC pseudopotentials. The aim, in par-
ticular, is to monitor the progression of the respective band gaps in the diameter range of
four to 25 Å and to discuss the band gap collapse reported in earlier studies.
Finally, a comprehensive study of nine bulk alkaline-metal fluorides, oxides, and nitrides
is performed. Sparked by the only recent synthesis of sodium nitride [24, 25], a standard
LDA study predicts a negative gap for this ionic compound, which is in disagreement
with experimental observations. SIC pseudopotentials will be used to study the electronic
structure of this and eight related compounds aiming at reconciling theoretical and exper-
imental results.
Therefore, this work is structured as follows: In the first chapter, the basic concepts of
solid state theory used in this work, i.e. density-functional theory and the local-density ap-
proximation, are presented. Chapter 2 deals with some details of the practical realization
of the calculations, including short descriptions of norm-conserving pseudopotentials, the
self-consistent procedure, and geometry optimization. The self-interaction error and the
subsequent attempts of self-interaction corrections are presented in detail in Chapter 3. In
particular, the SIC pseudopotential approach used in this work is motivated and discussed
instructively in application to the bulk solids of 3C-, 2H-, 4H-, and 6H-SiC. The method
will then be used in Chapter 4 to investigate the structural and electronic properties of
3C-SiC(110)-(1×1) and the (2×1) and c(2×2) reconstructions of the carbon-terminated
3C-SiC(001) surface. In the following chapter, the results of respective studies of 4H-
SiC(1010) and 4H-SiC(1102)-c(2×2) will be presented. Bulk and surface properties of
alkaline-earth metal oxides will be discussed in Chapter 6, while Chapter 7 focuses on
the structural, elastic, and electronic properties of different nanotubes. Finally, Chapter 8
deals with the electronic structure of alkali-metal fluorides, oxides, and nitrides before an
Outlook and a Summary conclude this work.

11



Introduction

12



Chapter 1.

Concepts of solid state theory

The quantum-mechanical treatment of electronic and structural properties of solids is
based on Schrödinger’s equation for many-particles. For only a handful of systems, this
equation can be solved analytically, which necessitates the use of numerical procedures
combined with suitable approximations.
This section begins with the description of the decoupling of ionic and electronic systems
in the framework of the Born-Oppenheimer approximation. Later, density-functional the-
ory in local-density approximation is presented as method of choice for solving the elec-
tronic problem.

1.1. Born-Oppenheimer Approximation

The solid under investigation shall consist of NK atomic cores localized at the spatial
coordinates Rλ carrying the charges Zλ and Ne electrons with the coordinates ri. In the
CGS system, the associated Hamiltonian reads

Ĥ =

NK∑
λ=1

P̂2
λ

2Mλ

+
1

2

NK∑
λ=1

NK∑
η=1
η 6=λ

ZλZηe
2

|Rλ −Rη|

+
Ne∑
i=1

p̂2
i

2mi

+
1

2

Ne∑
i=1

Ne∑
j=1
j 6=i

e2

|ri − rj|
−

Ne∑
i=1

NK∑
λ=1

Zλe
2

|ri −Rλ|

= T̂K + V̂KK︸ ︷︷ ︸
ĤK

+ T̂e + V̂ee + V̂eK︸ ︷︷ ︸
Ĥel

.

(1.1)

Here, T̂K is the kinetic energy of the nuclei and T̂e that of the electrons. Coulomb inter-
action is repulsive for electrons (V̂ee) and nuclei (V̂KK) among themselves, respectively, as
well as attractive (V̂eK) among each other.
Using the Born-Oppenheimer approximation [26] the motion of nuclei and electrons can
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Chapter 1. Concepts of solid state theory

be decoupled. Due to the relation of masses me

MK
, which is of the order 10−4 − 10−5

depending on the particular element, one can assume as a first approximation that the
electrons always move within a rigid lattice of nuclear cores. The nuclear coordinates
are no longer regarded as dynamic variables but as parameters of the Hamiltonian for the
electronic system.
An expansion of the wave functions of the total system in terms of the eigenstates of
the electronic system under omission of transitions between electronic states (electron-
phonon coupling) leads to two separate equations. First, the dynamics of the electrons is
treated within a rigid nuclear lattice. Using atomic units, the Hamiltonian of the electronic
system that shall be solved in the following reads

Ĥ =
Ne∑
i

−∇̂2
ri
−

Ne∑
i=1

NK∑
λ=1

2Zλ

|ri −Rλ|
+

Ne∑
i=1

Ne∑
j=1
j 6=i

1

|ri − rj|

= T̂e + V̂ek + V̂ee .

(1.2)

All lengths that enter this Hamiltonian are scaled in multiples of Bohr’s radius aB =

0.529 Å, energies are measured in Rydbergs.
Then, the collective oscillations of the nuclei in the effective potential

Veff(R) =
1

2

NK∑
λ=1

NK∑
η=1
η 6=λ

ZλZηe
2

|Rλ −Rη|
+ Eel

n (R) , (1.3)

with Eel
n (R) being the electronic energies associated to the Hamiltonian of Eq. (1.2) are

calculated according to(
NK∑
λ=1

P̂2
λ

2Mλ

+ Veff(R)

)
Φα,n(R) = EαΦα,n(R) . (1.4)

1.2. Density-functional theory: Kohn-Sham
Equations

Two theorems by Hohenberg and Kohn [1] constitute the fundamental basis of density
functional theory:

(1) The ground state ψ0 of a system consisting of spin-free, identical fermions is a
one-to-one functional of the particle density %(r).

14



1.2. Density-functional theory: Kohn-Sham Equations

(2) The functional

E[n] =

∫
Vext(r)n(r) d3r + 〈ψ|T̂ + V̂ee|ψ〉

=

∫
Vext(r)n(r) d3r + F [n(r)] ,

(1.5)

obeys a variational principle with respect to the particle density n(r) and is minimal
for the density of the ground state %:

E0 = E[%] ≤ E[n] . (1.6)

T̂ and V̂ee are the operators of the kinetic energy and the electron-electron interaction,
respectively. The functional F [n] also is a unique functional of the particle density. How-
ever, it is independent of the external nuclear potential Vext. Proofs of these theorems can
be found, e.g. in chapter 6.2 of Ref. [10].
The determination of the correct ground state energy results from Theorem (2) by a varia-
tion of the total energy with respect to the density n. The variation of the particle density
n(r) at fixed particle number N has to be performed for the respective external potential
Vext(r). To do so, Kohn and Sham [2] replaced the kinetic energy T of the interacting par-
ticles with that of the non-interacting electron gas T0 at density n. The classic Coulomb
energy is separated and all non-classical effects, like exchange and correlation, are incor-
porated into the energy Exc. No exact expression for this XC-energy is known.
Within the approach of Kohn and Sham, the energy functional reads:

E[n] = T0[n] +

∫
Vext(r)n(r) d3r +

∫ ∫
n(r)n(r′)

|r− r′|
d3r′ d3r + Exc[n]

= Ekin + Eext + EH + Exc .

(1.7)

This functional has to be varied with respect to the charge density n(r). Further repre-
senting the charge density n(r) using single-particle orbitals φi, i.e.

n(r) =
Ne∑
i=1

|φi(r)|2 , (1.8)

as a sum of single-particle densities, the system of Ne interacting particles is transformed
to a system of Ne effectively non-interacting particles. The kinetic energy

T0[n] =
Ne∑
i=1

∫
φ∗i (r)(−∇2)φi(r) d

3r . (1.9)
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Chapter 1. Concepts of solid state theory

and the effective potential

Veff([n], r) = Vext(r) +

∫
2n(r′)

|r− r′|
d3r′ +

δExc[n]

δn(r)
, (1.10)

in which the external potential Vext is formed by the interaction of electrons with the
nuclear potentials, do not explicitly contain the particle density n(r). Instead the single-
particle wave functions φi(r) appear. It is convenient to replace the functional derivative
with respect to the particle density to one with respect to the single-particle wave func-
tions. The normalization of the φi(r) remains as a constraint, which is accounted for by a
Lagrange parameter εi. The variation then finally leads to the Euler equations of a system
of non-interacting particles, the Kohn-Sham equations:{

−∇2 + Veff([%], r)
}
φi(r) = εiφi(r) . (1.11)

Hereby, the original many-particle equation is transformed to a system of N single-
particle equations. Due to the dependence of the effective potential on the charge density,
the solution of these equations has to be calculated self-consistently.
One should note at this point that the aforementioned eigenvalues εi - which have been
formally introduced as Lagrange parameters in the variation and are thus only a mathe-
matical tool - are often interpreted as single-particle energies. Strictly, there is no formal
justification for this.
Multiplying φ∗i (r) with Eq. (1.11) and subsequent integration over r and summation of
all Ne leads to

Ne∑
i

εi = T0[n]+

∫
Vext(r)n(r) d3r+

∫ ∫
2n(r)n(r′)

|r− r′|
d3r′ d3r+

∫
Vxc([n], r)n(r) d3r .

(1.12)
Solving this equation for T0[n] and substituting the result into the energy functional (1.7)
yields an expression for the ground state energy (n(r) = %(r)):

E[%] =
Ne∑
i=1

εi −
∫ ∫

%(r)%(r′)

|r− r′|
d3r′ d3r + Exc[%]−

∫
Vxc([%], r)%(r) d

3r . (1.13)

In order to determine the total energy of the solid, the repulsion of the nuclei among
themselves must be considered additionally:

Etot = E[%] +

NK∑
λ=1

NK∑
η=1
η 6=λ

ZλZη

|Rλ −Rη|
. (1.14)
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1.3. Local-density approximation

1.3. Local-density approximation

In the Kohn-Sham equations, all many-body effects are incorporated into the XC-energy
Exc[n], for which no exact expression is known. The motivation of the local-density
approximation is that as long as the particle density of the inhomogeneous electron gas is
not too structured, it can be considered as locally constant. Hence, one approximates the
density of the inhomogeneous electron gas locally by that of the homogenous one.
Let εxc(n(r)) be the exchange-correlation energy per electron of the homogenous electron
gas for the density n(r). Then, the XC-energy of the inhomogeneous electron gas can be
written in the framework of the LDA as

Exc[n] =

∫
n(r)εxc(n(r)) d3r. (1.15)

The exchange-correlation potential then reads

Vxc([n], r) =
δExc[n]

δn(r)
= εxc(n(r)) + n(r)

dεxc(n)

dn
= V LDA

xc (n(r)) (1.16)

Ceperley and Alder [27] determined numerical values for the homogenous electron gas
using Monte-Carlo methods. Perdew and Zunger [13] parametrized their results as fol-
lows:

εxc = εx + εc (1.17)

εx = −0.9164

rs

(1.18)

εc =

{
−0.2846/(1 + 1.0529

√
rs + 0.3334rs) for rs ≥ 1

−0.0960 + 0.0622 ln rs − 0.0232rs + 0.0040rs ln rs for rs < 1
(1.19)

rs =

(
3

4πn

)1/3

(1.20)

Vxc = εxc −
rs

3

d

drs

εxc (1.21)
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Chapter 2.

Practical realization of
density-functional theory
calculations

Chapter 1 dealt with the fundamental aspects of density-functional theory within the local-
density approximation for a general many-electron system. On this basis, the practical
realization of DFT calculations which aim at the determination of structural and electronic
properties of solids will be discussed below.
In the following section, a basis consisting of Gaussian orbitals is introduced, which is
used to solve the Kohn-Sham equations numerically. The self-consistent procedure and
the determination of the total energy is discussed in detail.

2.1. Solving the Kohn-Sham equations

According to Bloch’s Theorem, the eigenvalues and eigenfunctions of a 3D-periodic bulk
crystal can be classified by the wave vector k and the band index n. The Kohn-Sham
equations read:

Ĥψn,k(r) = En(k)ψn,k(r) , (2.1)

with the Hamiltonian
Ĥ = −∇2 + Veff([%], r) . (2.2)

Above equations constitute an eigenvalue problem. Within the pseudopotential approach
only the valence electrons contribute to the effective potential, which can be written as

Veff([%], r) = V ps
ion(r) + VH([%], r) + Vxc([%], r). (2.3)

Here, %(r) is the charge density of the valence electrons.
Using Bloch’s Theorem, the wave function ψn,k(r) can be represented by a product of a
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Chapter 2. Practical realization of density-functional theory calculations

plane wave and a lattice periodic function un(k, r):

ψn,k(r) = eikrun(k, r) . (2.4)

In this work, the wave functions ψn,k(r) are constructed using a finite set of lattice-
periodic Bloch functions and read as:

ψn,k(r) =
∑
α,ν

cnαν(k)χαν(k, r) , (2.5)

with
χαν(k, r) =

1√
N0

∑
Rj

eik(Rj+τν)φαν(r−Rj − τν) . (2.6)

Here, the {Rj} are the vectors of the Bravais lattice and τν is a vector of the non-primitive
basis associated with the atom ν of the unit cell.
As ansatz functions φαν(r), atom-centered Gaussian orbitals are employed, which can be
expressed as

φαν(r) = Nlm,γr
lYlm(ϑ, ϕ)e−γανr2

(2.7)

Due to their localization at the atomic positions, they are obviously dependent on the τν .
The angular components of the orbitals are described by spherical harmonics Ylm(ϑ, ϕ),
while Gaussian functions with decay constants γαν constitute the radial components. The
factor Nlm,γ ensures the normalization of the functions. Associated with the different
α=̂(lm) are different symmetries of the orbitals. Typically, one considers the following
symmetry types:

α=̂(lm)=̂s, px, py, pz, dzx, dyz, dxy, d3z2−r2 , dx2−y2 , s∗ . (2.8)

The peculiar orbital s∗ = r2 ·s serves to describe energetically higher states with spherical
symmetry.
Using these Gaussian orbitals, the secular equation for the eigenvalue problem follows as∑

α′ν′

cn,k
α′ν′

{
Hk

ανα′ν′ − εn,kS
k
ανα′ν′

}
= 0 . (2.9)

The elements of the matrix of the Hamiltonian are calculated as

Hk
ανα′ν′ =

∑
Rj

eik(Rj−τν+τν′ )

∫
φ∗αν(r− τν)Ĥφα′ν′(r−Rj − τν′) d3r (2.10)
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2.1. Solving the Kohn-Sham equations

and those of the overlap matrix as

Sk
ανα′ν′ =

∑
Rj

eik(Rj−τν+τν′ )

∫
φ∗αν(r− τν)φα′ν′(r−Rj − τν′) d3r , (2.11)

respectively. These matrix elements can be determined analytically in real space for the
given φαν(r). For explicit forms of the orbitals φαν(r) as well as the matrix elements
Hk

ανα′ν′ and Sk
ανα′ν′ , see appendix B of Ref. [20] and Ref. [28] for possible improvements.

Standard methods can be used the solve the secular equation for any given k point numer-
ically. This yields the required eigenvalues εn,k together with the associated expansion
coefficients cn,k

αν , which can be used to finally construct the wave functions ψn,k(r).
The electronic charge density of the considered system is a vital magnitude for the self-
consistent calculation. With the use of Bloch functions, it is calculated according to

%(r) = 2 ·
∑
nocc

∑
k

|ψn,k(r)|2 (2.12)

as a sum over all occupied bands nocc and over all k points within the Brillouin zone. The
factor 2 appears due to the spin degeneracy of the occupied bands.
Performing the sum over all k is numerically impossible due to the discrete nature of a
k-point sampling. Still, one could simply take a high number of discrete and uniformly
distributed points within the Brillouin zone to calculate the charge density. This poses an
unjustified computational effort. Instead, it is much more commendable to make use of
more efficient methods. These methods rely on the limitation of the sum to special points
located within the irreducible wedge of the Brillouin zone. Consequently, these special
points have to be determined based on the symmetry of the crystal at hand. A weight
ws is associated with each special point ks, which basically stands for the number of
unique points within the full Brillouin zone that can be generated applying the symmetry
operations of the Bravais lattice on the special points. The charge density (as well as all
other properties that rely on Brillouin zone integration) can then be calculated according
to

%(r) = 2 ·
∑
nocc

∑
s

ws

∑
P ∈M(ks)

|ψn,Pks(r)|
2

 . (2.13)

Here, the sum over the symmetry operations P that generate the star M(ks) appear. The
generated wave functions can be written using the transformation matrices D(P )

αα′ of the
symmetry group as

ψn,Pks(r) =
∑
αν

{∑
α′

D
(P )
αα′c

n,k
α′ν

}
χαν(Pk, r) . (2.14)
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Chapter 2. Practical realization of density-functional theory calculations

There are different methods for constructing the special points ks within the irreducible
wedge of the Brillouin zone. Most commonly used are point schemes by Chadi and
Cohen [29] or Monkhorst and Pack [30].

2.2. Norm-conserving pseudopotentials

The effective potential that enters the Kohn-Sham equations (1.11) consists of three con-
tributions: the external potential of the nuclei Vext(r), the Hartree potential VH([%], r) and
exchange-correlation potential Vxc([%], r) of the electrons. Hitherto, all electrons within
the unit cell of the crystal have been treated on equal footing. It is well known, however,
that electrons from closed, inner shells of the atoms interact only weakly with their en-
vironment and thus hardly contribute to chemical bonding. On the one hand this is due
to the stronger localization of such electrons close to the nucleus, on the other hand their
respective energies are also much lower than the Fermi level, near which the characteris-
tics of the chemical bond are determined. This suggests that it might be beneficial to limit
the density-functional calculations to valence electrons and to incorporate the effects of
the core electrons into an ionic pseudopotential V ps

ion(r). The Kohn-Sham equations in the
pseudopotential approach then read{

−∇2 + V ps
eff ([%

ps], r)
}
φps

i (r) = εiφ
ps
i (r) , (2.15)

where the φps
i are the associated pseudo wave-functions. With the respective pseudo

charge-density

%ps(r) =
occ∑
i

|φps
i (r)|2 (2.16)

the effective, screened pseudopotential is written as

V ps
eff ([%

ps], r) = V ps
ion(r) + V ps

H ([%ps], r) + V ps
xc ([%ps], r) . (2.17)

Such a pseudopotential does not exhibit the typical 1/r divergence of the standard Hartree
potential and can consequently be described using a reduced basis set for the solution of
the Kohn-Sham equations. A number of different kinds of pseudopotentials has been
explored. Earlier calculations relied on empirical or semi-empirical pseudopotentials in
which either the complete effective potential or its ionic component are fitted to empiri-
cal data. However, such pseudopotentials are problematic when being used in chemical
environments different to those they were originally constructed for.
In contrast, so called norm-conserving ab-initio pseudopotentials do not rely on any ref-
erence data for the investigated system. They are constructed based on atomic all-electron
calculations and have to fulfill a number of conditions that ensure accuracy and transfer-
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2.2. Norm-conserving pseudopotentials

ability. Details of these conditions and the construction process can be found in section
2 of Ref. [20] and references therein. The result of this process is a semi-local effective
potential V ps

eff,l(r), i.e. one that depends on the angular momentum l. The ionic pseudopo-
tential is generated by unscreening this effective potential according to

V ps
ion,l(r) = V ps

eff,l([%
ps], r)− V ps

H ([%ps], r)− V ps
xc ([%ps], r) (2.18)

and can be split into a local component and a non-local one

V ps
ion = V ps

ion,loc(r) + V ps
ion,nloc

= V ps
ion,loc(r) +

∑
l

∆V ps
l (r)

∑
m

|lm〉〈lm| . (2.19)

This is possible because the nonlocality is limited to a core region, defined by radii rc,l.
The exact choice of the local component within that core region is arbitrary, in principle.
In practical calculations, the local part can be treated in Fourier space, while the non-
local part has to be determined in real space. Using the basis set of Gaussian orbitals to
represent the Bloch functions, the calculation of matrix elements of the pseudopotential as
given in Eq. (2.19) is highly demanding. Kleinman and Bylander [31] therefore developed
a scheme to transform the non-local pseudopotential into a fully separable form. In that
context the choice of the local part within the core region becomes relevant. Usually, this
is set to be the component of the highest angular momentum lmax so that ∆V ps

lmax
= 0.

Then, the remaining non-local part of the pseudopotential operator follows in Kleinman-
Bylander form as

V̂ KB
ion,nloc =

∑
lm

|∆V ps
l (r)φps

lm 〉〈∆V
ps
l (r)φps

lm|
〈φps

lm|∆V
ps
l (r)|φps

lm〉
. (2.20)

A suitable parametrization of the local and non-local part of the pseudopotential can be
found in chapter 2 of Ref. [20].

2.2.1. Non-linear core corrections

The unscreening of the effective pseudopotential in Eq. (2.18) is achieved by subtracting
the Hartree- and XC-potential based on the pseudo valence charge density %val = %ps.
Any interaction between the valence charge and the core charge %core is neglected. This
is correct for the Hartree potential as it is linear in the charge density. The XC-potential,
in contrast, is not linear in the charge density and consequently the procedure defined in
Eq. (2.18) is only an approximation. As long as there is no significant overlap between
%val and %core, this approximation is well justified. There are, however, cases in which
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Chapter 2. Practical realization of density-functional theory calculations

this no longer holds. This affects the calculated total energy and the respective derived
properties, like lattice constants, bulk moduli or atomic forces, in particular.
Louie et al. [32] proposed to use the combined charge density %val +%core when calculating
the XC-potential in the solid. Therefore, during unscreening of the pseudopotential the
effective potential is evaluated as:

V ps
ion,l(r) = V ps

eff,l([%val], r)− V ps
H ([%val], r)− V ps

xc ([%val + %core], r) (2.21)

The use of such non-linear core corrected (NLCC) pseudopotentials in calculations for
solids requires the the atomic core charge density as additional input as it has to be added
to the valence charge density when evaluating the XC-potential and energy. This poses an
increased numerical demand as the core charge density of atoms is usually very structured
and localized close to the nucleus. However, the error resulting from the pseudopotential
construction in Eq. (2.18) mainly originates from the spatial regions in which both %val

and %core are of similar magnitude. In Ref. [32] it was also shown that it is hence possible
to smooth the core charge density in proximity of the nucleus, i.e. for radii smaller than a
predefined radius r0, and use a partial core charge defined by

%̃core(r) =

{
A
r

sin (Br) r ≤ r0

%core(r) r > r0
. (2.22)

The radius r0 is typically determined as being the radius, at which the core charge den-
sity is larger than the valence charge density by a factor of 1 to 2. The remaining two
parameters A and B must fulfill the conditions that

%̃core(r0) = %core(r0) (2.23)
d%̃core(r)

dr

∣∣∣∣
r=r0

=
d%core(r)

dr

∣∣∣∣
r=r0

, (2.24)

so that the resulting partial density is continuously differentiable. Due to the explicit form
given in Eq. (2.22), the slope of the full charge density must be negative at r0. In order to
generate a node-free partial core density, it must also be ensured that 0 < B < π

%0
.

It turns out that the use of non-linear core corrected pseudopotentials as defined by Eq.
(2.21) improves the calculated total energies as well as lattice constants etc. significantly
(cf Refs. [32–35]).
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2.3. Self-consistent electronic structure
calculations

In the course of a self-consistent solution of the Kohn-Sham equations it is necessary to
calculate for every iteration N the new output potential V N

out(r) based on the respective
charge density. The complete effective potential is composed of a local (here already in
Fourier representation) and a non-local part as was shown in the previous section:

V N
eff (r) = V KB

ion,nloc(r) +
∑
Gl

V N
out(Gl)e

−iGlr , (2.25)

where:
V N

out(Gl) = V KB
ion,loc(Gl) + V N

H (Gl) + V N
xc (Gl) . (2.26)

The local component V KB
ion,loc(Gl) of the pseudopotential remains unchanged during the

procedure, just as the non-local component V KB
ion,nloc(r). Apparently, it is sufficient to cal-

culate these two contributions once at the beginning of the procedure.
The Fourier transform V KB,µ

ion,loc(Gl) of the local part of the pseudopotential in the parame-
terized Kleinman-Bylander form (cf. Sec. 2 of Ref. [20]) follows as:

V KB,µ
ion,loc(Gl) =− 4π

Ω0

Zµ

G2
l

∑
i

Aµ,ie
− G2

l
4αµ,i

+
1

Ω0

n∑
j=1

(
π

βµ,j

)3/2{
Bµ,j +Bµ,j+n

(
3

2βµ,j

− G2
l

4β2
µ,j

)}
e
− G2

l
4βµ,j .

(2.27)

As one can see, this expression diverges for Gl = 0. During the setup of the secular
equation, this term is omitted as will be discussed in more detail when one considers the
total energy.
The Fourier coefficients of the Hartree potential can be determined by transforming the
Poisson equation into Fourier space, resulting in

VH(Gl) =
8π

G2
l

%(Gl) . (2.28)

This term also diverges for Gl = 0 and is consequently omitted as well during the setup
of the potential matrix. The two divergent terms V KB

ion,loc(Gl = 0) and VH(Gl = 0) com-
pensate each other [36].
The exchange-correlation potential V N

xc (r) is determined in real space according to Eq.
(1.21) and is subsequently transformed into Fourier space using a Fast-Fourier-Transform
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Chapter 2. Practical realization of density-functional theory calculations

(FFT). Since both the Hartree- and XC-potential depend on the actual charge density,
these parts of the total potential have to be updated in each iteration of the self-consistent
procedure.
However, the output potential of the N -th iteration that is given by

V N
out(Gl) = V KB

ion,loc(Gl) + V N
H (Gl) + V N

xc (Gl) (2.29)

is hardly suitable to be used as input potential V N+1
in (Gl) for iteration N + 1. In actual

calculations, such a choice often leads to difficulties with the convergence of the solu-
tion. Assuming that convergence is reached when the input potentials of two successive
iterations do not differ, meaning that the squared difference∑

G

∣∣V N+1
in (G)− V N

in (G)
∣∣2 < m0 . (2.30)

is lower than a certain convergence limit m0. A typical value for this limit is

m0 = 10−9 Ryd2 . (2.31)

In order to avoid the aforementioned difficulties in finding a convergent solution and to
achieve a significantly faster convergence, the input potential V N+1

in (Gl) is determined by
mixing potentials of previous iterations. Some techniques defining the mixing functional
E are described in appendix C of Ref. [20].
Figure 2.1 schematically shows the sequence of a self-consistent calculation.
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Input potential: V (0)
eff (G) non-local part: V KB

nloc(r)

Solution of secular equation:
(HN (k)− ǫNn (k)S(k))cNn (k) = 0

Calculate charge density:
̺N (r) = 2 ·

∑

nocc

∑

k

∣

∣ψN
n (k, r)

∣

∣

2

FFT: ̺N (r) → ̺N (G)

self-consistent?

Calculate
band structure

Calculate
total energy

Coulomb potential:
V N

H (G) = 8π
G2̺

N (G)
XC potential:

̺N (r) → V N
xc (r)

FFT
−−→ V N

xc (G)

Determine output potential:
V N

out(G) = V KB
loc (G) + V N

H (G) + V N
xc (G)

M -order Anderson mixing of potentials:
V N+1

in = E(V N
in,out, . . . , V

N−M
in,out )

Yes

No

Figure 2.1: Flow chart of the electronic self-consistent procedure.
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2.4. Total energy calculations

According to Hohenberg and Kohn [1], the total energy of a solid can be determined
exactly for its ground state within DFT. As one has to resort to the use of approximations,
e.g. the LDA, for the unknown exchange-correlation energy and potential, respectively,
and by using pseudopotentials, one can only approximate the true total energy. This
magnitude is of vital importance for the determination of geometric (atomic) structure
of solids as bulk crystals, surfaces (with or without adsorbates) and lower-dimensional
systems.
As in (1.14), the total energy per unit cell (of volume Ω0) of a solid reads within DFT-
LDA:

Etot = 2
∑
nocc,k

εn(k)−
∫∫
Ω0

%(r′)%(r)

|r′ − r|
d3r′ d3r

+

∫
Ω0

(εxc(%(r))− Vxc(r))%(r) d
3r +

{j,ν}6={j0,µ}∑
j,ν,µ

ZνZµ

|Rj,ν −Rj0,µ|

= Ebs − EH + Exc + EMad .

(2.32)

Here, the vector Rj,ν stands for the position of the nuclei Rj + τν , while it shall hold that
Rj0,µ = τµ. The sum over nocc shall run over all occupied bands.
In the previous section it has already been mentioned that the divergent terms of the local
part of the pseudopotential and the Hartree potential are omitted when setting up the
secular equation. This can be done as the total Fourier component of Gl = 0 equals
the mean total potential within the unit cell and thus only acts as a constant shift to the
calculated energy spectrum. This of course only holds as long as no divergency remains
in the respective components. Obviously, for a total energy calculation, one needs the
definition of an absolute energy scale and hence, one cannot omit the contributions from
Gl = 0 to the total energy.
In Ref. [36] a thorough discussion of how these terms are treated is given. Firstly using
the pseudopotential parametrization they are separated into non-divergent and divergent
components. Then it is shown in quite some detail that the latter compensate each other
so that, in effect, no divergency remains in the total energy.
Finally, the total energy of the solid per unit cell is calculated according to:

Etot =
2

ns

occ∑
k,n

ε0n(k) + Ω0

∑
G

[εxc(G)− Vxc(G)] %∗(G)

− Ω0

∑
G 6=0

4π

G2
|%(G)|2 + EMad + Z

∑
µ

aµ .

(2.33)
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2.5. Atomic forces and optimization of the atomic
structure

So far, the determination of the electronic structure for a fixed atomic geometry has been
analyzed. The converged solution of Eq. (2.9) yields the ground state energy for this ge-
ometry. However, it is well possible that for a different set of atomic positions, a lower
total energy might result. The total energy is therefore dependent on the atomic con-
figuration. If one optimizes the atomic structure of a given system – usually when the
three-dimensional symmetry of translation is broken, i.e. at a surface of the crystal – one
is looking for a minimum of the associated total energy hypersurface.
Obviously, one has to look at the derivatives of the total energy with respect to the atomic
positions. This is, however, nothing else than the negative of the forces on the atoms.
More explicitly, the force on the atom located at the position τν follows as

Fν = −∇τνEtot. (2.34)

In order to evaluate (2.34), Eq. (1.14) is used in a slightly different form

Etot =
2

N0

occ∑
n,k

∫
V0

ψ∗
n,k(r)

(
−∆ +

1

2
VH(r) + εxc(r) + Vext(r)

)
ψn,k(r) d

3r + EMad

=

〈
Ψ

∣∣∣∣−∆ +
1

2
VH + εxc + Vext

∣∣∣∣Ψ〉+ EMad

(2.35)

The bracket form has been introduced in order to ease the following discussion. Let us
now first consider an arbritrary hermitian operator Ô. Its derivative with respect to the
atomic positions can be written as

∇ν〈Ψ|Ô|Ψ〉 = 〈∇νΨ|Ô|Ψ〉+ 〈Ψ|∇νÔ|Ψ〉+ 〈Ψ|Ô|∇νΨ〉
= 2Re〈Ψ|Ô|∇νΨ〉+ 〈Ψ|∇νÔ|Ψ〉 .

(2.36)

Identifying Ô = 〈Ψ
∣∣−∆ + 1

2
VH + εxc + Vext

∣∣Ψ〉, one can make use of this relation and
analyze the dependence of VH and εxc on the atomic positions. As the associated operators
are local and multiplicative, the wave functions Ψ can be combined in the charge density
%(r). After some calculations, one finds that

〈Ψ|∇νVH|Ψ〉 =

∫
V0

%(r)∇νVH(r) d3r = · · · = 2Re〈Ψ|VH|∇νΨ〉 (2.37)
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and

〈Ψ|∇νεxc|Ψ〉 =

∫
V0

%(r)∇νεxc(r) d
3r = · · · = 2Re〈Ψ|Vxc − εxc|∇νΨ〉 , (2.38)

respectively. Now, the derivative of the total energy follows as

∇νEtot = 2Re〈Ψ| −∆ +
1

2
VH + εxc + Vext|∇νΨ〉+ 〈Ψ|∇ν(

1

2
VH + εxc)|Ψ〉

+ 〈Ψ|∇νVext|Ψ〉+∇νEMad

= 2Re〈Ψ| −∆ + VH + Vxc + Vext|∇νΨ〉+ 〈Ψ|∇νVext|Ψ〉+∇νEMad .

(2.39)

So, finally, one can identify three separate contributions to the forces that have to be
calculated. Identifying −∆ + VH + Vxc + Vext as the Kohn-Sham Hamiltonian, the force
on the ν-th atom reads

Fν = −∇νEtot = −2Re〈Ψ|Ĥ|∇νΨ〉︸ ︷︷ ︸
:=FPul

ν

−〈Ψ|∇νVext|Ψ〉︸ ︷︷ ︸
=:FHF

ν

−∇νEMad︸ ︷︷ ︸
:=FMad

ν

. (2.40)

The first term FPul
ν is the Pulay force, which only occurs for an incomplete or τ -dependent

basis. Using a plane wave basis, this force vanishes as∇νΨ = 0. The Hellmann-Feynman
force FHF

ν is in contrast connected to the change of the physical system, in which electrons
reside as the external potential changes. Both of these terms can be treated using the
Hellmann-Feynman theorem. In appendix A explicit expression for these three forces
based on the use of a localized basis are presented in detail.
The intention of calculating forces is to find an optimized atomic configuration, for which
the total energy of the system reaches a local minimum and the forces vanish. Just as
in the case of finding a self-consistent solution of the Kohn-Sham equations for a fixed
geometry, this can be achieved by an iterative process.
This process is schematically depicted in Fig. 2.2. Based on an input configuration of the
atomic geometry τ (N) in the N -th step of the iteration, the associated effective potential
V

(N)
in is used to start an electronic self-consistent procedure as was described in section

2.3. This leads to a converged effective potential V (N)
out and the total energy Etot(τ

(N)),
from which the atomic forces F(N) are calculated. If the total force is lower than a certain
threshold, a local minimum of the total energy hypersurface is assumed to be found. If it is
not, a new atomic configuration is determined based on the calculated forces. Just as in the
case of the electronic self-consistent calculation, it is appropriate to use a mixing scheme
to find this updated configuration. Instead of simply moving the ions in the direction
of the respective forces on them, results from previous iterations are considered as well,
analogous to the mixing of effective potentials that was mentioned in section 2.3.
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Input configuration:τ (0)

Input potential:̺ (0) → V
(0)

in

Electronic self-consistency:

V
(N)

in , τ (N) → V
(N+1)

out , Etot(τ
(N))

Calculate forces:

F
(N) = −∇τEtot(τ

(N))

||F(N)|| < η

Final result:

τ
opt, V

opt
eff

band structure, total energy etc.

New input potential:
{

cn,k
αν

}(N)
, τ (N+1) → V

(N+1)
in

n-order mixing of configurations:

τ
N+1 = E(τ (N,...,N−n),F(N,...,N−n))

Yes

No

Figure 2.2: Flow chart of the geometry optimization.
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Chapter 3.

Self-interaction corrections to
density-functional theory

For applications of a solid in opto- and mircoelectronic devices a precise knowledge of
its electronic properties is essential. From a theoretical point of view, density-functional
theory using the local-density approximation has been established as an extremely use-
ful ab-initio method to calculate these properties. However, standard LDA calculations
typically underestimate critical band structure data, like the band gap or the valence band
width.
The systematic deviations of DFT-LDA results from experimental data can be traced back
to unphysical self-interactions inherent in LDA, as has been shown by Perdew and Zunger
[13]. The authors applied a self-interaction correction (SIC) to atomic systems and were
able to overcome the shortcomings of the LDA to a large extent.
In this chapter, a short summary of Perdew and Zunger’s fundamental findings for atomic
systems will be given. There will be a review of previous related attempts to apply self-
interaction-correction schemes to solids before the approach to construct self-interaction-
corrected pseudopotentials followed in this work will be presented in detail. The s, p-
bonded compound semiconductor silicon carbide will serve as a prototypical example in
this regard.

3.1. The self-interaction error

As mentioned before, Perdew and Zunger [13] attributed the errors of DFT-LDA in atomic
systems to unphysical self-interactions due to the use of the LDA. They also proposed
a simple method to remove this self-interaction error (SIE) from the energy functional
and the associated effective potential. The hydrogen atom constitutes a very instructive
example for the discussion of the SIE and the self-interaction correction.
Density-functional theory as presented up to this point needs to be modified when spin-
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polarization is significant for the system under investigation1. This is usually the case in
metal compounds with respect to magnetism and in isolated atoms like hydrogen. The
needed modification is achieved by partitioning the total charge density n(r) in the indi-
vidual contributions of spin-up and spin-down electrons, respectively:

n(r) = n↑(r) + n↓(r) . (3.1)

In analogy to the spin-less case the variation of the energy functional

E[n↑, n↓] = T0[n] +

∫
Vext(r)n(r) d3r +

∫ ∫
n(r)n(r′)

|r− r′|
d3r′ d3r +Eσ

xc[n
↑, n↓] , (3.2)

with respect to the single-particle wave functions fulfilling the norm constraint φσ
i (r) leads

to the spin-polarized Kohn-Sham equations for the ground state (n(r) = %(r)):{
−∇2 + Vext(r) + VH([%], r) + Vxc([%

↑, %↓], r)
}
φσ

i (r) = εσi φ
σ
i (r) . (3.3)

Within the local-spin-density approximation (LSDA), numerical results of the homoge-
nous electron gas are used to parameterize the XC-energy and the XC-potential, respec-
tively.
The electronic ground state of the hydrogen atom is now treated within the framework of
the LSDA. The energy functional solely depends on the 1s wave function and reads:

ELSDA[%1s] = T0[%1s] +
∫
Vext(r)%1s(r) d

3r + EH[%1s] + ELSDA
xc [%1s, 0]

= − 13.6 eV + 8.5 eV − 7.9 eV
= − 13.0 eV .

Obviously, the total energy of the hydrogen atom as calculated within LSDA deviates
by +0.6 eV from the exact solution. As there is only one single electron in the system,
the contributions from the Hartree energy EH and from the exchange-correlation energy
Exc should cancel each other. The LSDA is not exact, however, and contains a non-
vanishing repulsive electron-electron interaction leading to a total energy that is too high
by roughly 5%. The presence of a single electron directly shows that this net electron-
electron interaction can only stem from the interaction of the 1s electron with itself. This
unphysical self-interaction is an immediate consequence of the use of the LSDA.
The SIE is even more severe for the calculated eigenvalues of the Kohn-Sham equations:

εLSDA
1s = 〈φ1s| − ∇2 − 2

r
|φ1s〉 + 〈φ1s|VH[%1s] + V LSDA

xc [%1s, 0]|φ1s〉
= − 13.6 eV + 6.3 eV
= − 7.3 eV .

1Spin-polarization is only introduced here to better visualize the error and the later corrective approach
in the isolated atom. Any subsequent calculation is performed within the unpolarized regime of the LDA.
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Relying on the common interpretation of these eigenvalues as single-particle excitation
energies yields a binding energy of the 1s electron that deviates by a massive 6.3 eV or
46% from the exact values. Such deviations of the calculated properties in the framework
of L(S)DA (total energy by roughly 5% and the difference of highest occupied and low-
est unoccupied eigenvalues, i.e. the gap in semiconductors, by 40%) from experimental
reference data are also found for almost all many-electron systems and can be primarily
traced back to the unphysical self-interaction inherent in the used approximation.

3.2. Self-interaction corrections in atoms: The
Perdew-Zunger approach

Considering the analysis of the SIE in the previous section, a simple way to compensate
this error in the hydrogen atom is to subtract the terms originating from the net electron-
electron interaction from the energy functional and the potential, respectively:

ELSDA[%1s] = T0[%1s] +
∫
Vext(r)%1s(r) d

3r + EH[%1s] + ELSDA
xc [%1s, 0]

− EH[%1s] − ELSDA
xc [%1s, 0]

= − 13.6 eV ,

and

εLSDA
1s = 〈φ1s| − ∇2 − 2

r
|φ1s〉 + 〈φ1s|VH[%1s] + V LSDA

xc [%1s, 0]|φ1s〉
− 〈φ1s|VH[%1s]− V LSDA

xc [%1s, 0]|φ1s〉
= − 13.6 eV .

Obviously, this simple approach leads to an agreement between the LSDA and the ex-
act results. Perdew and Zunger [13] transferred this approach to many-electron atoms
defining a self-interaction-corrected energy functional that reads as:

Eapprox,SIC = Eapprox −
occ∑
α

{EH[%α] + Eapprox
xc [%α]} . (3.4)

Here, the LSDA energy functional is replaced by a more general expression Eapprox indi-
cating that the same can be done – in principle – for any approximative XC-potential that
solely depends on the single-particle charge density %(r) such as LDA or GGA. A varia-
tion of this SIC-functional again yields a set of effective single-particle wave functions{

−∇2 + V SIC
α,eff(r)

}
φSIC

α (r) = εSIC
α φSIC

α (r) , (3.5)
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with the effective potential:

V SIC
α,eff([%], r) = Veff([%], r)− {VH([%α], r) + V approx

xc ([%α, 0], r)} (3.6)

= Veff([%], r)− V SIC
α (r) . (3.7)

The SIC energy functional (3.4) and the SIC equations (3.5) constitute what will from now
on be referred to as the PZ-SIC approach. Apparently the state-dependence of the energy
functional directly results in a state-dependent effective potential V SIC

α,eff([%], r). Actually,
the variation of Eq. 3.4 is not as straightforward as in the usual Kohn-Sham case. For
instance, the calculated orbitals φSIC

α (r) are no longer strictly orthogonal. The introduction
of non-diagonal Lagrangian parameters can solve this problem but is neglected for the
sake of simplicity. A more detailed discussion of these and related difficulties with the
PZ-SIC approach will be given at a later stage of this work.
The effective potential Veff(r) within the L(S)DA or GGA vanishes for large r due to the
complete screening of the Coulomb potential of the nucleus. As the exchange-correlation
potential is only locally dependent on the charge density, it also goes to zero in the same
condition. The SIC potential V SIC

α (r), however, runs asymptotically as 2
r
, which translates

into a −2
r

tail of the effective SIC potential V SIC
α,eff([%], r). For the occupied states, this is

the correct asymptotic dependence of a single-particle potential.
As pointed out above, the SIC energy functional (3.4) results in an exact description of
the hydrogen atom. One has to keep the fact in mind that this only constitutes a heuristic
approximation for more general many-electron systems. Yet, the results of the respective
SIC calculations are highly convincing that this approximation is justified. As was pointed
out above, the deviation of LSDA results with regards to the total energy are in the order
of 5%. It turns out that the L(S)DA yields total-energy derived physical properties of
solids that are in good agreement with experimental results, for instance lattice constants
or bulk moduli (cf. Ref. [10] and references therein). These bonding characteristics are
intimately related to the charge density distribution and accordingly to the single-particle
wave functions. Consequently, these properties should only exhibit minimal changes after
inclusion of SIC. A respective comparison of the wave functions of free atoms indeed
shows that the changes are only minor. The total energy is typically lowered and deviates
by about 0.5% from experimental results. Due to the additional attractive potential the
electronic wave functions show a tendency to slightly localize with respect to the L(S)DA
reference.
In contrast, the spectrum of the associated Kohn-Sham eigenvalues is more significantly
altered. In Table 3.1, the atomic term values as resulting from non-spinpolarized LDA and
PZ-SIC calculations as well as experimentally determined ionization energies are shown
for the variety of chemical elements that will be addressed later in this work. The results
indicate that the interpretation of the eigenvalues as ionization energies of the free atoms
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non-spin-polarized spin-polarized Exp.
εLDA
α εSIC

α εLDA
α εSIC

α Eb
a

Alkali metals
Li 2s -2.90 -5.10 -3.13 -5.33 -5.39
Na 3s -2.82 -4.92 -3.02 -5.12 -5.14
K 4s -2.42 -4.06 -2.57 -4.21 -4.34

Alkaline earth metals
Be 2s -5.60 -9.03 -6.28 -9.71 -9.32
Mg 3s -4.79 -7.54 -5.30 -8.05 -7.65
Ca 4s -3.88 -5.95 -4.24 -6.31 -6.11
Sr 5s -3.64 -5.55 -3.96 -5.87 -5.69
Ba 6s -3.35 -5.02 -3.62 -5.29 -5.21

Metalloids
B 2s -9.39 -13.92 -10.32 -14.85
B 2p -3.72 -7.78 -3.97 -8.03 -8.30
Si 3s -10.88 -15.01 -11.59 -15.72
Si 3p -4.17 -7.36 -4.61 -7.80 -8.15

Non-metals
C 2s -13.65 -19.66 -14.78 -20.79
C 2p -5.42 -11.05 -6.19 -11.82 -11.26
N 2s -18.41 -25.06 -19.61 -26.26
N 2p -7.24 -13.47 -8.50 -14.24 -14.53
O 2s -23.74 -31.38 -25.03 -32.67
O 2p -9.20 -16.48 -6.50 -13.78 -13.62

Halogens
F 2s -29.63 -38.28 -30.99 -39.64
F 2p -11.29 -19.60 -9.78 -18.09 -17.42

afrom Ref. [37]

Table 3.1: Atomic term values (in eV) of the valence shell levels for various free atoms as re-
sulting from non-spinpolarized LDA and PZ-SIC calculations. For reference, spinpo-
larized values (see text for details) and the experimental ionization energies Eb for the
respective levels as given in Ref. [37] are listed, as well.
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is hugely more justified when PZ-SIC is applied. While pure L(S)DA eigenvalues exhibit
deviations of roughly 40% from experimental reference values, the inclusion of the PZ-
SIC improves the respective agreement massively. The spinpolarized eigenvalues given
in Table 3.1 result from adding the spin-polarization effect on the binding energies (from
∆SCF calculations) defined as δEspin = ELDA

b − ELSDA
b to the non-spinpolarized values.

3.3. Self-interaction corrections for solids: First
approaches

As was shown in the preceeding section, the PZ-SIC approach for atomic systems has
resulted in a significantly improved agreement between calculated atomic term values
and the ionization energies as determined experimentally for the free atoms. It has been
pointed out before that the treatment of solids within the framework of DFT-LDA is prob-
lematic with respect to the calculated electronic properties. In particular, the fundamental
band gap in semiconductors and insulators is often underestimated by about 50% when
being derived from the calculated Kohn-Sham eigenvalues. The success of the PZ-SIC
in atomic systems indicates that self-interaction errors in solids can conceptually be over-
come applying the very same PZ-SIC approach.
It has turned out, however, that such an approach is not straightforward but holds some
significant intricacies. As the respective corrections are state dependent a direct trans-
fer of the PZ-SIC approach to bulk solids is computationally very demanding. This stems
from the fact that the corrected energy functional (3.4) as proposed by Perdew and Zunger
lacks an invariance with respect to an unitary transformation of the occupied orbitals. This
has the most peculiar consequence that for the in principle infinitely extended Bloch wave
functions, the PZ-SIC vanishes. However, this does not imply that the DFT functional in
Eq. (1.7) is free of self-interaction errors in such a case. In literature, this is often dis-
cussed in the context of canonical and localized single particle orbitals [38]. The PZ-SIC
is heuristically defined for many-electron atoms and the respective canonical orbitals in
this case are localized so that both are identical. In periodic systems, however, canonical
orbitals are defined as the usual eigenstates of the Hamiltonian showing Bloch symmetry.
It can be rationalized that such orbitals do not fit to the original idea of the PZ-SIC in the
first place. So instead of treating the solid in terms of the canonical Bloch wave func-
tions, it might be more appropriate to switch over to a description of the respective wave
functions at least partially based on localized functions.
As the SIC functional (3.4) is not invariant with respect to a unitary transformation, not
only one but several local minima exist. The trivial one is the one belonging to the Bloch
functions and the resulting vanishing SIC, i.e. the DFT-LDA ground state is also – but not
exclusively – a minimum of the SIC functional. Besides the complementary case when
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all functions are Wannier-like, several mixed situations may exist, as well.
Svane and Gunnarsson [39] and later also Szotek, Temmerman, and Winter [40] devel-
oped a fully self-consistent SIC scheme within a Linear Muffin-Tin Orbital (LMTO) im-
plementation and applied it to transition metals. In view of the variational procedure,
they argued that the solution leading to the lowest local minium of the SIC energy func-
tional is the true SIC solution. However, when this turns out to be one of the mixed
localized-delocalized solutions mentioned above, several interpretational problems (size-
consistency, sphericalization) arise that have been discussed in Ref. [41].
The usual choice for localized functions within a crystal are Wannier functions wn,R

which are periodic within a Born-von-Karmann unit cell

wn,R(r) = wn,0(r−R) (3.8)

and can in principle be constructed from the Bloch eigenfunctions ψn,k via a unitary
transformation

wn,R(r) =
1

NBvK

∑
k

ψn,k(r)e
−ikR . (3.9)

However, the Bloch orbitals themselves are only uniquely defined except from a phase
factor. This can be chosen for each band n and each k to define a new linear combination
of the eigenstates

ψ̃n,k(r) =
∑
m

ψm,k(r)U
(k)
mn , (3.10)

which leaves the many-particle wave function unchanged. If one considers this degree of
freedom, the transformation of Bloch functions to Wannier functions reads

wn,R =
1

NBvK

∑
k

∑
m

ψn,k(r)e
−ikRU (k)

mn =:
1

NBvK

∑
k

∑
m

ψn,k(r)Ũ
(k)
mn . (3.11)

Eq. (3.11) again constitutes an unitary transformation Ũ
(k)

whose actual form is subject
to physical motivation. It should be stressed that such a transformation leaves the physical
properties of the DFT functional, i.e. the ground state properties, unaffected.
Heaton et al. [42] have been the first to apply a Wannier-function based scheme to the SIC
functional in Eq. (3.4). They defined the unitary transformation as the one yielding the
variational minimum of that functional. The approach, however, was practically based
on approximative Wannier functions after introducing a unified Hamiltonian by means
of band projections. Nevertheless, considerable improvements of the calculated band
structures could be achieved for solid Ar, LiCl and LiF [43].
Very often, the unitary transformation from Bloch to Wannier functions is chosen to min-
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imize the magnitude Ω, defined as

Ω =
∑

n

[
〈wn,0|r2|wn,0〉 − 〈wn,0|r|wn,0〉2

]
, (3.12)

which inversely quantifies the localization of the Wannier functions. Wannier functions
with minimal Ω are maximally localized and hence called maximally localized Wannier
functions (MLWF). Bylaska and coworkers [44] derived a self-consistent SIC scheme
based on MLWF and applied it to a number of oxide crystals (SiO2, Al2O3, TiO2) as well
as to covalently bonded Si and Ge. While the approach turned out to be conceptually
working, quantitative agreement with experimental data on the fundamental band gaps
of the oxides could only be achieved by substantially scaling the correction by a factor
of 0.4. For silicon and germanium, this still led to an overcorrection as the band gaps
resulted as 2.3 eV (Si, Exp: 1.2 eV) and 1.2 eV (Ge, Exp: 0.8 eV), respectively.
More recently, Stengel and Spaldin [38] also implemented a fully self-consistent SIC
scheme for solids based on Wannier functions. In contrast to Bylaska et al., however,
they returned to the original idea of Heaton and coworkers with regard to the choice of
the unitary transformation. It was found as well that such an approach massively over-
corrects the band gaps in the case of Silicon (4.5 eV) and MgO (11.6 eV). This is in line
with the results obtained in Ref. [44] and corroborates the idea that a scaling of the PZ-
SIC, probably connected to dielectric screening, is necessary in solids.

3.4. Self-interaction-corrected pseudopotentials

Basically all of the aforementioned studies point to two significant properties of the PZ-
SIC applied to solids, namely that the SIC is highly localized and that a scaling, i.e. a
weakening, of the PZ-SIC is necessary.
Based on these findings, a simplified approach to SIC in solids shall be scrutinized in this
work. The idea is best rationalized within the framework of the Linear Combination of
Atomic Orbitals (LCAO). In Fig. 3.1 the formation of energy bands in a polar sp3-bonded
solid is presented schematically. At first isolated atoms with uniquely defined atomic s
and p levels with the energies εs and εp exist independently, e.g. at a sufficiently large mu-
tual distance of the atoms. The first step towards energy bands in a solid is the formation
of sp3 hybrids, which are a linear combination of the atomic orbitals and yield the energy
εsp3 = (εs + 3εp)/4. As the solid is supposed to be polar, the hybrid energy of the cation
εcsp3 (red) is higher than the respective energy of the anion hybrid εasp3 (blue). Their energy
difference is twice the so called hybrid polar energy 2Ep = εcsp3 − εasp3 . Now, when two
atoms with such hybrids are brought together, they form bonding and antibonding orbitals
as in molecular bonds. The energy separation now amounts to 2Emb = 2

√
E2

p + E2
c ,
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Figure 3.1: Schematic transformation of atomic orbitals to band states in a sp3 bonded solid.

where Ec is the hybrid covalent energy, which can be approximated as only a function of
the bond lengths d according toEc = 4.37~/(md2). When more of these molecular bonds
are combined to a crystal, the formation of bands is determined by the magnitude of the
metallic energy, which defines the interaction between different hybrids and is a function
of the atomic energies of the involved atoms. Certainly, this is a very simplified model and
a more detailed derivation of the respective energies and a deeper discussion of the band
formation is found in Ref. [45]. Still, in spite of its simplicity, this models very nicely
illustrates that basically the nature of the electronic structure of solids can be traced back
to the respective energy spectrum of the constituting isolated atoms. As explained previ-
ously DFT calculations for solids are often performed using ionic pseudopotentials that
reproduce the LDA eigenvalues of the full atomic calculation for the valence electrons.
These atomic eigenvalues do not agree with experimental reference data (see Sec. 3.2) and
consequently, the energy spectrum of the constituting atoms that enters the calculation of
the properties of solids at the first step is incorrect. It is not surprising that under such
conditions, the calculated properties show the same systematic errors as those determined
for the atoms.
This finding leads one to expect that the introduction of atomic and hence localized self-
interaction corrections into nonlocal, norm-conserving pseudopotentials will approximate
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the results of full SIC calculations at least to a significant extent. The idea of incorporating
corrections for self-interaction approximately has previously been implemented by vari-
ous groups in different approaches. First, Rieger and Vogl [14] have reported respective
calculations for bulk Si, Ge, Sn and GaAs. While the authors found significant effects
in the description of strongly bound core levels, improvements obtained for the gaps of
these s, p bonded semiconductors have only been marginal. Later on, Vogel and cowork-
ers [16–18] have successfully applied an alternative approach to II-VI semiconductors
and group-III nitrides accounting for self-interaction and relaxation corrections (SIRC)
in a solid by modified atomic SIC and SIRC pseudopotentials. In the latter work [18],
the relaxation corrections turned out to be of particular importance for the semi-core d-
bands in these compounds. Inspired by this previous work, Filippetti and Spaldin [19]
have more recently extended and modified the approach and applied it not only to a II-VI
compound and a group-III nitride but also to a number of transition metal and manganese
oxides. Their pseudo-SIC approach turned out to work satisfyingly for the latter materi-
als, as well. The materials, studied by Vogel et al. [16–18] and Filippetti and Spaldin [19]
are all characterized by localized semi-core d-states on which SIC (and SIRC) have a very
pronounced effect.
In the following, the procedure of constructing self-interaction-corrected pseudopoten-
tials (SICPP) is demonstrated for the ionic compound semiconductor silicon carbide as
a prototype. Since SiC is a s, p bonded semiconductor and does not have highly local-
ized semi-core d-states, the application of SICPP to this kind of material cannot a priori
be expected to yield an improved description of the electronic properties of a variety of
SiC polytypes. The results will hence also assist in assessing the usefulness of these
self-interaction-corrected pseudopotentials in more general terms2.
In the following construction and first exemplary application of SIC pseudopotentials 3C-
SiC is used as a reference. This cubic modification of SiC crystallizes in the zinc-blende
structure, with a lattice constant of 4.36 Å. A standard LDA calculation using the non-
local, norm-conserving ab-initio pseudopotentials as described in Sec. 2.2 is performed
with a basis set of Gaussian orbitals with the decay constants of 0.18, 0.50, 1.00 and 0.25,
1.00, 2.86 (in atomic units) for Si and C, respectively. The obtained standard LDA band
structure is shown in Fig. 3.2 in direct comparison with a number of experimental data
points. It exhibits a heteropolar or ionic band gap between the lowest C 2s-derived band
and the three higher s, p-like valence bands as is typical for an ionic compound semicon-
ductor. The total width of the LDA valence bands is 15.29 eV. 3C-SiC has an indirect
optical gap between the Γ- and the X-point. The calculated LDA gap energy of 1.29 eV
underestimates the experimental value [46] of 2.42 eV by about 45%, as is typical for
standard LDA. In addition, the calculated conduction bands show significant k-dependent

2Relaxation corrections have only a very minor influence on the band structure of the polytypes and
have been ignored, therefore, for simplicity of the approach.
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Figure 3.2: LDA band structure of 3C-SiC
along high-symmetry lines of the
Brillouin zone. The dashed line
indicates the experimental gap
of 2.42 eV [46]. Open circles
show wave-vector-resolved pho-
toemission data from Ref. [47].
The full dots are derived from
optical data. For the respective
references, see Table 3.3.
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deviations from the data points. Presently there are no experimental data available in the
literature on the low-lying C 2s band.
The LDA shortcomings of the band structure in Fig. 3.2 occur in spite of the fact that the
employed standard pseudopotentials reproduce by construction the atomic all-electron
LDA term values exactly as is shown in Table 3.2, where both the all-electron and the
pseudopotential eigenvalues are given. As was discussed before, if one interprets the
eigenvalues εLDA

α as excitation energies, it becomes obvious that they deviate strongly
by some 50% from the experimental data. In particular, the measured energy difference
between the C 2p and Si 3p term values of 3.2 eV is strongly underestimated by the re-
spective energy difference of the LDA term values amounting to 1.2 eV, only.
Within the pseudopotential framework the orbital-dependent self-interaction corrected ef-
fective potential as given in Eq. (3.7) reads

V SIC
α,eff([%], [%α], r) = V ps

α + VH([%], r) + V LDA
xc ([%], r) + V SIC

α ([%α], r) (3.13)

and
V SIC

α ([%α], r) = −VH([%α], r)− V LDA
xc ([%α], r) . (3.14)

Here % and %α are the atomic valence and orbital charge densities, respectively. The so-
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Eexp
α εae,LDA

α εps,LDA
α εps,SIC

α ∆εα

C 2s — -13.7 -13.7 -19.7 -6.0
C 2p -11.3a -5.4 -5.4 -11.1 -5.7
Si 3s — -10.9 -10.9 -15.0 -4.1
Si 3p -8.1a -4.2 -4.2 -7.4 -3.2

afrom Ref. [48]

Table 3.2: Atomic term values (in eV) for C and Si atoms as resulting from non-spinpolarized
LDA and SIC calculations. For reference both the all-electron and pseudopotential
term values resulting in LDA are shown, as well as the energy shifts ∆εα = ε

ps,SIC
α −

ε
ps,LDA
α of the eigenvalues due to self-interaction correction.

lution of Eq. (3.5) for Si and C pseudoatoms yields the SIC term values εps,SIC
α given in

Table 3.2. While there is no exact agreement between the SIC term values and the experi-
mental ionization energies, the deviations from the latter have been reduced dramatically.
For example, the energy difference between the C 2p and Si 3p term values resulting from
the SIC calculation as 3.7 eV is in much closer agreement with the experimental value
of 3.2 eV than the energy difference between the respective LDA term values of 1.2 eV.
Exact agreement was not to be expected, anyway, since Eq. (3.5) is solved without includ-
ing spin polarization because it is insignificant for the SiC solid, to be addressed below.
Comparing the term values resulting from the all-electron or pseudopotential LDA cal-
culations with those resulting from the pseudopotential SIC calculations, one first notes
a pronounced absolute shift of the SIC term values with respect to the LDA term values.
Much more importantly, however, the term values resulting from the SIC calculations
show prominent relative shifts with respect to one another as compared to the LDA term
values. These have very significant bearing on the outcome of electronic structure calcu-
lations for solids since the atomic SIC term values of the interacting atoms in the solid
occur at largely different relative positions from the start, as compared to the respective
LDA term values. So the solid state interaction of the different atoms is strongly influ-
enced thereby giving rise to changes in the energy positions and dispersions of the bulk
bands.
The atomic SIC pseudopotentials for Si and C ions are defined according to Eq. (3.13) by

V ps,SIC
α ([%α], r) := V ps

α (r) + V SIC
α ([%α], r) . (3.15)

When such atomic self-interaction corrected pseudopotentials as in Eq. (3.15) are applied
to the 3C-SiC solid, a band structure as shown in Fig. 3.3 results. It is quite obvious
that this band structure is rather unphysical. Compared to the LDA band structure in
Fig. 3.2 the total valence band width is increased by about 10 eV, all band dispersions are
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3.4. Self-interaction-corrected pseudopotentials

Figure 3.3: Band structure of 3C-SiC along
high-symmetry lines of the Bril-
louin zone as resulting from un-
modified SIC. For further de-
tails, see caption of Fig. 3.2.
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significantly enlarged. The intricate features of the conduction bands are modified to the
worse, as well.
This strongly suggests that one has to modify the atomic SIC pseudopotentials of Eq.
(3.15) such that they can meaningfully be applied to solids. A fully detailed analysis
of the necessity for the modifications and conceptual details can be found in Refs. [17,
20]. The problems as evident in the band structure in Fig. 3.3 are intimately related to
the atomic characteristics of the used potentials. They feature an asymptotic −2/r tail
originating from the Coulomb potential V SIC

α ([%α], r). Such long-range tails cause an
unphysical overlap of the SIC potential contributions − which are introduced as truly
atomic properties in this approach, after all − from different atomic sites.
Another aspect that adds to the observed unphysical band structure in Fig. 3.3 is the
fact that in their present form, the corrective potentials V SIC

α ([%α], r) also induce self-
interaction corrections for all states which are derived from the occupied atomic levels.
This in particular includes the Si 3p level, which significantly contributes to conduction
band states in the bulk crystal. As such, these states are unoccupied and hence free of self-
interaction errors (see, e.g., Refs. [39–41, 49–53]). Transferring the atomic corrections to
the solid without further modifications leads to unphysical overlap of the self-interaction
corrections from different atomic sites on the one hand, and to a spurious correction of un-
occupied bands on the other hand. Apparently, the V SIC

α ([%α], r) need to be appropriately
modified before they can be used in solid state calculations.
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Figure 3.4: Illustration of the effect of the SIC modification procedure on the combined atomic
eigenvalue spectra of isolated silicon and carbon atoms.

In this work, the following two-step modification procedure to reduce the overlap of the
final correction potentials in the solid is employed. On the one hand, all correction poten-
tials are referred relative to the energetically highest atomic state of the atoms constituting
the solid. On the other hand, the remaining −2/r tails are cut off appropriately.
Fig. 3.4 illustrates the effects of this modification procedure on the combined term value
spectrum of silicon and carbon atoms. On the left, the spectrum resulting from the stan-
dard LDA calculation is shown. The energy difference between the Si 3p and C 2p levels
amounts to 1.2 eV only. In contrast, the difference of the experimental binding energies
is 3.2 eV, so the LDA spectrum is essentially incorrect. As has been shown above, a SIC
calculation shown in the middle leads to a significantly improved spectrum (if one ignores
spin-polarization effects). In the LCAO picture of Fig. 3.1, this improved energy spec-
trum should enter the calculation for the solid. Any modification to the SIC potentials
should conserve this improved spectrum and at the same time guarantee that the problems
with respect to the SIC overlap and the spurious correction of unoccupied bulk states are
avoided.
If one further assumes that the energetically highest atomic state, i.e. Si 3p in SiC, dom-
inantly contributes to these conduction bands (which turns out to be a good assumption
for a number of polar solids), one can rigidly shift all correction potentials by the same
value V0 : = εLDA

Si3p − εSIC
Si3p = 3.2 eV (see ∆εα for Si 3p in Table 3.2). Apparently, this does

not change the relative distances between the atomic SIC levels but reduces the overlap
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3.4. Self-interaction-corrected pseudopotentials

by reducing the strength of the final potentials in the solid substantially (see, e.g., Fig. 3
in Ref. [17]). By this modification, the influence of the Si 3p self-interaction correc-
tion is reduced to a large extent in accord with the fact that delocalized conduction-band
states themselves do not experience a significant self-interaction. The changes in the
band structure are predominantly brought about by the SIC contributions to the C 2s, C
2p and Si 3s pseudopotentials. The −2/r tails of the radial components of the correction
terms V SIC

α ([%α], r) are then cut off at suitable radii rα defined by the condition that the
pseudopotentials with the SIC contributions cut off at rα reproduce the atomic SIC term
values within 10−2 Ry. For the valence states of the Si and C atoms the above criterion
yields the radii 3.84 and 4.36 a.u. for C 2s and 2p, and 4.72 and 5.87 a.u. for Si 3s and
3p, respectively. The cut-off is actually achieved on a short length scale by multiplying
the correction terms with the smooth function f(xα)=exp(−x7

α) with xα=r/rα to avoid
problems in their Fourier representation.
The respectively modified self-interaction correction contributions can now be used in
the calculations for the solid. For the valence states of a given ion they are uniquely
specified by the angular momentum quantum number l. They can therefore be written
as V SIC

l (r) + V0 multiplied by the projector on the angular momentum eigenstates and
by the above cut-off function and can simply be added to the nonlocal part of the usual
pseudopotentials

V̂ ps,SIC = V̂ ps
loc + V̂ ps,SIC

nloc (3.16)

with

V̂ ps,SIC
nloc = V̂ ps

nloc + V̂ SIC
nloc

=
∑

l

∆V ps
l P̂l +

∑
l

∆V SIC
l P̂l

(3.17)

and
∆V SIC

l (r) = {V SIC
l (r) + V0}f(xl) (3.18)

with xl = r/rl ≡ r/rα.
The nonlocal SIC contributions to the ionic pseudopotentials can now be represented in
the fully separable Kleinman-Bylander form

V̂ SIC
nloc =

∑
l,m

|φSIC
l,m∆V SIC

l 〉〈φSIC
l,m∆V SIC

l |
〈φSIC

l,m|∆V SIC
l |φSIC

l,m〉
(3.19)

just as ordinary nonlocal pseudopotentials. The l,m values entering Eq. (3.19) are
uniquely defined by the orbital indices α for each ion.
The SIC pseudopotentials according to Eqs. (3.16)-(3.19) for the silicon carbide solid can
now readily be employed in a usual LDA code causing no additional computational effort
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Figure 3.5: SIC band structure of 3C-SiC
along high-symmetry lines of the
Brillouin zone. For further de-
tails, see caption of Fig. 3.2.

as compared to a standard LDA calculation3. Employing these pseudopotentials for Si
and C the SIC band structure shown in Fig. 3.5 is obtained. Compared to the LDA band
structure, the fundamental band gap has increased to 2.46 eV and is now in very gratifying
agreement with experiment. At the same time, the total width of the valence bands has
increased to 17.18 eV. The broadening of the SIC valence bands, as compared to the LDA
valence bands, mainly originates from the lowering of the C 2s band relative to the higher
s, p valence bands due to its stronger self-interaction correction, as already evidenced by
the ∆εα value in Table 3.2 which is largest for C 2s. The dispersion of the measured
valence bands along the Γ-X line is very well described. In particular, the energy of the
highest occupied X5v state, which is observed at -3.60 eV in experiment [55], is much
more accurately described in SIC than in standard LDA (cf. Fig. 3.2). Most importantly,
the SIC approach does not only yield a very good description of the valence bands and the
band gap but also a very accurate description of the experimental data for the conduction
bands.
In Table 3.3 a summary of band-structure energies for 3C-SiC resulting from LDA and

3From now on, if not explicity stated otherwise, the abbreviation SIC refers to the self-interaction-
corrected pseudopotential approach as has been presented above, for the sake of simplicity. Any formulation
like ”the SIC calculations yield” shall not imply any undue preference of this approach over another.
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3.4. Self-interaction-corrected pseudopotentials

3C LDA SIC QPR QPW Exp

Γ1v -15.29 -17.18 -16.44 -17.31 —
Γ15v 0.00 0.00 0.00 0.00 0.00
Γ1c 6.25 7.35 7.35 8.29 7.59a

Γ15c 7.10 8.45 8.35 9.09 8.74a

X1v -10.25 -10.96 -11.24 -11.82 —
X3v -7.79 -8.95 -8.64 -8.53 —
X5v -3.13 -3.55 -3.62 -3.49 -3.60b

X1c 1.29 2.46 2.34 2.59 2.42c

X3c 4.07 5.32 5.59 5.77 5.50b

L1v -11.72 -12.79 -12.75 -13.39 —
L1v -8.49 -9.58 -9.42 -9.39 —
L3v -1.04 -1.17 -1.21 -1.13 -1.16b

L1c 5.24 6.46 6.53 7.22 6.34d

L3c 7.07 8.41 8.57 8.94 8.50b

afrom Ref. [54]
bfrom Ref. [55]
cfrom Ref. [46]
dfrom Ref. [56]

Table 3.3: Calculated band-structure energies (in eV) at high-symmetry points for 3C-SiC in com-
parison with the results of quasiparticle calculations by Rohlfing et al. [7] (QPR) and
Wenzien et al. [8] (QPW) and experiment.

SIC calculations is given, as well as theoretical results from two different GWA calcula-
tions [7, 8] and experimental results [46, 54–56] for 3C-SiC. The LDA results show the
typical shortcomings discussed above underestimating all conduction-band energies con-
siderably. The SIC results are in very good agreement with the majority of the experimen-
tal data. The LDA band-gap problem seems to have largely been overcome by including
SIC, at least in this case of 3C-SiC. The overall width of the valence bands resulting from
the SIC calculation is larger than that resulting from the GWA calculations of Rohlfing et
al. [7] but is close to that in the GWA results of Wenzien et al. [8]. To date there are no
experimental data on the total valence band width to compare with. Comparing the GWA
results of Wenzien et al. [8] with the SIC results, the GWA results from Ref. [7] and the
experimental data it appears that the former band-structure energies result in the upper
conduction bands significantly higher than all other values.
To further evidence the above difference, critical point transition energies as resulting
from the different calculations in comparison with experimental data are summarized in
Table 3.4. As is most obvious, the LDA values fall far short of all measured transition
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3C LDA SIC QPR QPW Expa Expb

Γ1c − Γ15v 6.25 7.35 7.35 8.29 7.59 7.4
Γ15c − Γ15v 7.10 8.45 8.35 9.09 8.74 9.0±0.2
X1c − X5v 4.42 6.05 5.96 6.08 6.02 5.8
X3c − X5v 7.21 8.91 9.21 9.26 9.10 8.3±0.1
L1c − L3v 6.29 7.63 7.74 8.35 7.50 7.5
L3c − L3v 8.11 9.58 9.78 10.07 9.66 9.4

aderived from the experimental data in Table 3.3
bfrom Ref. [56]

Table 3.4: Calculated critical point transition energies (in eV) in 3C-SiC in comparison with re-
spective results of quasiparticle calculations by Rohlfing et al. [7] (QPR) and Wenzien
et al. [8] (QPW) and with various values derived from experimental data.

energies due to the LDA band-gap problem. On the contrary, most of the SIC results and
the quasiparticle results from Ref. [7] are in very good accord with the experimental data.
The quasiparticle results from Ref. [8] overestimate the transition energies for the reason
mentioned above whenever final states in the higher conduction bands are involved.

Self-interaction-corrected structural properties: Total Energy

In order to judge the usefulness of the pseudopotentials, it is vital to check whether they
yield reasonable results not only for the electronic structure but also for structural pa-
rameters, like the lattice constant or the bulk modulus. To determine these parameters
one has to calculate the total energy of the system which is a ground-state property. The
SIC pseudopotentials allow for an accurate description of the occupied valence bands, as
noted above, and should lead to very good total energies, therefore. In the framework of
pseudopotential theory the total energy within the full SIC-LDA approach [see Eq. (3.4)]
can be written as:

ESIC =
occ∑
α

εSIC
α + ∆E1 + ∆E2 + Eion , (3.20)

with

∆E1 =

∫ (
− 1

2
VH([%̃], r) + εLDA

xc ([%̃], r)− V LDA
xc ([%̃], r)

)
%̃(r) d3r (3.21)
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and

∆E2 =
occ∑
α

∫ (1

2
VH([%̃α], r)− εLDA

xc ([%̃α], r) + V LDA
xc ([%̃α], r)

)
%̃α(r) d3r . (3.22)

Here, %̃ and %̃α are the valence and orbital charge densities in the solid, respectively, and
Eion is the ion-ion interaction energy. The terms ∆E1+∆E2 account for double counting
that occurs when the SIC eigenvalues εSIC

α are simply summed up. The term ∆E1 is the
usual term accounting for double counting within standard LDA.
In order to evaluate the term ∆E2, it can be rewritten as

∆E2 =
occ∑
α

∫ (
VH([%̃α], r) + V LDA

xc ([%̃α], r)
)
%̃α(r) d3r

−
occ∑
α

∫ (
1

2
VH([%̃α], r) + εLDA

xc ([%̃α], r)

)
%̃α(r) d3r .

(3.23)

Except for the sign, the term in parentheses in the first line is the solid state analog to the
SIC contribution in the atomic effective potential of the Kohn-Sham equations as defined
in Eq. (3.14) while the integral in the second line is the Hartree exchange-correlation
energy EHXC[%̃α] of the orbital charge density %̃α. ∆E2 then reads

∆E2 = −
occ∑
α

∫
V SIC

α ([%̃α], r)%̃α(r) d3r −
occ∑
α

EHXC[%̃α] . (3.24)

In the SIC pseudopotential approach, only the valence charge densities %̃(r) are calculated
for the solid by solving the Kohn-Sham-Equations but not the orbital charge densities %̃α.
Therefore, as in the construction of the SIC pseudopotentials, one resorts to the modified
SIC pseudopotentials ∆V SIC

α as defined in Eq. (3.18) and EHXC as functions of the atomic
charge densities %α and approximates ∆E2 correspondingly. Projecting the solid-state
wave functions onto the localized atomic one-particle orbitals φSIC

α , ∆E2 can be approxi-
mated by [17]

∆E2 ≈ −
∑
n,k

〈
ψn,k

∣∣∣V̂ SIC
nloc

∣∣∣ψn,k

〉
−

occ∑
α

EHXC[%α] (3.25)

with V̂ SIC
nloc according to Eq. (3.17).

EHXC[%α] is then an atomic property which is constant in the solid and drops out when
derivatives of the total energy are calculated.
Using Eq. (3.20) with the above approximation for ∆E2 it is possible to evaluate the total
energy of the investigated systems for a number of unit cell volumes around its minimum
and determine the lattice constants and bulk moduli.
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LDA SIC Exp

3C a 4.30 4.35 4.36
B 2.32 2.22 2.24

2H a 3.04 3.07 3.08
c 4.99 5.04 5.05
B 2.33 2.24 2.23

4H a 3.04 3.07 3.07
c 9.95 10.06 10.05
B 2.34 2.23

6H a 3.04 3.07 3.07
c 14.92 15.07 15.08
B 2.33 2.24

Table 3.5: Calculated lattice con-
stants a and c (in Å) and
bulk moduli B (in Mbar)
of the four investigated
SiC polytypes in compari-
son with experiment [57].

3.5. Structural properties of cubic and hexagonal
bulk silicon carbide

Structural parameters of solids such as lattice constants or bulk moduli usually result in
good agreement with experiment from LDA calculations. Lattice constants are under-
estimated in the order of 1% and bulk moduli are overestimated often by a somewhat
larger percentage. In general, SIC potentials are attractive causing the electrons to be
stronger localized around the atomic nuclei. This gives rise to an increased screening of
the atomic nuclei leading to an increase in the lattice constants and a decrease in the bulk
moduli. Therefore one can expect these quantities to result from this approach in even
better agreement with the data than from usual LDA calculations. For comparison these
quantities have also been calculated within standard LDA.
The results for the cubic and hexagonal 3C, 2H, 4H and 6H polytypes are summarized
in Table 3.5. The agreement of the structure parameters with the experimental values
is excellent. The lattice constants are underestimated by only 0.3% , at most, while the
bulk modulus is underestimated by 0.9% for 3C-SiC and overestimated by 0.4% for 2H-
SiC. The agreement of the SIC results with experiment is significantly better than that
of the standard LDA results which underestimate the lattice constants up to 1.4% and
overestimate the bulk moduli up to 4.5%. The lattice constants and bulk moduli thus
result from the SIC calculations about one percent larger and about five percent smaller,
respectively, than from LDA. This is due to a stronger increase in the localization of the
carbon states, as compared to the Si states, by SIC since the former experience a stronger
downward shift in energy by self-interaction correction than the latter (cf. the ∆εα values
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Figure 3.6: Stacking sequences in hexagonal polytypes of SiC in [0001] direction. Side views of
six Si-C double layers are shown in each case for better comparison.

in Table 3.2 and the resulting increase in valence-band width within SIC as evidenced in
Fig. 3.5 and in the third column of Table 3.3). This stronger localization of the C states,
as compared to the Si states, gives rise to a weakening of the Si-C bonds which leads
to larger lattice constants, as compared to LDA. By the same token, the lattice becomes
’weaker’ so that the bulk moduli show a decrease in the SIC results, as compared to LDA.
This behavior was also observed in other approximate SIC results [14] as well as in the
results of full SIC calculations [51, 53].

3.6. Electronic structure of 2H-, 4H-, and 6H-SiC

As was discussed before, the use of self-interaction-corrected pseudopotentials in a cal-
culation of the band structure for cubic 3C-SiC has turned out gratifying agreement be-
tween theoretical and experimental data. Now the question arises whether the very same
SIC pseudopotentials work equally well for the band structure of other SiC lattices. To
this end, the most common hexagonal 2H, 4H and 6H polytypes are considered in the
following.
Fig. 3.6 shows a two-dimensional representation of the stacking sequences of these three
hexagonal polytypes along the [0001] direction. To ease the comparison, all plots have
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Figure 3.7: Band structures of the hexagonal 2H-, 4H- and 6H-SiC polytypes as resulting from
SIC calculations. The respective experimental energy gaps are indicated for reference.

LDA SIC QPR QPW Exp

3C 1.29 2.46 2.34 2.59 2.42a

2H 2.12 3.33 3.68 3.33b

4H 2.14 3.30 3.56 3.26b

6H 1.94 3.08 3.25 3.02b

afrom Ref. [46]
bfrom Ref. [57]

Table 3.6: Calculated band-gap energies (in
eV) of the four investigated SiC
polytypes in comparison with the
results of quasiparticle calcula-
tions by Rohlfing et al. [7] (QPR)
and Wenzien et al. [8] (QPW) and
with experiment.

been extended along the [0001] direction to six Si-C double layers, with the actual lengths
of the unit cell marked by the hexagonal lattice constants c. The purely hexagonal 2H-
SiC exhibits a stacking sequence ABAB, in contrast to ABCB for 4H-SiC and ABCACB
for 6H-SiC. Electronic properties are being influenced by the stacking sequence and the
related hexagonality of the crystals. The 2H polytype has the largest and the 6H polytype
has the smallest hexagonality while the cubic 3C-SiC has no hexagonality at all. Choyke
et al. [58] have found in experiment that there is a linear dependence between the width
of the fundamental gap and the hexagonality of the polytypes. The purely hexagonal
2H-SiC has the largest while cubic 3C-SiC has the smallest energy gap. The position of
the conduction-band minimum in k-space and the band-splitting at the top of the valence
bands are affected by hexagonality, as well.
The experimental lattice constants of 2H-SiC are a = 3.08 Å and c = 5.05 Å [57]. The
calculated lattice constants (see Table 3.5) are very close to these values. The calculated
band gap energies for 2H-SiC, as resulting from LDA and SIC calculations are compared
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in Table 3.6 with the results of quasiparticle calculations and with experiment. The elec-
tronic band structure of 2H-SiC as resulting from SIC calculations is shown in the left
panel of Fig. 3.7. Respective band-structure energies resulting from the same LDA and
SIC calculations are summarized in Table 3.7 in comparison with the GWA results from
Ref. [8]. Experimental data for 2H-SiC are very scarce, the only known quantity seems
to be the width of the fundamental gap of 3.33 eV [57], with the minimum of the con-
duction bands at the K-point of the hexagonal Brillouin zone. The band gap of 3.33 eV
calculated with the SIC pseudopotentials happens to exactly agree with the experimental
value showing a very significant improvement as compared to the LDA result of 2.12 eV.
Since there are four ions per unit cell in 2H-SiC the band structure features eight valence
bands. Contrary to cubic 3C-SiC, for which the upper valence band is triply degenerate
at the Γ-point, hexagonal 2H-SiC features a splitting of the top of the valence bands by
0.14 eV. This is attributed to the hexagonal crystal field which gives rise to doubly degen-
erate states with px- and py-symmetry and a single pz-like state. The valence-band width
of 17.35 eV, resulting within SIC, is 1.9 eV larger than that resulting in LDA. Note that it
is close to the valence band width of 17.18 eV resulting from SIC calculations for 3C-SiC.
This is, like in the case of 3C-SiC, mostly caused by a strong lowering of the C 2s band
which is most noticeably around the Γ-point. Due to the lack of further experimental data
the SIC results can only be compared with the GWA results of Ref. [8]. The agreement
of the SIC results with the GWA results is quite good, in particular for band-structure en-
ergies around the fundamental gap and with respect to the valence-band width. But also
in this case the GWA calculations yield higher band-structure energies further up in the
conduction bands as was already the case for 3C-SiC (see Table 3.3).
Similarly satisfying results follow for 4H-SiC, which crystallizes with the hexagonal lat-
tice constants [57] a = 3.07 Å and c = 10.05 Å. Also in this case the calculated lattice
constants in this work are in excellent agreement with these values (see Table 3.5). The
gap energies resulting from LDA and SIC calculations are compared to GWA results [8]
and experiment in Table 3.6. The SIC band structure is shown in the middle panel of
Fig. 3.7 and respective band-structure energies are compared with GWA results from
Ref. [8] in Table 3.7. Also for this polytype the band gap of 3.30 eV, calculated with
the SIC pseudopotentials, is in very good agreement with the experimental gap of 3.26 eV
(see also Table 3.6). The LDA gap of only 2.14 eV strongly underestimates the measured
gap, as usual. In 4H-SiC there are eight inequivalent ions per unit cell so that sixteen va-
lence bands result. They are separated from the conduction bands by the fundamental gap
which occurs in this case between the Γ- andM -points. The splitting of the upper valence
bands at the Γ-point by 0.08 eV is smaller than in 2H-SiC. This is not surprising since 4H-
SiC has a smaller hexagonality than 2H-SiC. Hence the crystal field is less pronounced.
The total valence-band width of 4H-SiC results from SIC calculations as 17.38 eV and
is very close to the respective value for the 2H polytype. As was the case for 2H-SiC,
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2H LDA SIC QPW

Γ1v -15.45 -17.35 -17.39
Γ6v 0.00 0.00 0.00
Γ1c 4.60 5.79 6.66

K2v -3.79 -4.22 -4.12
K2c 2.12 3.33 3.68

H3v -1.73 -1.93 -1.83
H3c 4.92 6.17 6.86

A5,6v -0.71 -0.77 -0.75
A1,3c 5.70 6.94 7.81

M4v -1.18 -1.30 -1.13
M1c 2.59 3.84 4.28

L1,2,3,4v -2.32 -2.59 -2.30
L1,3c 3.16 4.39 4.85

4H LDA SIC QPW

Γ1v -15.45 -17.38 -17.30
Γ6v 0.00 0.00 0.00
Γ1c 5.00 6.20 6.92

K2v -1.66 -1.86 -1.85
K2c 3.84 5.02 5.45

H3v -2.45 -2.72 -2.68
H3c 3.10 4.30 4.68

A5,6v -0.21 -0.22 -0.20
A1,3c 5.21 6.41 7.14

M4v -1.11 -1.24 -1.23
M1c 2.14 3.30 3.56

L1,2,3,4v -1.54 -1.71 -1.68
L1,3c 2.53 3.72 4.06

Table 3.7: Calculated band-structure energies (in eV) at high-symmetry points of the Brillouin
zone for 2H-SiC (left table) and 4H-SiC (right table) in comparison with the results of
quasiparticle calculations by Wenzien et al. [8] (QPW).

the SIC band-structure energies for 4H-SiC are in very gratifying agreement with most of
the GWA results of Ref. [8] near the gap-energy region. In the higher conduction bands
similar deviations as noted above for the 3C and 2H polytypes occur in this case, as well.
Finally, 6H-SiC is addressed. The measured hexagonal lattice constants are [57] a =

3.07 Å and c = 15.08 Å. The calculated lattice constants in this work are basically iden-
tical with these values (see Table 3.5). The band structure calculated using the SIC ap-
proach is shown in the right panel of Fig. 3.7 and a comparison of the calculated band-
structure energies with the GWA results of Ref. [8] is given in Table 3.8. As in the other
cases above, the band gap of 3.08 eV, calculated using the SIC approach, closely agrees
with the experimental value [57] of 3.02 eV (see also Table 3.6) while the respective LDA
gap of 1.94 eV is again much too small. In 6H-SiC there are twelve inequivalent ions
per unit cell so that twenty-four valence bands result. Their total width of 17.35 eV is
basically identical to those of the other two hexagonal polytypes. Due to the further re-
duced hexagonality of the crystal field, the Γ-point splitting of the upper valence bands
is only 0.06 eV and thus less pronounced than in both 2H- and 4H-SiC. The band struc-
ture of 6H-SiC has one particularly intriguing feature. Unlike the cases of the 2H and
4H polytypes, the exact position of the conduction-band minimum has been a matter of
dispute [8, 59, 60]. Standard LDA calculations yield the conduction-band minimum at a
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3.6. Electronic structure of 2H-, 4H-, and 6H-SiC

Table 3.8: Calculated band-structure
energies at high-symmetry
points of the Brillouin zone
for 6H-SiC (in eV) in com-
parison with the results of
quasiparticle calculations by
Wenzien et al. [8] (QPW).

6H LDA SIC QPW

Γ1v -15.42 -17.35 -17.28
Γ6v 0.00 0.00 0.00
Γ1c 5.10 6.30 6.95

K2v -2.06 -2.30 -2.31
K2c 3.35 4.54 4.88

H3v -2.26 -2.48 -2.49
H3c 3.54 4.71 5.06

A5,6v -0.10 -0.10 -0.09
A1,3c 5.17 6.37 7.02

M4v -1.09 -1.22 -1.40
M1c 1.94 3.08 3.25

L1,2,3,4v -1.30 -1.45 -1.63
L1,3c 1.98 3.15 3.36

k-point along the L-M line. The present SIC calculations, however, yield the minimum
at the M -point as in 4H-SiC, albeit that the lowest conduction band is very flat along the
L-M line. This might be viewed as an indication that it actually does not occur along the
L-M direction. Comparing the SIC results in Table 3.8 with the GWA results of Ref. [8]
very similar conclusions can be drawn as in the case of the 2H and 4H polytypes.
As noted above, there are no experimental data on the valence-band width of the 3C,
2H and 4H polytypes of SiC. For 6H-SiC, however, King et al. [61] have performed x-
ray photoemission spectroscopy measurements which are especially useful for assessing
the lower valence bands. In Fig. 3.8 the calculated density of states after Lorentzian
broadening of 0.5 eV is shown compared to the measured spectrum. One finds good
agreement for the peaks originating from the lowest C 2s band and the following C 2p
-Si 3s bands, in particular. From this agreement it can be inferred that the calculated
valence-band widths for all four polytypes seem to be realistic.
In summary, the SIC pseudopotentials turn out to yield very reliable band-structure ener-
gies also for all three considered hexagonal SiC polytypes. In particular, the band gaps
of all four polytypes considered resulting from the SIC calculations (see Table 3.6) are
in excellent agreement with experiment so that the usual LDA shortcomings in describ-
ing gap energies seem to be conquerable entirely at least for the SiC polytypes by taking
self-interaction corrections into account.
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Figure 3.8: Calculated density of
states (DOS) of 6H-
SiC as resulting from
a SIC calculation com-
pared to the XPS spec-
trum of Ref. [61].

3.7. Summary

In this chapter the origin of the “LDA problem” has been discussed as resulting from self-
interaction errors inherent in the local-density approximation. The atomic self-interaction
scheme based on the idea of Perdew and Zunger [13] has been presented as well as
subsequently developed attempts to apply this correction to the solid. In particular, the
method of approximately using the atomic SIC in solid calculations by constructing self-
interaction corrected pseudopotentials has been described and its effect exemplarily dis-
cussed for four bulk polytypes of silicon carbide. It turns out that this approach yields both
structural and electronic properties that are in much better agreement with experimental
reference than the results of LDA calculations. The calculated band gaps of 2.46 eV (3C),
3.33 eV (2H), 3.30 eV (4H), and 3.08 eV (6H) are within 2% of the experimental refer-
ence.
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Chapter 4.

Properties of (110) and (001)
surfaces of 3C-SiC

Silicon carbide (SiC) is a compound semiconductor of large fundamental interest and
high application potential [57, 62, 63]. Its cubic and hexagonal polytypes have wide
band gaps and a very high thermal stability making SiC especially suitable for high-
temperature, high-frequency, high-power, high-voltage and high-speed electronic devices
and sensors [64]. Additional characteristics of SiC are its chemical inertness and very high
hardness qualifying it as an especially attractive material to operate under harsh environ-
mental conditions [65]. Furthermore, SiC is one of the best bio-compatible materials,
very promising for biophysics applications [66–68].
Among the key issues for practical microelectronics devices are high quality SiC surfaces
with a low defect density. There exist many cubic or hexagonal SiC surfaces which exhibit
a wealth of reconstructions. Many of these have been studied in great detail both from a
fundamental as well as an applications point of view (for reviews, see Refs. [69–74]).
As was shown in Sec. 3.4 the SIC pseudopotentials are constructed based on the funda-
mental nature of the electronic structure of the bulk solid they are applied to. Surfaces
of bulk solids exhibit translational symmetry in only two instead of three dimensions, i.e.
only parallel to the surface. Phenomena like surface relaxation and reconstruction, as well
as possible adsorption of atoms or molecules can have significant influence on the surface
electronic structure leading to strong modifications compared to the bulk electronic struc-
ture. It can not a priori be expected that the SIC pseudopotentials as defined by Eq. (3.18)
yield similar improvements for such surface systems as they do for the bulk polytypes of
silicon carbide as shown in Sec. 3.6.
To scrutinize the applicability of the SIC pseudopotentials, the surfaces of silicon carbide
offer a wide variety of possible surface structures with unique physical properties. For
all polytypes there are polar surfaces with either anionic (C) or cationic (Si) surface ter-
minations and nonpolar ones, in which the outer surface layer equally consists of anions
and cations. These different surface types also differ in terms of their tendency to recon-
struct and their affinity to adsorption. In this section, some instructive examples of 3C-
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Figure 4.1: Basic geometric properties of the 3C-SiC(110)-(1x1) surface. The left panel shows
the position of the surface unit cell (red rectangle) within the bulk crystal. Positions
of carbon (silicon) atoms are indicated by black (ocher) filled circles. A schematic
top view on the ideal surface is given in the right panel. Large symbols identify atoms
within the top layer, small ones those located on the first subsurface layer. Solid and
dashed lines indicate intra- and interlayer bonds, respectively.

and 4H-SiC surfaces are chosen to study the effects of the SIC pseudopotentials on the
respective surface electronic structures. At first, the 3C-SiC(110) surface will be inves-
tigated as it retains many of the bulk features. The complexity of the surface structure
will then be increased considering two different reconstructions of the 3C-SiC(001) sur-
face, which feature characteristic formations of double- or triple-bonded carbon dimers.
The fact that these surfaces are already intensively discussed in the literature allows for a
suitable assessment of the effect of the SIC pseudopotentials.

4.1. The nonpolar 3C-SiC(110)-(1x1) surface

The first surface to which the SIC pseudopotentials are applied is the 3C-SiC(110)-(1×1)
surface. The atomic and electronic structure of this surface has already been treated on
an ab initio level in great detail, for instance in Refs. [75–77]. Especially Chapter 5 of
Ref. [76] contains a very detailed description of the various surface properties including
an exhaustive discussion of the surface relaxation properties with explicitly given atomic
coordinates. As an analysis of the effects of SIC on the calculated electronic structure is
the objective of this study, these properties will only be briefly summarized.
Figure 4.1 shows the basic atomic geometry of an (110)-(1×1) surface of a zinc blende
crystal. In the left panel the positioning of the surface unit cell within the bulk crystal is
indicated by the red rectangle (see caption of Fig. 4.1 for details). The surface is oriented
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4.1. The nonpolar 3C-SiC(110)-(1x1) surface

perpendicular to the [110] direction and consists of Si-C layers with a mutual distance of
a/2

√
2. As can be seen in the top view in the right panel of Fig. 4.1, each of these layers

contains one silicon and one carbon atom per unit cell giving rise to the nonpolarity of the
3C-SiC(110) surface. Each atom is two-fold coordinated within the layer it resides in and
exhibits one bond to the layers above and below, respectively. On the top layer, both atoms
form a kind of zigzag Si-C chain and lack one binding partner each. The broken bonds
give rise to two dangling-bonds per unit cell which feature prominently in the surface
electronic structure. Nonpolar (110) surfaces of ionic semiconductors that crystallize in
the zinc blende structure, like GaAs, InAs etc., show no reconstructions beyond (1×1)
based on the orientation of the broken surface bonds. It can safely be assumed that this
is also the case for 3C-SiC(110). Upon relaxation only atomic displacements parallel
to the [001] and [110] directions are noticed. The resulting relaxed geometry is usually
characterized by a tilting of the Si-C chains with respect to the surface layer of the ideal
structure together with a reduction of the Si-C bond length.
The calculations in this work are performed using a slab consisting of eight Si-C layers.
The broken bonds at the bottom of the slab are saturated by hydrogen atoms. The positions
of the atoms in the topmost three layers of the slab are allowed to relax in the LDA
calculation. An extended set of three shells of Gaussian orbitals is used for the atoms
in the first two layers (decay constants in atomic units: 0.18, 0.50, and 1.00 for Si; 0.25,
1.00, and 2.86 for C) in order to suitably represent the exponential decay of surface states
into vacuum. For the remaining layers two shells per atom (0.20 and 0.60 for Si; 0.35 and
1.70 for C; 0.35 and 2.00 for H) are sufficient. Brillouin zone integrations are performed
using 12 special k-points in the irreducible wedge of the surface Brillouin zone, generated
by the prescription of Monkhorst and Pack [30].
The respective electronic structure of the relaxed 3C-SiC(110)-(1×1) surface as resulting
from LDA and SIC calculations is shown in Fig. 4.2. The projection of the bulk band
structure on the surface Brillouin zone is indicated by the grey shaded areas. In both plots
bands that can uniquely be assigned to the surface carbon (silicon) atom via a Mulliken
analysis are marked by black circles (ocher triangles). Only the energy region around
the projected bulk band gap is shown in order to highlight the effects of the SIC on this
particular property. The reader is referred to Fig. 5.4(b) in Ref. [76] for a plot of the full
surface band structure. The surface electronic structure as resulting from LDA shown
in the left panel of Fig. 4.2 most prominently features two dangling-bond derived bands
residing within the projected bulk gap. The occupied one, labeled as A5, originates from
the surface carbon atom, while the unoccupied one (C3) can be assigned to the respective
silicon atom. Both bands are separated by an indirect surface band gap between the
M - (VBM) and X-points (CBM) of 0.25 eV. The assignment of the two bands to the
dangling-bonds of the surface Si and C atoms is further corroborated by respective plots
of the state-resolved charge densities shown in Fig. 4.3. At the M -point of the surface
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Figure 4.2: Electronic structure of the relaxed 3C-SiC(110)-(1×1) surface as resulting from LDA
(left panel) and SIC (right panel) calculations, respectively. Grey shaded regions in-
dicate the projected bulk band structure. Bands that can uniquely be assigned to the
top layer silicon (carbon) atom are marked by ocher triangles (black circles).
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Figure 4.3: State-resolved charge density contours (LDA, in 10−2 a−3
B ) of the occupied A5 and

unoccupied C3 states at the M point of the surface Brillouin zone plotted in a plane
containing the Si-C surface bond as indicated in the right panel of Fig. 4.1. For the
definition of symbols see caption of Fig. 4.1.
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4.1. The nonpolar 3C-SiC(110)-(1x1) surface

Table 4.1: Fundamental bulk and surface gaps (in eV)
of 3C-SiC and its (110)-(1x1) surface as re-
sulting from LDA and SIC calculations, re-
spectively. ∆ is the SIC induced opening of
the gaps.

3C-SiC LDA SIC ∆

bulk 1.29 2.46 1.17
(110)-(1x1) 0.25 1.17 0.92

Brillouin zone, the charge density of the A5 state is predominantly localized at the carbon
atom of the topmost layer. In particular, the strong maximum of the charge density is
pointing into the vacuum which is typical for a dangling-bond state. It should be noted
that there are contributions to the charge density from third-layer carbon atoms, as well.
For the C3 state, one in principle finds a largely similar situation. Most of the charge
density is localized at the surface silicon atom while additional contributions are registered
from subsurface layers. It should be noted at this point that the maximum value of the
charge density of the C3 state is roughly half of the respective value of the A5 state.
However, one should not be misled to think that less total charge is located at the silicon
atom. The respective C3 state is more extended parallel to the surface compared to the A5

state. This fact also manifests itself in the stronger dispersion of the associated band. A
combination of theoretical and experimental data point to the fact that the charge transfer
between anion and cation on the (110) surfaces of binary compound semiconductors that
crystallize in zinc blende structure is largely similar to the one in the bulk crystal [78].
As a consequence, one can expect the SIC pseudopotentials that work well in the 3C-SiC
bulk solid to yield qualitatively and quantitatively similar effects for 3C-SiC(110).
The surface band structure of 3C-SiC(110) as resulting from a SIC calculation is shown
in the right panel of Fig. 4.2 for easy comparison to the LDA result discussed above. The
basic features of the band structure remain unchanged by the use of the SIC pseudopoten-
tials. Obviously, the projected bulk band gap opens up according to the effects known for
the bulk crystal. The fundamental surface band gap opens up in a similar fashion and is
increased to 1.17 eV. The indirect nature of this gap is conserved as well as the dispersion
of the bands. Some other features are more intricate.
In Table 4.1 the gap energies of bulk 3C-SiC and the 3C-SiC(110)-(1×1) surface are
compared. As mentioned before, the surface band gap opens up from 0.25 eV in LDA
to 1.17 eV in SIC by ∆ = 0.92 eV. The opening of the band gap in the bulk crystal is
slightly larger, amounting to 1.17 eV. The fact that the SIC induced band gap increase is
slightly smaller at the surface than in the bulk can also be seen in the band structure plot of
Fig. 4.2. While in the LDA calculation, the C3 band runs close to the edge of the projected
bulk conduction bands along the Γ-X line, there is an easily visible distance between the
two resulting in SIC.
All in all, however, the results have shown that for a surface in which the fundamental
nature of the surface band structure is largely equivalent to that of the bulk crystal, the use
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Figure 4.4: Orientation of the (001)-(1×1)
surface in the 3C-SiC bulk crys-
tal. Grey (ocher) filled cir-
cles symbolize carbon (silicon)
atoms, the red plane indicates the
surface unit cell.

SIC pseudopotentials yields a qualitatively and quantitatively comparable opening of the
band gaps. Experimental data or beyond-LDA calculations for this surface would enable
a more detailed comparison and assessment for the quantitative changes. Unfortunately,
no such data is available in the literature, to date.

4.2. The polar 3C-SiC(001) surface

In contrast to the previously analyzed nonpolar (110) surface of 3C-SiC for which no
higher reconstructions than (1×1) are found, the respective (001) surface holds far more
potential for reconstructions.
Figure 4.4 shows the basic orientation of this surface within the zinc blende bulk crystal.
Along the [001] direction the surface consists of alternating layers of silicon and carbon.
Depending on the nature of the topmost layer of the surface, one has to differentiate
between Si-terminated and C-terminated 3C-SiC(001) surfaces. In the following, the
latter shall be analyzed in more detail. The resulting polarity of the surface is not the
only significant difference between the (001) and (110) surfaces. As can be seen from
Fig. 4.4, the (1×1) unit cell (red shaded area) contains one carbon atom in the top layer
which is two-fold coordinated to the sublayer. The two broken bonds give rise to two
dangling-bonds. Unlike at 3C-SiC(110), the dangling-bonds on neighboring C atoms do
not point away from but towards each other, resulting in a comparatively high tendency
of the surface to reconstruct.
Possible reconstruction models for the C-terminated 3C-SiC(001) surface have been in-
tensively studied in theory and experiment (cf. Refs. [74, 76] and references therein for a
full account). For quite some time, the question of the optimal model for this surface has
stirred quite some controversy. Two models have been proposed that have been found to
be close in total energy. These models are schematically shown in a top view in Fig. 4.5.
The left panel shows the ideal surface with the square unit cell. The orientation of the
broken bonds at this surface intuitively leads to the (2×1) reconstruction in the Dimer
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4.2. The polar 3C-SiC(001) surface

ideal (2x1) DRM c(2x2) BDM

Figure 4.5: Top views of the ideal C-terminated 3C-SiC(001) surface (left panel) and the two
competing reconstruction models. The middle panel shows the (2×1) reconstruction
in the Dimer Row Model (DRM), the right panel the Bridging Dimer Model (BDM)
of the c(2×2) surface. Dark and light gray filled circles represent first and third layer
carbon atoms, respectively. The second layer silicon atoms are depicted by ocher
filled circles. Respective surface unit cells are indicated by the shaded tetragons.

Row Model (DRM) that is shown in the middle panel. It is characterized by the formation
of one double-bonded C=C dimer per unit cell, leading to a dimer row on the top layer
of the surface. This a very intuitive model as the formation of such a dimer occurs by
a bending of the C-Si bonds only and does not involve any bond breaking, which costs
energy. The c(2×2) reconstruction in the right panel of Fig. 4.5, on the contrary, fea-
tures one triple-bonded C≡C dimer per unit cell that resides in positions bridging second
layer silicon atoms. This model is hence referred to as Bridging Dimer Model (BDM). In
this case, the carbon dimers form a staggered pattern on the surface giving rise to a the
c(2×2) translational symmetry parallel to the surface. On the basis of a whole body of
experimental data and recent ab initio DFT calculations there is now general agreement
on the bridging-dimer model (BDM) of the 3C-SiC(001)-c(2×2) surface [74]. The sig-
nificant amount of research that has been done on this topic has resulted in theoretical and
experimental data in the literature to which the results of SIC calculations for the elec-
tronic structure of these surface models can be compared to. To explore the usefulness of
the SIC pseudopotentials for such reconstructed silicon carbide surfaces, their application
to both aforementioned models of the C-terminated 3C-SiC(001) surface is addressed in
the following. In particular, there is a quasiparticle surface band structure for the (2×1)
DRM, as well as angle-resolved photoelectron spectroscopy (ARPES) and angle-resolved
inverse photoelectron spectroscopy (ARIPES) data available for comparison in the case
of the c(2×2) BDM.
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Figure 4.6: Electronic band structure of the
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surface. Black circles (ocher
triangles) mark bands that can
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4.2.1. 3C-SiC(001)-(2x1) Dimer Row Model

At first, the most prominent characteristics of the electronic structure of the Dimer Row
Model of 3C-SiC(001)-(2×1) surface shall be discussed. The surface is modeled using
a slab consisting of nine atomic layers. The broken bonds at the bottom of the slab are
saturated by hydrogen atoms. Eight special k-points according to the prescription of
Monkhorst and Pack [30] are used for Brillouin zone integrations. The positions of atoms
in the upper three layers of the slab are allowed to relax.
Figure 4.6 shows the electronic band structure for the DRM as resulting from a standard
LDA calculation. Bands that can be attributed to the atoms of the carbon dimer (silicon
sublayer) are marked by black circles (ocher triangles). As in the case of the 3C-SiC(110)
surface discussed before, only the energetic region around the Fermi level is shown. For
a detailed discussion of the full band strcuture, the reader is referred to Chapter 6.2 of
Ref. [76].
Within the projected bulk band gap, three unique surface bands can be seen. From the
markings it is evident that they dominantly arise from carbon dimer states. The charge
density contours in Fig. 4.7 shed some more light on the physical characteristics of the
bands labeled as π, π∗, and P ′

5 in Fig. 4.6, respectively. It is quite evident that the two
former states at the K-point are associated to the bonding of the C=C dimer at the top
surface layer. They are formed as binding (π) and antibinding (π∗) linear combinations of
the free dangling-bonds at the ideal surface. The P ′

5 state, in contrast, is mainly derived
from the px- and py-orbitals of the surface carbon atoms and contributes to the binding of
the carbon dimer to the silicon layer on the substrate. It is apparent in Fig. 4.6 that the P ′

5

band overlaps energetically with the π∗ band leading to a metallic character of the surface
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Figure 4.7: Charge density contours (in 10−2 a−3
B ) of three selected states within the projected

bulk band gap of the 3C-SiC(001)-(2×1) surface. π and π∗ states at the K-point are
shown in a [100]-[001] plane containing the C=C dimer bond. A [010]-[001] plane is
chosen for the contours of the P ′

5 state at the Γ-point. Full [open] gray (ocher) circles
represent positions of carbon (silicon) atoms within [outside] the drawing pane.

resulting from the LDA calculation.
In Ref. [79], Sabisch and coworkers presented a quasiparticle band structure for this sur-
face as resulting from a GWA calculation. A reproduction of the result is shown in the
left panel of Fig. 4.8. Fundamentally, it turns out from this calculation that the surface
is semiconducting instead of metallic. There is an indirect surface gap from J to J ′ of
0.9 eV between the totally occupied P ′

5 state and the totally unoccupied π∗ state. The
energetic positions of the occupied bands relative to the projected bulk valence bands is
hardly affected compared to the LDA calculation. The projected bulk gap is enlarged by
approximately 1.2 eV due to the quasiparticle corrections. A comparable shift is found
for the π∗ state, resulting in the opening of the surface band gap.
This quasiparticle band structure is very helpful for the assessment of effects the SIC
pseudopotentials have on such surface systems. In the right panel of Fig. 4.8, the respec-
tive band structure for the surface at hand is shown as resulting from a SIC calculation.
While it is quite apparent that, naturally, the projected bulk band gap opens up in SIC in a
comparable fashion as in the GWA calculation, the surface remains metallic. The overlap
between the P ′

5 band and the π∗ band is still present mostly due to the π∗ band retaining
its position relative to the projected valence band. Obviously, the SIC pseudopotential
calculation fails to describe the electronic structure of the 3C-SiC(001)-(2×1) surface
accurately.
Now, the presentation of band structures as in Fig. 4.8 is often misleading. Aligning
the energy zero to the top of the valence band maximum creates the impression that,
upon inclusion of SIC, the conduction bands are shifted upward in energy relative to the
valence bands. From the discussion in Section 3.2 it is known, however, that the SIC
potentials are exclusively attractive. In atoms, this leads to a consistent lowering of the
calculated term values with respect to the energy zero. For a bulk crystal or a surface, this
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Figure 4.8: Electronic band structure of the DRM of the 3C-SiC(001)-(2×1) surface as result-
ing from GWA (see Ref. [79]) and SIC calculations. See caption of Fig. 4.6 for the
definition of labels.

means that all occupied states are affected by SIC in such a fashion that their respective
energies are lowered compared to a standard LDA calculation. The conduction bands
are only indirectly affected by changes in the effective potential. It is important to keep
in mind that SIC calculations really affect the occupied states and shift them down in
energy relative to the unoccupied conduction band states. The unsatisfying result of the
SIC calculation for the DRM of the 3C-SiC(001)-(2×1) surface must be interpreted in
this respect.
It is evident that the position of the π and P ′

5 bands relative to the projected bulk valence
bands is hardly changed in the SIC calculation compared to the LDA result. At Γ, the P ′

5

band resides only about 0.2 eV higher in energy than in LDA. This indicates that the as-
sociated state is slightly less strongly affected by the use of the SIC pseudopotentials than
the top of the bulk valence band. Basically, however, the observed effect is in good accord
with what could be expected from the nature of the respective occupied states. Both the π
and the P ′

5 bands originate from states that can be interpreted as linear combinations of the
carbon p-orbitals. The self-interaction correction to the C 2p states is strongly active by
construction of the SIC pseudopotentials. Hence it is not surprising that these two bands
experience strong SIC on the surface. The main error in the description of the surface
electronic structure obviously originates from an inadequate treatment of the unoccupied
π∗ band.
The fact that the energetic position of the π∗ band remains practically unchanged relative

68



4.2. The polar 3C-SiC(001) surface

to the π band and the bulk valence band projection can be explained by a spurious self-
interaction correction to its respective states. It has already been indicated that π and π∗

states can be interpreted as binding and antibinding linear combinations of the carbon
dangling-bonds, which in turn have mainly C pz character. From the charge densities in
Fig. 4.7 this can easily be visualized. It is important to remember that in the process of
constructing the SIC pseudopotentials, it was ensured that the respective atomic corrective
potentials of Si 3s, C 2s, and C 2p effectively contribute in the bulk crystal. This is
rationalized by the contribution of these atomic states to the occupied bulk states. At
this surface, in contrast, the situation is not as straightforward. In the case that occupied
(π) and unoccupied (π∗) bands are equally linear combinations of an atomic orbital that
is assumed to be occupied in the bulk (C 2pz), the unoccupied band will be spuriously
affected by the SIC pseudopotentials.
In order to achieve a reasonable description of a surface electronic structure containing
such features, it is necessary to account for these spurious effects on unoccupied states.
One possibility to quantify the effects for each band n and k-point is to calculate the ex-
pectation value of the non-local SIC operator containing the approximate self-interaction
correction as defined by Eq. (3.19), i.e. to calculate

∆εSIC
n,k = 〈ψn,k|V̂ SIC

nloc |ψn,k〉 ≤ 0. (4.1)

When nocc is the number of occupied bands, ∆εSIC
n,k should vanish for all bands n > nocc.

One way to eliminate the spurious self-interaction correction of empty surface states is to
subtract the respective corrections as given in Eq. (4.1) from the calculated single-particle
energies εSIC

n,k for unoccupied bands and plot the band structure according to

ε̃SIC
n,k =

{
εSIC
n,k forn ≤ nocc

εSIC
n,k −∆εSIC

n,k forn > nocc

. (4.2)

A SIC calculation according to Eq. (4.2) is referred to as a SIC-∆ calculation in the fol-
lowing. In Fig. 4.9, the band structure of bulk 3C-SiC is shown as resulting from the
application of the SIC-∆ approach. A band gap of 2.48 eV results which represents only
a minor deviation in the order of a couple of meV from the standard SIC result. The dots
indicating optical data as derived from Refs. [46,55,57,58] show equally good agreement
to the calculated band energies at the respective high-symmetry points. Only concerning
the lowest unoccupied band along the L−Γ symmetry line, slightly bigger changes occur
as it is pushed up in energy by roughly 0.2 eV. From a Mulliken analysis of the atomic
contributions to this band, it becomes evident that C 2s contributes significantly (≈ 25%)
to the respective states. Thus they are also slightly affected by the self-interactions, as
well. However, the effect is minor overall, which is to be expected from the way the SIC
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Figure 4.9: Bulk band structure of 3C-SiC
as resulting from the SIC-∆ ap-
proach defined by Eq. (4.2). The
full dots are derived from opti-
cal data. For the respective ref-
erences, see Tab. 3.3.

pseudopotentials are constructed.
Based on this conceptual agreement between a SIC and a SIC-∆ calculation for the under-
lying bulk solid, an investigation of the band structure of the 3C-SiC(001)-(2×1) surface
seems to be worthwhile. Figure 4.10 shows the surface band structure as resulting from a
SIC-∆ calculation compared to the GWA band structure from Ref. [79]. The most appar-
ent change compared to the standard SIC calculation shown in the right panel of Fig. 4.8
is that the surface results as semiconducting by the SIC-∆ approach, thus agreeing quali-
tatively with the quasiparticle result. Moreover, the resulting band gap is indirect with the
top of the occupied P ′

5 surface band located at the J-point of the surface Brillouin zone.
The bottom of the lowest unoccupied surface band is found at J ′. The surface band gap
that results from the SIC-∆ calculation amounts to 0.99 eV which is also in very good
quantitative accord with the quasiparticle gap of 0.94 eV.
Summarizing, the analysis of the surface electronic structure of the dimer row reconstruc-
tion of 3C-SiC(001)-(2×1) has shown that the standard SIC approach, which is originally
developed with the characteristics of the bulk electronic structure in mind, fails to deliver
an accurate description of the fundamental surface electronic properties. This is traced
back to spurious self-interaction corrections to unoccupied surface states that can be in-
terpreted as linear combinations of atomic states that contribute significantly to occupied
bulk states. For such cases, the SIC-∆ approach which relies on the subtraction of the un-
physical self-interaction correction from empty states has been introduced as a pragmatic
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Figure 4.10: Electronic band structure of the DRM of the 3C-SiC(001)-(2×1) surface as resulting
from GWA (see Ref. [79]) and SIC-∆ calculations. See caption of Fig. 4.6 for the
definition of labels.

tool to improve the calculated electronic structure considerably.

4.2.2. 3C-SiC(001)-c(2x2) Bridging Dimer Model

As has already been mentioned in the beginning of this chapter, there had been some
controversy about which is the ”true” reconstruction model of the 3C-SiC(001) surface.
In particular, the previously discussed Dimer Row Model in a (2×1) reconstruction and
the Bridging Dimer reconstruction model with c(2×2) symmetry have been at the focus
of attention. On the basis of quite a lot of experimental and theoretical data, this open
question was solved in favor of the latter. The main building block for this reconstruction
model is, again, a carbon dimer in the top layer of the surface. In contrast to the (2×1)
DRM reconstruction, however, this dimer is triple-bonded and each carbon atom is only
linked by one single Si-C bond to the surface.
In order to study the effects of the SIC and SIC-∆ approaches, the surface electronic
structure of the BDM is calculated employing both standard LDA as well as the SIC
pseudopotentials. To describe the surface a supercell approach with ten atomic layers
(one H, four Si and five C layers) per supercell is used. The H layer saturates the C
bottom layer of the SiC slab in each supercell to avoid spurious surface states from the
bottom layer.
The surface band structure resulting from a standard LDA calculation is shown in Fig.
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Figure 4.11: Surface band structure of the BDM of the C-terminated SiC(001)-c(2×2) surface as
resulting from standard LDA (left panel) and SIC (right panel) calculations. The
gray-shaded areas show the projected bulk band structure. Surface states and res-
onances are indicated by thick and thin lines. The thick lines refer to pronounced
surface states or resonances which are predominantly localized on the first two sur-
face layers. ARPES data from Ref. [80] and ARIPES data from Ref. [81] show
measured valence and conduction band states, respectively. ARPES data have not
been reported along the S′-M-S line, to date, and ARIPES data have only been mea-
sured along the S-Γ-M line.

4.11. It basically agrees with the respective surface band structure which was reported
in Ref. [82]. The calculations of the surface band structure reported in this work and
those in Ref. [82] slightly differ concerning the basis sets, the standard pseudopotentials
and the number of SiC layers (9 versus 12) per supercell. The most pronounced surface
state bands are labeled in Fig. 4.11 according to Ref. [82]. The T1 band originates from
bonding states of the C≡C surface dimers while the T∗

1 band originates from the respective
antibonding states (cf. respective charge densities in Ref. [82]). The T∗

2 and T∗
3 bands

originate from antibonding surface states, as well. Note that the latter two bands coincide
with the projected bulk bands of SiC along the Γ-S′ and Γ-S symmetry lines in the LDA
surface band structure.
The surface band structure resulting from the standard SIC calculation is shown in the
right panel of Fig. 4.11. It shows the same topology of the most salient surface state
bands as the respective LDA surface band structure in the left panel. There are significant
differences to be noted, however. First and foremost the SIC approach yields an appropri-
ate projected bulk band structure and a realistic projected gap energy region, in particular,
at last. The T1 surface band results slightly higher in energy relative to the projected
bulk valence bands than in LDA. The T∗

1 band results in the SIC surface band structure
throughout most parts of the surface Brillouin zone 0.4 eV higher in energy than in the
LDA surface band structure. Note, in particular, that it has moved up in energy by about
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Figure 4.12: Surface band structure of the BDM of the C-terminated SiC(001)-c(2×2) surface as
resulting from standard SIC (left panel) and SIC-∆ (right panel) calculations. See
caption of Fig. 4.11 for details.

1 eV close to the Γ-point along the Γ-S ′ line where it becomes resonant with the projected
Si-derived conduction bands. The T∗

3 band, which is Si-derived to a considerable extent, is
about 0.7 eV higher in energy in the SIC results than in the LDA results. Yet, it remains to
be a band of localized surface states within the projected gap also along most of the Γ-S′

and Γ-S symmetry lines. This is due to the fact that the projected bulk conduction bands
have shifted up in energy by more than 1 eV as compared to the projected LDA bulk band
structure in consequence of the realistic description of the bulk conduction bands within
the SIC approach. Experimental ARPES and ARIPES data are included in Figs. 4.11 and
4.12 for comparison.
In the ARPES experiments, the measured occupied valence-band states have been referred
to the extrinsic Fermi level of the samples used, but the doping has not been explicitly
given in Ref. [80]. Therefore, the top of the measured bands is aligned to the top of the
projected bulk valence bands in Figs. 4.11 and 4.12. A number of valence-band surface
states from the SIC calculations, most noticeably the T1 dangling-bond band, result in
very satisfying agreement with the ARPES data [80]. By construction the same holds
for the SIC-∆ surface band structure shown in the right panel of Fig. 4.12. The standard
SIC result is repeated in the left panel for easier comparison. It might well be that some
of the valence-band features observed in experiment are bulk-derived since there is no
counterpart at all for these features in the calculated surface band structure. The same
good overall agreement in the valence bands could also be achieved with the LDA results
if the experimental ARPES data were aligned, in view of the lack of knowledge of their
absolute energy position, with the T1 band of the LDA surface band structure at the S′-
point, as was done in Ref. [82].
Also the ARIPES data have been referred to the extrinsic Fermi level of the samples
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used in Ref. [81]. In this case the Fermi level position with respect to the valence band
maximum has been inferred from other literature data on equally doped samples to be
located 1.5 eV above the top of the valence bands. If this assignment is correct one can
refer the ARIPES data to the top of the valence bands, as is done in Figs. 4.11 and 4.12
without the need of any rigid relative shift. Comparing the two figures it becomes obvious
that the lowest empty surface-state band resulting from LDA deviates more strongly from
the lowest band determined in ARIPES, actually by 1.3 eV, while this deviation is reduced
to 0.9 eV in the SIC surface band structure. Upon application of SIC-∆ the T∗

1 band is
shifted strongly upwards in energy, residing at about 0.5 eV above the measured data. If
one compares the position of the calculated T∗

1 band at the Γ point of the surface Brillouin
zone to the measured data in Fig. 7 in Ref. [81], it is interesting to note that in the SIC
calculation, the respective energy is found to be only 0.6 eV higher than the projected
conduction band minimum. In experiment, however, it is found to reside 1.8 eV above
this value. In the SIC-∆ band structure, it is quite intricate to isolate the respective band
signal. From the lack of dispersion of the band an energetic position of about 2.4 eV above
the CBM can be estimated, which is generally in better accord with the experimental
findings. In general one should note from the comparison that some of the dispersions of
the ARIPES data (even if the lowest measured empty band was aligned with the calculated
T∗

1 band) can not be reconciled with the theoretical results, neither with the LDA nor the
SIC (or SIC-∆) surface band structure. The fact that the Fermi level of the sample in
the ARIPES was not directly determined adds an additional uncertainty to the relative
positioning of calculated and measured band signals.
From this comparison one can conclude that the surface band structure of 3C-SiC(001)-
c(2×2), calculated within the SIC approach, shows general improvements over the stan-
dard LDA surface band structure concerning the projected bulk band structure and the
projected gap, in particular, the absolute energy positions of empty surface-state bands,
the character of localized surface states (most noticeably the band T∗

3) and the antibond-
ing T∗

1 band which is in somewhat better agreement with experiment. Obviously, these
improvements are less impressive than those for the bulk band structures of the SiC poly-
types discussed above. The fact that the upward shift of the T∗

1 band resulting within SIC,
as compared to LDA, is relatively small (only 0.4 eV) is largely due to the fact that the
occupied T1 and the empty T∗

1 bands both originate from the triple-bonded C≡C surface
dimers and thus are mainly derived from bulk states in the upper valence bands. Such
bands are equally influenced in the standard SIC calculation, as was shown in detail for
the related case at the 3C-SiC(001)-(2×1) surface. The SIC-∆ approach yields a very sig-
nificant upward shift of the respective empty bands as could be expected from the nature
of the associated states. This results in a further improved agreement with experimental
data from angle-resolved inverse photoemission spectroscopy. As there is no GWA cal-
culation for this surface in the literature, it is uncertain whether the remaining differences
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are due to the simplicity of the presented theoretical approach or originate from intricacies
in the determination of the experimental energies.

4.3. Summary

In this chapter it has been analyzed how atomic self-interaction corrections that are in-
corporated in the nonlocal part of ionic Si and C pseudopotentials can be used in surface
electronic structure calculations. While within DFT calculations for the most commonly
considered cubic and hexagonal polytypes of silicon carbide the application of the SIC
pseudopotentials are suitable to overcome the typical LDA shortcomings in the descrip-
tion of the electronic band structure, respective calculations for surfaces are more intri-
cate. In the case of the nonpolar 3C-SiC(110)-(1×1) surface, the standard application of
the SIC pseudopotentials yields changes in the surface band structure that are qualitatively
and quantitatively comparable to the one known from the bulk crystal. At this surface, the
fundamental characteristics of the electronic structure do not deviate significantly from
the situation in the bulk.
For the 3C-SiC(001) surfaces, in contrast, the occurrence of empty surface bands that
are linear combinations of states that are occupied in the bulk, i.e. the antibinding C=C
and C≡C dimer states at the (2×1) and c(2×2) reconstructions, respectively, results in
a spurious self-interaction correction for these bands. The SIC-∆ approach in which the
expectation value of the nonlocal SIC pseudopotential operator is subtracted from the en-
ergies of the empty states, pragmatically accounts for this error. The application of this
approach to the two reconstruction models of the 3C-SiC(001) surface and the compari-
son of the results to GWA quasiparticle calculations and experimental data validate this
method.
It must be emphasized that these results have been achieved without any extra compu-
tational effort compared to standard LDA calculations, much in contrast to GWA cal-
culations. In particular in view of this fact, the reached agreement with literature data
from experiment and GWA calculations is highly satisfactory and emphasizes that the ap-
proach to account for self-interaction corrections is a powerful tool for a more accurate
description of the electronic properties of 3C-, 2H-, 4H- and 6H-SiC crystals. The SIC
and SIC-∆ approaches have hence shown itself to be useful tools with small computa-
tional costs for investigations of silicon carbide surfaces with similar characteristics as
the examples chosen in this chapter.
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Chapter 5.

Properties of (1010) and
(1102)-c(2×2) surfaces of 4H-SiC

In the previous chapter, the application of SIC pseudopotentials to the well-studied sur-
faces of 3C-SiC has offered detailed insight into their effectiveness in surface electronic
structure calculations.
More recently, surfaces of the hexagonal 4H-SiC polytype have moved into the focus of
research interest. Experimental preparations and investigations of several surfaces of this
crystal have been reported. Due to the complexity of these surfaces, theoretical calcula-
tions are important to shed light on the atomic geometry of the surfaces as well as their
respective electronic properties. In this regard it is imperative to obtain both qualitatively
and quantitatively reliable results. As the unit cell of bulk 4H-SiC is already compara-
tively large containing eight atoms, any surface modeling within the supercell approach
will involve respectively large unit cells and a considerably high number of atoms per
unit cell. Combining reliability and light additional numerical demands, SIC calculations
as shown in Chapter 4 can be expected to be a powerful tool to elucidate the surface
electronic properties.

5.1. The 4H-SiC(1010) Surface

The (1010) surface of 4H-SiC is a nominally nonpolar surface very much like the previ-
ously discussed 3C-SiC(110) surface.
The basic geometry of the surface is shown in Fig. 5.1. The left panel shows a top view
on the basal plane of a wurtzite structure. As usual, the bulk unit cell is described by the
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Figure 5.1: Schematic representation of the orientation of the 4H-SiC(1010) surface relative to
the bulk crystal. The left panel indicates the surface cut within a [001]-[010] plane.
The bulk stacking sequence (ABCB) is shown in the right panel. Open (closed) cir-
cles represent positions of silicon (carbon) atoms. The red shaded face marks the
positioning of the surface unit cell.
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Aiming at an unambiguous identification of surfaces of hexagonal crystals, a four index
notation is commonly used. An additional vector within the basal plane

a4 =: −(a1 + a2) (5.3)

is introduced (cf. Fig. 5.1). The surface index then consists of the indices assigned to
the vectors within the basal plane (a1, a2, a4) followed by the one assigned to the vector
a3 ‖ ez. For a (1010) surface, this yields a surface cut as indicated by the red line in
the left panel of Fig. 5.1. In the right panel, the position of the resulting surface unit
cell within the bulk crystal is given by the red shaded rectangle. As can be seen from
the also supplied stacking sequence of bulk 4H-SiC, the surface exhibits a quite intricate
atomic structure in the perpendicular direction. In fact, the surface is only periodic after
six unique surface layers.
The rectangular unit cell of the 4H-SiC(1010) surface is described by the two Bravais
vectors

aS
1 = c · (1, 0, 0)

aS
2 = a · (0, 1, 0) ,

(5.4)

where the bulk unit Bravais vectors a3 ([0001] direction) and a2 are oriented parallel to x
and y, respectively.
Each of the six surface layers (sequence ABCDEF1) contains an equal number of silicon
and carbon atoms, respectively, which nominally makes this surface nonpolar. The atomic
positions of the ideal surface can explicitly be written as
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1Note that these labels are not identical with those in the bulk stacking sequence.
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Figure 5.2: Side and top views on the 4H-SiC(1010) surface. The layer sequence (ABCDEF)
within the surface is given on the left hand side. Dark ocher (grey) circles represent
positions of silicon (carbon) atoms within the side view drawing pane (y = 0). Light
symbols specify atoms in a plane parallel to it (y = a
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Figure 5.2 shows side and top views on the 4H-SiC(1010) surface as defined by these
vectors. Much in contrast to the nonpolar 3C-SiC(110) surface discussed in Ch. 4.1, not
all surface cuts are equivalent. In fact, there are three distinctly different surface types,
labeled Type 1 to 3 in Fig. 5.2, that can possibly form the 4H-SiC(1010) surface. The
variant shown is called a type 1 surface and consists of a layer A surface termination,

80



5.1. The 4H-SiC(1010) surface

Table 5.1: Calculated displacements of atoms
from their ideal positions (in
Å) upon relaxation of the 4H-
SiC(1010) surface.

4H-SiC
(1010)-(1x1) ∆x ∆y ∆z

τ A
Si +0.10 +0.00 -0.19

τ A
C -0.06 +0.00 -0.11

τ B,1
Si +0.07 +0.00 +0.12

τ B,1
C +0.04 +0.00 -0.04

τ B,2
Si -0.10 +0.00 -0.13

τ B,2
C -0.14 +0.00 +0.13
τ C

Si -0.05 +0.00 +0.04
τ C

C -0.04 +0.00 -0.03
τ D

Si +0.04 +0.00 +0.01
τ D

C +0.03 +0.00 +0.03
τ E,1

Si +0.01 +0.00 +0.02
τ E,1

C +0.01 +0.00 -0.01
τ E,2

Si +0.00 +0.00 -0.03
τ E,2

C -0.00 +0.00 +0.03

including one carbon and one silicon atom within the outer surface layer. In total there
are four broken bonds per unit cell on such a surface of which two belong to layer A
atoms and two to the inner atoms τ B,1

C and τ B,2
Si residing on layer B. In contrast, surfaces

of Types 2 and 3 exhibit six broken bonds each. This indicates that the Type 1 surface will
be energetically more favorable than these two surface terminations. In the following, any
reference to the 4H-SiC(1010) surface implies the Type 1 structure, if not explicitly stated
otherwise.
In the calculations, the surface is modeled by a slab consisting of twelve layers in total,
i.e. the double of the non-primitive base given in Eq. (5.5). The broken bonds at the
bottom of the slab are saturated by hydrogen atoms. Gaussian orbitals with the decay
constants as in Sec. 4.1 are used to expand the wave functions. For the atoms within the
first three surface layers, extended sets consisting of three shells of Gaussian orbitals are
employed. A vacuum layer of 10 Å electronically decouples neighboring slabs. As the
structure of the surface is relatively open, additional slowly-decaying Gaussian orbitals
are placed in the virtual positions of additional three ideal surface layers in order to allow
for a more suitable representation of extended surface states. Brillouin zone integrations
are performed using ten special k-points in the irreducible wedge of the surface Brillouin
zone, generated by the prescription of Monkhorst and Pack [30]. The positions of the
atoms in the upper five layers of the slab are allowed to relax.
In Table 5.1 the resulting displacements of the surface atoms with respect to their ideal
bulk position upon relaxation are listed. Note that ex ‖ [0001], ey ‖ [1100] and ez ‖
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Figure 5.3: Schematic relaxation pattern of the 4H-SiC(1010) surface within the x-z-plane. Color

code as in Fig. 5.2. Tilt angles ϕ are defined for the four Si-C pairs within the first
three layers. Note that the pattern is not drawn to scale.

[1010]. It is most obvious that the atoms only change their positions in x- and z-directions.
Figure 5.3 schematically shows the resulting relaxation pattern. It is somewhat similar to
the bond length contracting rotation relaxation known for GaAs(110), 3C-SiC(110) and
2H-SiC(1010) [70, 75]. In layer A, both atoms move closer to the substrate, the silicon
atom more strongly than the carbon atom leading to a tilted Si-C bond within the top
surface layer. The tilt angle ϕA amounts to 2.7◦ only, which is small compared to the
value of 30◦ at GaAs(110) and of similar magnitude as the 3.8◦ on 2H-SiC(1010). The
rotation is accompanied by a contraction of the Si-C bond length dA. While in the bulk
the bond length amounts to 1.87 Å, it is reduced to 1.71 Å at the surface. The bond length
contraction thus amounts to 8.6%, which is very similar to the contraction at the respective
2H-SiC(1010) surface. On the second layer (B), there are two Si-C structures. The first
one consisting of base atoms τ B,1

Si with fully saturated bonds and τ B,1
C with one broken

bond shows an inverted tilt. Here, the silicon atom resides above the carbon atom and
its tilt angle amounts to ϕB,1 = 5.0◦. The second Si-C pair is formed by the unsaturated
silicon atom τ B,2

Si and the saturated carbon atom τ B,2
C . In this case, the tilt pattern is

identical to the one in layer A, although the tilt angle is much larger amounting to ϕC =

8.1◦. In both cases, the contraction of the Si-C bond is only very small with dB,1 = 1.84 Å
and dB,2 = 1.85 Å being only fractionally smaller than the ideal bond length. As far as
layer C is concerned, the silicon atom is found above the carbon atom. The tilt angle
ϕC = 2.1◦ is characteristically small and the bond length of 1.88 Å is almost bulk-like.
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Figure 5.4: Electronic band struc-
ture of the relaxed
4H-SiC(1010)-(1x1)
surface as resulting
from LDA calcula-
tions. The projected
bulk band structure is
indicated by the grey
shaded area. Triangles
and circles mark bands
that can be uniquely
assigned to silicon
and carbon atoms,
respectively. Filled
(open) symbols stand
for atoms with broken
bonds residing on
layer A (B). See text
for the definition of
bands.
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The energy gain per unit cell compared to the ideal surface amounts to 1.15 eV.
Figure 5.4 shows the electronic band structure of the relaxed 4H-SiC(1010) surface as re-
sulting from LDA calculations. In accord with the four broken Si-C bonds at the Type 1
surface, four salient surface bands are visible within the projected bulk band gap. The sur-
face is semiconducting with an indirect surface gap of 0.82 eV. Additionally, there is one
unique surface derived band visible within the projection of the heteropolar gap. In order
to understand the nature of these surface derived bands, a Mulliken analysis is used to
resolve the atomic contributions to the respective states. The bands in Fig. 5.4 are marked
accordingly (see caption of figure for details). In addition Fig. 5.5 contains charge density
contours for states of the four different bands at the M -point of the surface Brillouin zone
shown in suitable [0001]-[1010] planes. The state associated to the energetically lowest
band is shown in panel (a). Two aspects become immediately apparent. First of all, the
charge density is predominantly located at the layer A atoms. This is also evident from
the band markings in the band structure. The contour lines in the figure clearly indicate
a significant overlap between the two atomic contributions. In fact, it bears resemblance
to a π-bond, i.e. a binding linear combination of the silicon and carbon dangling-bond
orbitals. In the following, this band is therefore labeled as πA. Accordingly, the charge
density in Fig. 5.5(b) associated to the energetically highest band has got a much higher
contribution located at the surface silicon atom. There is a clear nodal plane visible, indi-
cating the antibonding character of this state, which is hence further referred to as π∗A.

83



Chapter 5. Properties of (1010) and (1102)-c(2×2) surfaces of 4H-SiC

A A

BB

0

10

8

6

4

2

(a) (b)

(c) (d)

π π

ππ

*

*

Figure 5.5: Charge density contours (in 10−1 aB) for four states within the projected bulk band
gap at the M -point of the surface Brillouin zone. The contours in (a) and (b) are
plotted in a x-z-plane containing the Si-C bond of layer A (y = 0), (c) and (d) in the
parallel plane at y = a/2. Note that the plot window is also changed along x to center
the relevant charge densities. Ocher (black) symbols represent positions of surface
silicon (carbon) atoms.

A very similar situation is observed for the highest occupied state at the M -point, whose
charge density contours are shown in Fig. 5.5(c). Again there is a substantial π-like over-
lap between the dangling-bond contributions from the silicon and carbon atoms residing
in layer B. An antibinding linear combinations of the same orbitals as visible in Fig. 5.5(d)
leads to the lowest unoccupied surface band. Accordingly, these two bands are labeled as
πB and π∗B in Fig. 5.4.
The notion of an additional π-like Si-C bond in surface layer A is corroborated further by
an analysis of the bonding characteristics based on maximally-localized Wannier func-
tions [83] which is shown in Fig. 5.6. In panel (a), the surface geometry is shown in a
stick model viewed within the x-z-plane. The color code of the sticks is identical to the
one used for the atomic symbols in Fig. 5.2. Centers and spreads of the respective Wan-
nier functions are represented by the filled red circles. Most of the Wannier functions in
the lower layers are located on the Si-C bonds at bulk-like positions. Due to the ionic
component of the bond, they do not reside at the bond center but closer to the carbon
atom. In the upper layers slight distortions of this pattern are visible. Most noticeable
in this regard are three centers labeled Si=Ct (top), Si=Cb (bottom), and CB. The first
two of these are most unique at this surface. As can easily be seen, the respective centers
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Figure 5.6: Analysis of the bonding characteristics at the relaxed 4H-SiC(1010) surface in terms
of Wannier functions. The side view in (a) contains the centers and spreads of the
Wannier functions indicated by the position and radius of the red circles. Panels (b)
and (c) show the contours of the two Wannier functions labeled as Si=Ct and Si=Cb
in panel (a), which are associated to the Si-C bond in layer A.

reside above and below the Si-C bond. Parallel to the surface, they are found to be slightly
closer to the carbon atom than in lower layers. The spread of both functions amounts to
1.3 Å. Such a distribution of Wannier centers is indeed characteristic for a double-bond as
was already assumed based on Fig. 5.5. If one inspects the Wannier functions for Si=Ct

and Si=Cb more closely, as in Figs. 5.6(b) and (c), this characteristic becomes even more
apparent. In the former case, the function is positive mostly in the space above the Si-C
bond, and negative below it. For function Si=Cb the situation is inverted. All in all, both
the inspection of single state charge densities and the analysis of accordingly constructed
localized Wannier functions point to the fact, that in the surface layer A of 4H-SiC(1010)
a Si=C double bond is formed. In contrast, on layer B the Wannier center CB is located
in the empty region above the layer and close to the carbon atom in that particular layer.
Due to the mutual distance of 2.97 Å between silicon and carbon atoms, no real bond can
be formed, although there is substantial attractive π-interaction inherent. The electron
therefore retains most of the original dangling-bond characteristics.
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Figure 5.7: Electronic band structure of the relaxed 4H-SiC(1010)-(1x1) surface around the pro-
jected bulk band gap as resulting from LDA (left panel) and SIC-∆ calculations (right
panel). The projected bulk band structure is indicated by the grey shaded area. Band
markings are the same as in Fig. 5.4.

It should be noted at this point that due to the purely Wurtzite bulk crystal structure, the
related 2H-SiC(1010) surface contains only one Si-C pair that can contribute to surface
bands. In Ref. [84] it has been argued on the basis of charge density contour plots that
the occupied band is almost exclusively derived from carbon dangling-bond states, while
the unoccupied band is mostly located at the surface silicon atom although a substantial
contribution from the carbon atom is noted, as well. However, these bands have the same
physical origin as the πA and π∗A bands at the 4H-SiC(1010) surface. As a matter of fact,
respective Wannier functions at 2H-SiC(1010) show the same characteristics as Si=Ct

and Si=Cb. Together with the equally shortened bond length, this indicates that a Si=C
double bond is formed at the 2H-SiC surface, as well.
These realizations do shed some light on the forces that drive the atomic relaxation of the
surface. In general, there are three distinct mechanism: Firstly, a reduction of Coulomb
repulsion between electrons leads the more electronegative ion to reside high above the
rest of the surface. Secondly, there is a quantum mechanically driven configuration change
due to new hybridization of orbitals. For very strongly ionic systems, classical electro-
static interaction must be taken into consideration as a third possibility. Given the highly
quantum mechanical nature of the π-interaction leading to the Si=C bond within layer A,
it can be assumed that hybridization effects play a vital role in this particular relaxation.
In layer B, the situation is conceptually different because the respective silicon and carbon
atoms hosting the two dangling bonds are not directly connected to begin with. Instead
they are equally bound to another atom that is fully saturated. Consequently, the atom
hosting the broken bond moves downward relative to the bonding partner.
Based on this broad knowledge about the fundamental character of the electronic struc-
ture of 4H-SiC(1010), and in particular of its salient surface bands, it is apparent that
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the SIC-∆ approach should be the method of choice to study the effect of the SIC pseu-
dopotentials on the present electronic structure. The band structure of the relaxed 4H-
SiC(1010) surface around the projected bulk band gap as resulting from a respective cal-
culation is shown in the right panel of Fig. 5.7. The LDA result is repeated for easier
comparison in the left panel. It is apparent that the fundamental character of the bands
remains unchanged. There are two occupied and unoccupied surface bands, respectively.
The band gap is opened due to the influence of SIC and amounts to 1.74 eV as compared
to 0.82 eV resulting from LDA. The position of the occupied πA and πB bands relative to
the projected bulk valence bands is hardly changed. On the contrary, the π∗B band resides
on average roughly 0.8 eV higher relative to the VBM than in the LDA reference. As the
position of the occupied surface bands relative to the bulk is only slightly affected, this
change accounts for the change in the surface band gap.
Some influence of SIC on the band markings is discernible, as well. The occupied πA

band, for instance, contains visible amounts of the silicon atom in layer A in the LDA
result. In contrast, these markings vanish in SIC, which is an indication of the usual
slightly increased localization of the charge densities at the surface carbon atom. This
does not influence the fundamental characteristics of the bonding at the surface, however.
Generally, the dispersion of the bands is unaffected, as well. The interaction along the x-
direction is small leading to only very faintly dispersive bands along the X-M and X ′-Γ
symmetry lines. In the longer directions of the surface Brillouin zone, there is a slightly
stronger dispersion as indication of more electronic interactions along the y-direction of
the surface (see top view in Fig. 5.2).

Comparison to experimental reference data

For the 4H-SiC(1010) surface, there is some preliminary experimental reference data by
Emtsev and coworkers [85] available to compare the calculated electronic structure to.
The authors performed a combined study of low energy electron diffraction (LEED),
ARPES and core-level spectroscopy (CLS) for two different surface preparations. In the
first approach, silicon has been pre-deposited on the sample. Subsequent annealing at
1050◦C has resulted in a surface exhibiting a 1×1 LEED pattern. A strong surface state
close to the projected valence band maximum is visible in ARPES as shown in Fig. 5.8.
The second preparation of the surface starts with an ex-situ treatment with hydrogen. This
leads to a hydrogen passivated surface. Annealing at a temperature of 650◦C results in a
desorption of hydrogen. LEED and ARPES experiments yield the same results as for the
first surface preparation. The dispersion and energetic position of the observed surface
band is compatible with the πA band in Figs. 5.4 and 5.7. This notion is further corrobo-
rated by the measured surface core level shifts as one surface derived component in the C
1s line points to a Si-C dimer in layer A. This is basically inferred by a comparison to the
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Figure 5.8: Experimental ARPES spectrum of the 4H-SiC(1010) surface taken from Ref. [85].
Shown are the results for the surface preparation based on Si pre-deposition and sub-
sequent annealing at 1050◦C. The single salient surface band S1 along the Γ-X sym-
metry line is highlighted.

2H-SiC(1010) surface.
It is important to note that for both surface preparations only one single surface band is
found close to the projected bulk valence bands. This is obviously in disagreement with
the results of the electronic structure calculation. Due to the four broken bonds at the
surface, a total of four salient surface bands are expected of which two are occupied and
two are empty, respectively. The ARPES experiment should hence yield two occupied
bands in the projected bulk band gap region. Apparently, either one of the occupied bands
should be resonant with bulk states indicating a saturation of the broken bonds at the sur-
face or the surface structure is more complex than what is assumed so far. Several possible
variants have been considered. First of all, it can be excluded that the resolution of the
ARPES experiment is not sufficient to separate the bands πA and πB, which is assumed to
be missing. Also, Emtsev and coworkers strongly argue against residual hydrogen cover-
age of the surface since in the surface preparation with silicon pre-deposition, there is no
hydrogen present at all.

Influence of hydrogen adsorption

It is assumed that the Fermi level of the sample is pinned by the lowest empty surface band
in the ARPES experiments. From the spectra as in Fig. 5.8, a lower limit for the surface
band gap of 1.8 eV can be deduced. This is in very close agreement to the calculated
gap of 1.74 eV. However as it is, this would indicate that the band gap is formed between
the πB and π∗B bands. Although there is no evidence that partial hydrogen coverage of
the surface is responsible for the noted absence of a second occupied surface band, a
calculation for the 4H-SiC(1010) surface covered by 0.5 monolayers (ML) of hydrogen
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Figure 5.9: Electronic band structure of the 4H-SiC(1010) surface covered by 0.5ML of hydro-
gen as resulting from LDA and SIC-∆ calculations. Specifically, the hydrogen atoms
saturate the broken bonds of layer B. Band markings are the same as in Fig. 5.4.
Additionally, crosses indicate bands that are derived from the adsorbed hydrogen.

saturating the broken bonds of layer B is helpful in determining whether the πA-π∗A gap is
compatible with such a lower limit of the band gap.
The resulting electronic band structure for the optimized geometry [see Fig. 5.11(a)] is
shown in Fig. 5.9 as resulting from both LDA and SIC-∆ calculations. The bands πB and
π∗B disappear, as expected. In LDA the surface band gap between the πA and π∗A band
amounts to 1.71 eV. SIC open this gap to 2.32 eV, which is in general accord with the
experimentally derived lower limit of about 1.8 eV. Aside from the opening of the surface
band gap, another more intricate notion of the use of SIC pseudopotentials becomes ap-
parent. In Fig. 5.9 states within the band structure that can uniquely be assigned to the
adsorbed hydrogen atoms are marked by crosses. Comparing the LDA and SIC-∆ band
structures, slight changes become discernible around the M -point of the surface Brillouin
zone. The hydrogen derived bands a and b experience slight downward energy shifts
of 0.5 and 1.0 eV. These shifts yield to lower absolute energetic positions relative to the
pockets in the projected bulk band structure and the bands reside visibly within them. It
must be emphasized that these changes are not an artificial effect of SIC but are physically
sound.
To support this notion, Fig. 5.10 shows the calculated band structure of the H:Si(111)
surface, for which experimental photoemission [86] and theoretical quasiparticle data [87,
88] are available. At the K-point in the LDA band structure, the hydrogen derived band
a is located within the top pocket while a′ runs just at the bottom of the projection. An
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Figure 5.10: Electronic band structure of H:Si(111) as resulting from LDA and SIC calculations.
Crosses indicate bands that are derived from the adsorbed hydrogen. Data from
ARPES [86] is plotted by filled circles.

additional band b, which is strongly derived from Si atoms (cf. Fig. 9.12 in Ref. [88]) is
found at about -8 eV again clearly within a pocket. Comparing these bands to the ARPES
data symbolized by the black dots, it is apparent that the calculated band positions are
slightly too high by a couple of tenths of an eV. The application of SIC improves the
general agreement between the calculated and measured band positions for bands a and
a′. As in the quasiparticle calculation (cf. Fig. 9.11 in [88]) the a band is located closer to
the bottom of the pocket, while the a′ band is found clearly within the empty region of the
bulk projection with significantly reduced dispersion. For the b band, the SIC calculation
can not reproduce the ARPES or GW results. However, this can be traced back to the
inherent inadequacies of the SIC pseudopotential approach for purely covalently bonded
systems. In particular, one notes for bulk silicon that the band gap is almost unaffected
by SIC but the total valence band width increases more than is compatible with GWA and
experimental data (cf. the projected bulk band structure in Fig. 5.10). For silicon carbide,
in contrast, there is no such problem and thus the results in Fig. 5.9 can be regarded as
reliable. This nicely illustrates, again, that SIC affects calculated band structures more
intricately than a simple scissors operation on the conduction bands.

Discussion of alternative structures for 4H-SiC(1010)

All in all, everything considered so far points to the fact that the signal observed in ARPES
indeed originates from the πA bonding linear combination of the layer A Si=C dimer.
However, it is not yet clear which surface configuration can produce such an electronic
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structure. The C 1s core level spectra contain additional shifts that could be interpreted
in terms of additional carbon atoms present at the surface. This casts doubt on the sto-
ichiometry of the surface. There is no experimental evidence for impurity atoms, like
oxygen, either.
Therefore, several additional structures based on alternative arrangements of carbon and
silicon atoms have been investigated. The surface core level spectrum for C 1s supplied
by Emtsev et al. suggests that carbon based adstructures might be present on the surface.
As was discussed above, the band structure for the true surface model should qualitatively
be similar to the one of the 4H-SiC(1010) surface with 0.5ML coverage of hydrogen ad-
sorbed on layer B. Figure 5.11(a) shows the top and side view projections of the atoms
within the first three layers of the surface unit cell additionally to the SIC-∆ band structure
for the sake of reference. Three different surface models are given in Figs. 5.11(b)-(d).
All are found to be stable. Due to the different stoichiometry of the models, however, it
is not easily possible to compare their total energies. The first model in Fig. 5.11(b) is
characterized by a substitution of the silicon atom in layer A by another carbon atom. A
carbon dimer with a bond length of 1.34 Å is formed, which is the typical distance for a
C=C dimer. The dimer is slightly buckled due to the different sublayer atoms it binds
to. As a consequence of the substitution, the binding πA and anti-binding π∗A bands (filled
black circles) move largely into the projected bulk regions. Only the two respective bands
associated with the layer B structure (open symbols) remain within the projected gap and
form a surface gap of 1.58 eV, which is somewhat smaller than indicated by ARPES.
While there is as desired only one occupied surface band, its position relative to the pro-
jected valence band as well as its dispersion do not fit the experimental data. For instance,
in ARPES, the occupied band is found clearly below the VBM at the X ′ point, while it
remains definitely above it in the calculation. This model can hence be rejected.
The idea of using a carbon dimer to saturate the bonds of the layer B atoms leads to the
optimized structure visible in Fig. 5.11(c). Two additional carbon atoms are deposited
on the surface. A dimer with a bond length of only 1.24 Å is formed, indicating a triple-
bonded carbon C≡C structure. Again a strong buckling of the dimer results from the
different kind of sublayer atoms its constituting atoms are bound to. The down atom
binds to another carbon atom in layer B with a mutual distance of 1.41 Å, which is some
10% smaller than in bulk diamond. In contrast, the up atom is found at a distance of
1.81 Å from the silicon atom, which is close to the ideal bulk Si-C bond length of 1.87 Å.
In the band structure, the occupied πA and empty π∗A bands from the first layer Si=C
dimer are clearly visible by the markings with full symbols. The open circles mark states
that are derived from the additional C≡C dimer. Clearly, the occupied band associated
with the bonding dimer states moves closer to the bulk projection than the πB band in
Fig. 5.7. It might be possible that such a band cannot be separated from bulk bands in
ARPES. However, especially at the Γ-point and the Γ-X ′ symmetry line of the surface
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Figure 5.11: Alternative structure models for the 4H-SiC(1010) surface. Each panel contains top
and side view projections of the atoms within the first three surface layers, as well
as the respective SIC band structures. Filled circles mark bands associated to atoms
within layer A. For the respective definitions of open symbols, see text.
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Brillouin zone, this particular band resides 0.8 eV above the πA band and should thus
be experimentally resolvable. It is therefore considered fairly unlikely that the model as
depicted in Fig. 5.11(c) is observed in experiment. It should be noted that the addition of
a Si-C structure instead of a C-C structure on layer B is effectively equivalent to a Type
3 surface cut (cf. Fig. 5.2). However, is cannot be expected that a similar triple-bonded
Si≡C structure will be formed as in the case of the carbon dimer. Consequently, there will
be additional dangling-bonds on both atoms giving rise to additional bands in the surface
band structure.
Finally, the model in Fig. 5.11(d) is based on the previous model with an additional sub-
stitution of a second layer carbon by a silicon atom. A less strongly buckled C≡C dimer
results. However, due to the second layer Si-Si bond, this does not yield a band structure
in which the respective bonding band of the carbon dimer moves even closer to the pro-
jected valence bands. Instead, the Si-Si interaction on layer B (open triangles) leads to a
metallic surface that contains a lot of different bands within the projected bulk band gap.
Obviously, such a structure is way off from all experimental reference.
Obviously, none of these models is suitable to resolve the apparent incompatibility of the
calculated electronic structure of the 4H-SiC(1010) surface and the available experimental
data. In light of the uncertain stoichiometry of the surface, further experimental evidence,
e.g. a tensor LEED study or scanning tunneling microscopy, is needed to pursue differ-
ent possible surface structures. With the limited amount of data currently available, the
number of feasible geometries exceeds what can sensibly be calculated without too much
guesswork.
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5.2. The 4H-SiC(1102)-c(2×2) surface

Very recently, Virojanadara et al. [89, 90] have added a particularly intriguing facet to
the broad spectrum of SiC surface studies. They have shown that a C-terminated 4H-
SiC(11̄02)-c(2×2) surface can be prepared by a diagonal cut through the SiC bulk unit
cell and have investigated this surface by photoemission spectroscopy, scanning tunnel-
ing microscopy (STM) and low-energy electron diffraction. This type of SiC surfaces
had first been observed by Shiskin et al. [91] in an investigation of triangular channels in
porous 4H-SiC which have been studied later by Starke et al. [92]. The 4H-SiC(11̄02)-
c(2×2) surface resulting from the diagonal cut is largely free from defects exhibiting ba-
sically an ideal stoichiometry and consists of a periodic arrangement of alternating cubic
and hexagonal stripes with an atomic structure very close to the C-terminated cubic 3C-
SiC(001) and hexagonal 6H-SiC(0001) surfaces, respectively. The very narrow (about 0.6
nm) alternating stripes constitute well-defined nanostructures which occur side by side on
4H-SiC(11̄02)-c(2×2). Based on their LEED, core level spectroscopy, angle-resolved ul-
traviolet photoelectron spectroscopy (ARUPS) and STM data the authors have suggested
a model for the surface structure consisting of a specific distribution of Si adatoms on
the hexagonal stripes in H3 sites with a particular arrangement of triple-bonded bridging
carbon dimers on the cubic stripes. The authors emphasized that their tentative model
should be viewed as a plausible starting point for a quantitative structure determination
by crystallography or total energy calculations. Total energy calculations are employed,
therefore, in the following to unravel the structure of the 4H-SiC(11̄02)-c(2×2) surface.
Contrary to the practice up to this point, the calculations are carried out within the frame-
work of the generalized-gradient approximation (GGA) of density-functional theory. This
approximation takes the gradient of the charge density |∇n| into account when the XC-
energy and XC-potential are evaluated (cf. Ref. [10]) and has been established as the
method of choice for an appropriate description of the energetics involved in carbon
dimerization, most prominently the difference between double- and triple-bonded car-
bon dimers. The exchange-correlation functional of Perdew and Wang [93] and nonlocal,
norm-conserving pseudopotentials [94] in separable form [31] are used. The surface is
treated within the supercell approach. Each slab consists of four Si-C double layers and is
saturated by a layer of hydrogen atoms at the bottom. A vacuum layer of 10 Å separates
neighboring slabs in order to avoid unphysical interactions between them. Brillouin-zone
integrations are performed using a total set of 16 k-points generated by the prescription
of Monkhorst and Pack [30]. The positions of the atoms within the topmost five layers of
each slab and the Si adatoms are allowed to relax until all components of the calculated
Hellmann-Feynman and Pulay forces are smaller than 0.6 mRy/aB.
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Figure 5.12: Schematic representation of the orientation of the 4H-SiC(11̄02)-c(2×2) surface rel-
ative to the bulk crystal. The left panel indicates the basal surface cut within a
[001]-[010] plane. The bulk stacking sequence (ABCB) is shown in the right panel.
Open (closed) circles represent positions of silicon (carbon) atoms. The red shaded
region marks the positioning of the rectangular surface unit cell. Note that not all
bonds are shown for the sake of clarity.

5.2.1. Atomic structure

Experimentally a c(2×2) structure, among others, was observed. A large variety of con-
ceivable c(2×2) reconstructions of the 4H-SiC(11̄02) surface are fathomable and need to
be investigated. For reference, the features of the ideal surface are presented which allows
us to introduce some useful nomenclature easing the discussion of the rather complex sur-
face reconstructions to follow.

Ideal surface and building blocks for reconstructions

The 4H-SiC(1102) surface represents a diagonal cut through the unit cell of bulk 4H-SiC
(cf. Fig. 5.12), which is usually defined by the three bulk vectors given in Eq. (5.1).
In order to generate the surface unit cell, one has to define its unit vectors. In the bulk
coordinate system, the two vectors

aS
1 =

(
a

2
,

√
3a

2
, 0

)

aS
2 =

(
3a

2
, −

√
3a

2
, −c

) (5.6)
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span the plane of this diagonal cut. The associated normal vector on this plane is

n̂ =
1

2
√

3a2 + c2

(√
3c, −c, 2

√
3a
)
. (5.7)

For a full representation of the bulk system, one has to choose a (virtual) third base vector,
in this case

aS
3 = (−a, 0, 0). (5.8)

As one can see, the aS
i are linear combinations of the ai:

aS
1 = a1 + a2

aS
2 = a1 − a2 − a3

aS
3 = −a1.

(5.9)

It is convenient to rotate the coordinate system so that aS
1 ‖ ex, aS

2 ‖ ey and n̂ ‖ ez. This
can be acheived using the rotation matrix

D =
(
e′x, e

′
y, e

′
z

)
(5.10)

containing the corresponding unit vectors

e′x =
aS

1

|aS
1|

=

(
1

2
,

√
3

2
, 0

)

e′y =
aS

2

|aS
2|

=
1

2
√

3a2 + c2

(
3a, −

√
3a, −2c

)
e′z = n̂ =

1

2
√

3a2 + c2

(√
3c, −c, 2

√
3a
)
.

(5.11)

Application of this rotation matrix to the bulk base vectors and the nonprimitive basis τν

of the bulk cell as given in Eq. (5.5) transforms the unit cell and atomic positions of the
bulk crystal into the surface orientation.
It is notable that the third vector aS

3 is not parallel to the surface normal. The unit cell is
not rhombic but monoclinic. The length of the reciprocal vector G = b1−b2 +2b3 (with
bi the basis of the bulk reciprocal lattice) defines the k⊥-space periodicity of the surface
unit cell. In real space, equivalent surface cuts are separated by 2π

|G| = 2.35 Å. Due to the
monoclinic cell, these equivalent planes are shifted parallel to the surface, however.
In principle, two distinct surface terminations are feasible. On the carbon terminated
(1×1) surface, a total of six dangling bonds exist in the ideal configuration. In partic-
ular, one finds that four of these dangling bonds are associated with two two-fold coor-
dinated carbon atoms. The remaining two carbon atoms are three-fold coordinated and
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5.2. The 4H-SiC(1102)-c(2×2) surface

consequently show one dangling bond each, which is oriented almost perpendicular to
the surface. In contrast to the carbon terminated surface, a silicon terminated surface cut
contains two one-fold instead of three-fold coordinated silicon atoms. This leads to a
significant increase of the number of free dangling bonds on this surface to ten. It can be
assumed that the ground-state configuration of the 4H-SiC(11̄02)-c(2×2) surface is the
carbon terminated structure.
Top and side views of the ideal carbon-terminated 4H-SiC(11̄02) surface are shown in
Fig. 5.13(a). Only the outermost Si-C double-layer is indicated. Carbon and Si atoms
reside on the top and second layer, respectively. The calculated lattice constants a = 3.11
and c = 10.17 Å overestimate the experimental values [57] of 3.07 and 10.05 Å by about
1%, as is usual within GGA. Accordingly, an overestimate of this order occurs in the
surface structure parameters, as well. Viewed along the [1̄101] direction, the surface
consists of alternating stripes characteristic for the cubic 3C-SiC(001) and the hexagonal
6H-SiC(0001) surfaces. The respective stripes are separated by dashed lines in the top
and side views and indicated by the labels c (for cubic) and h (for hexagonal) in the side
view. The top view of the Si-C double-layer shows hexagons within the hexagonal stripes.
They are formed by three C and three Si atoms on the top and second layer, respectively.
The top-layer C atoms are three-fold coordinated to Si sublayer atoms. Consequently,
they have only one dangling-bond which is almost perpendicular to the surface. In the
cubic stripes, the top-layer C atoms are two-fold coordinated to Si sublayer atoms. They
have two dangling bonds which lie in the [1̄1̄20]-[11̄02] plane. The red dashed diamond
indicated in Fig. 5.13(a) shows a c(2×2) unit cell which applies to the reconstructed sur-
faces to be discussed below. The ideal surface has twelve dangling bonds in the c(2×2)
mesh (eight in the two cubic sections and four on the two hexagons). This is energetically
very unfavorable so that the ideal surface reduces the number of its dangling bonds by
an appropriate reconstruction. Both Si adatom adsorption and carbon dimerization are
conceivable to this end because they can lead to a significant dangling-bond reduction.
As to the hexagonal stripes, it is well-known from related reconstructions of the SiC(0001̄)
surface, that adsorption of Si adatoms can lead to an efficient saturation of carbon dangling
bonds [70, 95, 96]. A Si atom may adsorb in a hollow site above the center of a hexagon
establishing three bonds to its carbon neighbors on the top layer (H3 site) or on top of a
second layer Si atom where it has four neighbors (T4 site), the three C atoms on the top
layer and the Si atom underneath on the second layer. Obviously, the ideal surface has
two equivalent H3 and two equivalent T4 sites in the c(2×2) unit cell which are marked
by the positions H1 and H2 or T1 and T2, respectively, in Fig. 5.13(a).
Concerning the cubic stripes, it is likewise well-known from related reconstructions of
the C-terminated cubic SiC(001) surface that carbon dimerization reduces the number of
dangling bonds significantly [79, 80, 82, 97–101]. The most favorable atomic structure of
this surface [80, 82, 98, 101] turned out to be a staggered configuration of triple-bonded
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Figure 5.13: Top and side views of different reconstruction models of the 4H-SiC(11̄02)-c(2×2)
surface: (a) ideal surface, (b) and (c) staggered bridging-dimer (SBD) model with
the Si adatom in H3 or T4 position, respectively, as well as (d) bridging-dimer row
(BDR) model with Si adatom in H3 position. Si and C surface atoms are represented
by ochre (light gray) and black circles, respectively. The Si adatom is additionally
marked by a crosshatching. The side views in (b) to (d) contain almost exclusively
only the projected atoms from the unit cell. For the definition of the labels, see text.
The grey shaded area equals the (1×1) surface unit indicated in Fig. 5.12.
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5.2. The 4H-SiC(1102)-c(2×2) surface

carbon dimers each of which bridges two Si atoms on the second layer forming the so-
called bridging dimer (BD) model. This structure was found to be very close in total
energy [79, 82, 99–101] to the so-called dimer row (DR) model which features rows of
double-bonded carbon dimers in its top layer. These structures have been discussed in
detail in Chapter 4.2. From the top view of Fig. 5.13(a) it is apparent that on 4H-SiC(1102)
triple-bonded carbon dimers can form along the [1̄101] direction bridging two second-
layer Si atoms. On the other hand, dimers can also form along the perpendicular [1̄1̄20]
direction. In this case, they become double-bonded since each carbon dimer atom is
bound to two Si atoms on the second layer.
Consequently, the different possibilities for separate reconstructions in the hexagonal and
cubic stripes of the fairly large c(2×2) unit cell give rise to a large variety of conceivable
structural models of the 4H-SiC(11̄02)-c(2×2) surface which will be addressed separately
in the following.

Reconstructions with triple-bonded carbon dimers

First, bridging dimer reconstruction models one of which has been proposed by Virojan-
dara et al. [90] on the basis of their experimental data will be analyzed. From an analysis
of LEED intensities and STM images of 4H-SiC(11̄02)-c(2×2) in comparison with those
of a nearly stoichiometric 6H-SiC(0001̄)-(2×2) surface, the authors have infered that a
single Si adatom adsorbs in an H3 site above the center of one of the two hexagons in
the unit cell. Concerning the cubic facets, they have assumed that a staggered pattern
of bridging dimers closely related to the energetically favorable BD model of the cubic
SiC(001)-c(2×2) surface exists on the 4H-SiC(11̄02)-c(2×2) surface, as well. The struc-
ture of this model has been optimized by total energy minimization. To this end, the Si
adatom is placed in an H3 site above the right hexagon (position H2) in the unit cell. The
resulting reconstruction model is shown by a top and a side view in Fig. 5.13(b). The Si
adatom in the H3 site binds to the three subjacent C atoms in a tripod-like configuration
fully saturating their dangling bonds. As a consequence, only one unsaturated dangling
bond, which is basically perpendicular to the surface, remains on the Si adatom. Corre-
spondingly, the Si adatom is labeled as Sid in Fig. 5.13(b). On the other hexagon in the
unit cell only the dangling bond of the C atom that is not directly affected by Si adsorp-
tion [see Fig. 5.13(b)] remains unsaturated. It is also largely perpendicular to the surface.
This C atom is labeled as Cd in Fig. 5.13(b), therefore. In the following the hexagon with
an adsorbed Si atom will be addressed as an occupied and that without a Si adatom as
an empty hexagon. Note that by translational symmetry the Sid and Cd atoms reside on
neighboring hexagons of the structure [see Fig. 5.13(b)]. By this specific Si adsorption,
the positions H1 and H2 at the ideal surface become inequivalent so that the reconstruction
has c(2×2) symmetry.
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On the cubic stripes there are two carbon dimers per unit cell [labeled C1 and C2 in
Fig. 5.13(b)] bridging second-layer Si atoms. They are inequivalent due to their different
positions in the unit cell. By symmetry, these dimers form a staggered bridging dimer
structure (SBD). The respective full reconstruction with the Si adatom in an H3 site is
referred to from now on as SBD-H3 model. The first carbon dimer C1 is formed in the
left half of the left while the second carbon dimer C2 is formed in the right half of the
right cubic stripe. This arrangement is called a l/r dimer configuration if necessary for
clarity. Obviously, not only the l/r dimer configuration but also a r/l configuration (not
shown in Fig. 5.13), as well as a r/r [see Fig. 5.13(d)] and a l/l configuration (not shown
in Fig. 5.13) are compatible with the c(2×2) symmetry constituting conceivable recon-
structions of 4H-SiC(11̄02)-c(2×2), as well. The latter two structures feature bridging
dimer rows (BDR) along the [1̄1̄20] direction and are labeled BDR-H3 reconstructions,
therefore. The appearance of two bridging carbon dimers per unit cell on the top layer
of these four models is accompanied by the formation of two Si dimers on the second
layer which are indicated as Si1 and Si2 in Fig. 5.13(b). They have different distances to
the filled and empty hexagons in the different models and their bonds are fully saturated.
The triple-bonded bridging carbon dimers have no dangling bonds because three of the
valence electrons of each involved C atom fill the C≡C dimer bonds while the remaining
valence electron establishes a bond to a Si atom on the second layer. As a consequence,
there remain only two dangling bonds per c(2×2) unit cell, one on the surface carbon
atom Cd and the other on the adatom Sid. Thus, by these reconstructions the total num-
ber of dangling bonds is drastically reduced from twelve at the ideal to only two at the
reconstructed surfaces giving rise to a correspondingly large energy gain.
Respective reconstruction models with Si adatoms adsorbed in T4 sites need to be con-
sidered, as well. Figure 5.13(c) shows one such model resulting when the Si adatom is
placed in position T1 [cf. Fig. 5.13(a)] and the carbon dimers are distributed as in the
SBD-H3 model in Fig. 5.13(b). Correspondingly, this model is labeled SBD-T4. The
two possible positions T1 and T2 in Fig. 5.13(a) for T4 adsorption remain equivalent after
forming bridging dimers in the cubic stripes since the mirror symmetry with respect to the
central atomic line of the unit cell along the [1̄101] direction is preserved. Therefore, it is
irrelevant whether the Si adatom is placed in the T1 or T2 position. Note that the Sid and
Cd atoms now reside on the same hexagon. Actually, Fig. 5.13(c) shows the l/r SBD-T4
model. Apparently, also for T4 adsorption of Si, the three complementary models with
r/l, r/r and l/l distributions of the carbon dimers are compatible with the c(2×2) sym-
metry. The latter two models again feature briding dimer rows and are labeled BDR-T4
models, accordingly. In total, eight unique reconstruction models have been specified so
far, which involve four different configurations of triple-bonded bridging carbon dimers
on the cubic stripes and Si adatoms in either H3 or T4 sites on the hexagonal stripes of
the surface.
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model BD conf. dSi1 dSi2 dC1 dC2 ∆E ESIC
g EGGA

g

Triple-bonded staggered bridging dimers (SBD)
or bridging dimer rows (BDR)

SBD-H3 l/r 2.61 2.57 1.23 1.24 0.00 1.34 0.14
SBD-H3 r/l 2.55 2.51 1.23 1.24 -0.64 1.29 0.46
BDR-H3 l/l 2.47 2.37 1.22 1.23 -0.61 1.65 0.36
BDR-H3 r/r 2.48 2.46 1.22 1.22 -0.81 1.37 0.20
SBD-T4 l/r 2.60 2.56 1.23 1.23 0.25 1.49 0.06
SBD-T4 r/l 2.60 2.56 1.23 1.23 0.25 1.49 0.06
BDR-T4 l/l 2.44 2.44 1.22 1.22 -0.01 1.52 0.09
BDR-T4 r/r 2.48 2.48 1.22 1.22 -0.30 1.19 0.02

Double-bonded staggered dimers (SD) or dimer pairs (DP)
SD-H3 1.38 1.38 -1.73 1.53 0.28
DP-H3 1.38 1.38 -2.08 1.49 0.26
SD-T41 1.38 1.39 -0.75 1.42 metallic
DP-T41 1.38 1.37 -1.74 1.29 metallic
SD-T42 1.38 1.38 -1.50 1.37 0.04
DP-T42 1.38 1.38 -1.23 1.42 0.02

Bridging dimer (BD) or dimer row (DR) reconstructions of 3C-SiC(001)
BD c(2×2) 2.42 1.23 -0.11 2.46 1.24
DR p(2×1) 1.39 0.00 0.99 metallic

Table 5.2: Dimer bond-lengths (in Å) and total energy differences per unit cell ∆E (in eV) of dif-
ferent reconstruction models of 4H-SiC(11̄02)-c(2×2) referred to the energy of the l/r
SBD-H3 model as resulting from GGA calculations. Respective data for the bridging
dimer and dimer row models of the cubic SiC(001) surface from Wang et al. (Ref. [82])
are given for reference. In this case, ∆E is referred to the DR model. In addition, sur-
face band gaps (in eV) as calculated using self-interaction-corrected (SIC) pseudopo-
tentials are listed together with respective GGA band gaps. For further details, see
text.
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In Table 5.2, calculated bond lengths of carbon and Si dimers, as well as total energies
of the different bridging dimer models are summarized. The latter are refered to the
total energy of the l/r SBD-H3 model. The carbon dimer bond lengths in all four H3
models are near 1.23 Å, which is very close to respective bond lengths of triple-bonded
carbon dimers in acetylene (C2H2) or in the BD model of SiC(001)-c(2×2) (see Table 5.2).
The Si dimers on the second layer adjust their bond lengths accordingly. Due to the
existence of cubic and hexagonal sections in the large unit cell of 4H-SiC(11̄02)-c(2×2)
the Si dimer bond lengths are larger at this surface than at the SiC(001)-c(2×2) surface
(cf. Table 5.2). Among the bridging dimer H3 models the l/r SBD-H3 reconstruction,
suggested previously [90], turns out to be the least favorable. The other three dimer
configurations lead to considerably lower total energies. The different distances of the
top-layer carbon and second-layer Si dimers to the empty and occupied hexagons, on
the one hand, as well as the different bond lengths of the second-layer Si dimers in the
four models, on the other hand, account for the differences in total energy. For example,
the l/r SBD-H3 structure exhibits the largest bond lengths of the Si dimers Si1 and Si2
rationalizing why this structure has the highest total energy. Respective results for the T4
models are given in Table 5.2, as well. In this case, the l/r and r/l configurations of the
SBD model are equivalent by symmetry. Again, the staggered model (SBD-T4) has the
highest total energy because it features the largest bond lengths of the Si dimers on the
second layer, as well. All T4 models have total energies that are considerably higher than
those of the corresponding H3 models. The former are thus less favorable than the latter
with the only exception of the r/r BDR-T4 model which is lower in total energy by 0.3 eV
than the l/r SBD-H3 model. Thus, it appears fairly unlikely that a bridging carbon dimer
configuration combined with Si adatoms in T4 sites occurs at the 4H-SiC(11̄02)-c(2×2)
surface. This conclusion is consistent with the experimental evidence [90].

Reconstructions with double-bonded carbon dimers

In the previous section, triple-bonded bridging carbon dimers have been considered as
building blocks for the reconstructions. However, double-bonded carbon dimers are com-
parably conceivable at 4H-SiC(11̄02)-c(2×2). The related BD and DR row reconstruc-
tions of SiC(001)-c(2×2) differ only slightly in total energy by some 0.1 eV [82, 101]
which does not neccessarily mean that triple-bonded carbon dimers are also more favor-
able at the much more complex 4H-SiC(11̄02)-c(2×2) surface. Therefore, one should
also consider reconstruction models featuring double-bonded carbon dimers. From Fig.
5.13(a) it is obvious that neighboring two-fold coordinated surface C atoms can easily tilt
along the [1̄1̄20] direction towards each other until their free dangling bonds establish a
dimer bond. Neither bond breaking nor bond-length changes are involved. The resulting
C=C dimers can again arrange in staggered or row configurations.
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Figure 5.14: Top views of different recon-
struction models of the 4H-
SiC(11̄02)-c(2×2) surface: (a)
staggered-dimer (SD) and (b)
dimer-pair (DP) models with
the Si adatom in H3 position,
(c) dimer-pair (DP) model with
the Si adatom in T41 position.
For further details, see text and
caption of Fig. 5.13.
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Fig. 5.14 shows top views of three exemplary reconstructions involving double-bonded
carbon dimers. In Fig. 5.14(a) the carbon dimers form staggered dimer (SD) patterns
and the Si adatoms occupy H3 sites (SD-H3). The reconstruction shown in Fig. 5.14(b)
features dimer pairs (DP) with the Si adatom in the same H3 site, as before (DP-H3). In
both of these models there are two possible configurations of the dimers in the two halves
of the unit cell but they are equivalent by symmetry. So there are only two unique H3
structures. The double-bonded carbon dimers are symmetric and there are no Si dimers
on the second layer of these structures. The formation of double-bonded dimers does not
conserve the mirror symmetry of the ideal surface mentioned above. Consequently, the
positions T1 and T2 [see Fig. 5.13(a)] for Si adatom adsorption in a T4 site are no longer
equivalent. Thus, one has to differentiate between models with Si adatoms adsorbed in a
T1 or a T2 position, respectively, which are labeled T41 [as shown in Fig. 5.14(c)] or T42

models, accordingly. Also in both of these cases, there are only two unique structures (SD
and DP) by symmetry.
The carbon dimer bond lengths and total energies of the respective six reconstruction
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models are also listed in Table 5.2. The bond lengths of the carbon dimers in all models
result basically as 1.38 Å as is typical for C=C double-bonds well known from ethane
(C2H4) or the related DR model of the SiC(001)-p(2×1) surface (cf. Table 5.2). Ener-
getically, both the SD-H3 and DP-H3 models turn out to be substantially more favorable
than any of the bridging-dimer models discussed above. Their energy differences with
respect to the l/r SBD-H3 model amount to about 1.73 (SD-H3) and 2.08 eV (DP-H3),
respectively. The difference in total energy of 0.35 eV between these two models origi-
nates from different relaxations in the subsurface layers. The respective T4 models are
again all higher in total energy than their H3 counterparts. Nevertheless, most of them
have total energies that are more than 1 eV lower than those of the respective SBD-T4 and
BDR-T4 models, discussed in the previous section.
Thus, most of the reconstruction models with double-bonded carbon dimers turn out to
be more favorable than those involving triple-bonded bridging carbon dimers in the cu-
bic stripes of the surface. Double-bonded carbon dimers can easily form without bond
breaking or bond-length changes, as described above. The formation of triple-bonded
bridging carbon dimers, on the contrary, neccessitates breaking three Si−C bonds and
forming three new bonds (one carbon dimer bond at the surface, one Si dimer bond on
the second layer and one Si−C bond between the top and second layer). As a conse-
quence, a very delicate balance between the energy loss and gain involved in breaking
three original and forming three new bonds, respectively, determines which reconstruc-
tion mechanism is more favorable. At the SiC(001) surface, the balance is slightly in favor
of the triple-bonded bridging dimers because of the highly symmetric environment both
perpendicular and parallel to the surface. In contrast, the 4H-SiC(11̄02)-c(2×2) surface
is not only different because it exhibits alternating cubic and hexagonal stripes parallel to
the surface but also because it has a considerably more complex structure perpendicular to
the surface. This much more complex environment and the intricate interactions between
the atoms on the respective stripes and in the surface layers result in a different energetic
order of configurations with triple-bonded bridging versus double-bonded carbon dimers
on 4H-SiC(11̄02)-c(2×2) than on the purely cubic SiC(001) surface.
On the basis of the structure optimization results for the fourteen considered reconstruc-
tion models one must conclude that the DP-H3 model constitutes the most favorable re-
construction of the 4H-SiC(11̄02)-c(2×2) surface. Virojanadara et al. [90] have reported
C1s and Si2p core level spectra of the surface. They observed one shifted component
in the C1s and two shifted components in the Si2p spectra, respectively. These surface-
induced shifts were interpreted in terms of the configuration of surface features in the
SBD-H3 model. The same reasoning would apply to the DP-H3 model, so that one can
not identify any model-discerning features from a comparison with the core level spectra.
Finally, a more subtle point concerning the surface reconstruction shall be addressed.
From a purely thermodynamics point of view the DP-H3 model is the most favorable
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Figure 5.15: Minimum energy pathway (in
eV) for the conversion from
the initial DP-T41 to the fi-
nal DP-H3 structure of the 4H-
SiC(11̄02)-c(2×2) surface. The
insets show top views of the
surface atomic structure around
the occupied hexagon. For de-
tails, see text.
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reconstruction. Yet, it is conceivable that under experimental surface preparation condi-
tions [90], the Si adatoms might adsorb in metastable T4 sites. The question then arises
whether the T4 reconstructions are thermodynamically stable or whether they convert
from a metastable T4 to the more stable H3 structure. To additionally investigate the
possibility of such structural conversions between different conceivable reconstructions
respective minimum-energy pathways (MEPs) are determined using the quadratic string
(QS) method as presented by Burger and Yang in Ref. [102]. The QS method is based
on the same idea as the nudged elastic band method [103] but it differs from the latter by
integrating the perpendicular forces on the tangents of the reaction pathway numerically
using a quadratic expansion of the potential energy surface [104].
As an example, Fig. 5.15 shows the MEP from the DP-T41 to the DP-H3 reconstruction.
The local atomic structure around the occupied hexagon is shown in the insets for the ini-
tial, transition and final states. Initially, the adatom moves from the T41 towards the H3
position stretching its bond to the upper C atom (cf. Fig. 5.15) and compressing its bonds
to the other two C atoms. This process obviously involves a steady energy loss. When
the Si atom has arrived in the transition state, its bond to the upper C atom has become
broken. Moving further to the final state, the adatom continuously gains energy until it
eventually occupies the H3 site. In the final state it forms three covalent bonds with the
three subjacent C atoms. Obviously, there is an energy barrier of about 0.4 eV that needs
to be overcome by the Si adatom on its MEP from the T41 to the H3 site. One finds
similar barrier energies for respective T4↔H3 conversions of other reconstruction mod-
els addressed in this work. In view of the fact, that Si adatoms that may adsorb initially
in local minimum T4 sites have sufficient time and energy at high surface preparation
temperature to surmount a barrier of 0.4 eV, one can consider it unlikely that Si adatoms
are observed in T4 sites when the surface is eventually investigated at room temperature.
Structural conversions from models with double-bonded dimers to models with triple-
bonded bridging dimers have been analyzed, as well. For example, for the conversion
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from the SD-H3 to the l/r SBD-H3 model a barrier of some 1.9 eV is found corroborat-
ing that a large energy is involved in creating bridging dimers in the cubic stripes of the
4H-SiC(11̄02)-c(2×2) surface.

5.2.2. Electronic structure

The electronic properties of all reconstruction models optimized in Sec. 5.2.1 has been
investigated employing self-interaction-corrected pseudopotentials. For shortness sake,
only the surface band structures of the energetically most favorable DP-H3 and DP-T41

models, as well as the l/r SBD-H3 model proposed by Virojanadara et al. [90] are pre-
sented and discussed. Figure 5.16(a) shows the surface Brillouin zone (SBZ) and the
respective surface band structures resulting from the SIC-∆ calculations are plotted in
(b) to (d) within an energy range near the fundamental gap from -3 to 5 eV. The grey
shaded areas in the band structure plots indicate the projected bulk band structure of 4H-
SiC(1102). Based on a Mulliken analysis, bands originating from Si or C surface dangling
bonds are marked by ochre (light gray) and black triangles, respectively. Bands originat-
ing from the Si dimers Si1 and Si2 on the second layer of the SBD-H3 model are denoted
by open and full ochre (light gray) circles in (d) while bands originating from the top layer
carbon dimers C1 and C2 are indicated by open and full black circles in (b) to (d), respec-
tively. Since the available photoemission data is limited to the gap energy region [90],
the band structure is only shown in the energy range from -3 to +5 eV. It can be noted in
passing that all three band structures exhibit weakly dispersing C 2s surface bands near
the lower edge of the projected carbon bulk bands around -15 eV and weakly dispering
p-type surface bands within the ionic gap around -10 eV. The fundamental band gaps of
all reconstructions investigated are given in Table 5.2.
The carbon dimers of the DP-H3 model give rise to bonding (C1,2) and antibonding (C∗

1,2)
bands close to the upper and lower edges of the projected valence and conduction bands,
respectively [see Fig. 5.16(b)]. The dangling bonds on the Cd and Sid surface atoms yield
dangling-bond bands which are also labeled Cd and Sid, for simplicty. These bands show
only weak dispersions due to the weak interaction of the respective dangling bonds. The
Cd band is occupied while the Sid band is empty. Charge density contours of respective
surface states at the Y ′ point of the SBZ, shown in Figs. 5.17(a) to (d), confirm the above
assignments. The main contribution to the Sid state originates form the empty dangling
bond at the Si adatom in H3 position [see Fig. 5.17(a)] but there are also contributions at
the three subjacent C atoms (only one lies in the drawing plane). The dominant contribu-
tion to the Cd state apparently comes from the occupied dangling bond at the Cd surface
atom [see Fig. 5.17(b)]. The charge density in Fig. 5.17(c) clearly exhibits the bonding
character of the C1 state while the charge density in Fig. 5.17(d) shows a nodal plane
between the two C atoms of the C1 dimer confirming the antibonding character of the C∗

1
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Figure 5.16: Surface Brillouin zone (a) and sections of the band structures of the DP-H3 (b),
DP-T41 (c) and the l/r SBD-H3 (d) models, as resulting from SIC-∆ calculations.
Bands that can uniquely be assigned to Si or C atoms are marked by ochre (light
gray) and black symbols. Triangles represent bands originating from surface atoms
featuring dangling bonds while open and filled circles represent bands originating
from Si and carbon dimers.

state.
The DP-T41 model exhibits largely similar surface bands [see Fig. 5.16(c)]. Those orig-
inating from the bonding and antibonding states of the carbon dimers are only slightly
affected by the change of the Si adsorption site from H3 to T41. Only the splitting of the
C∗

1,2 dimer bands is somewhat larger than in the DP-H3 band structure which appears to
be due to the structural differences in the hexagonal stripes of the DP-T41, as compared
to the DP-H3 model [cf. Fig. 5.14(b) and (c)]. The charge densities of respective states
are very similar to those of the DP-H3 model and not shown, therefore.
The band structure of the SBD-H3 model in Fig. 5.16(d) shows two characteristic dif-
ferences to the former band structures. On the one hand, the bonding and antibonding
bands originating from the triple-bonded C≡C dimers occur lower and higher in energy,
respectively, than in the DP models whose C=C bonds are comparatively weaker. In ad-
dition, the SBD-H3 model features Si dimers on the second layer (not occuring in the DP
models) which give rise to two bonding dimer bands indicated as Si1,2 residing slightly
above the projected bulk valence bands and two antibonding dimer bands indicated as
Si∗1,2 which are close in energy to the antibonding bands of the carbon dimers. The charge
density in Fig. 5.17(e) confirms this assignment showing that a large contribution to the
Si1 state originates from the Si1 dimer. In addition, admixtures from the neighboring C
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Figure 5.17: Charge density contours (in 10−2a−3
B ) of the Sid, Cd, C1, C∗

1 and Si1 states at the Y ′

point of the SBZ. Si and C atoms are depicted by ochre (light gray) and black dots,
respectively. Filled (open) symbols represent atoms within (outside) the drawing
pane. Panels (a) to (d) show charge densities of the DP-H3 model of 4H-SiC(11̄02)-
c(2×2) surface while (e) shows one charge density of the SBD-H3 model. Panels
(a), (b) and (e) are plotted in the [1̄101]-[11̄02] plane while panels (c) and (d) are
plotted in the [1̄1̄20]-[11̄02] plane containing the carbon dimer C1.
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atom on the next subsurface layer, as well as from the C1 dimer at the top layer contribute
to this state.
The ARUPS data presented in Ref. [90] exhibit a band gap of at least 1 eV and four oc-
cupied bands (labeled S1-S4) which were tentatively interpreted as resulting from surface
states or surface resonances since they were found to be more sensitive to surface con-
tamination than other measured valence band features. Only the band S1, which occurs
highest in energy, could clearly be identified as a surface state band since it appears in the
projected bulk band gap. It has a very weak dispersion of 0.1±0.05 eV, only. The other
three bands show more pronounced dispersions in sections of the SBZ. For example, the
band S2, observed 0.7 eV below the S1 band at Γ, exhibits a dispersion of 0.55 eV from
the Y to the X point. It was assigned to the Si adatoms on the hexagonal stripes. Since
the valence band maximum (EVBM) could not be identified in experiment, the bands S2-S4
could not definitely be attributed to particular surface states or resonances. The surface
band structures are refered to EVBM. Therefore, one can not directly compare them with
the ARUPS data on an absolute energy scale. Nevertheless, it appears fairly clear that the
band S1 observed in experiment originates from the weakly dispersing occupied carbon
dangling bond band Cd resulting in all three band structures [see Figs. 5.16(b) to (d)].
Likewise, all three calculated band structures show surface band gaps larger than 1 eV
(cf. Table 5.2) which is consistent with the experimentally determined gap, as well. The
interpretation of the S2 band suggested in Ref. [90] as resulting from the Si adatoms on
the hexagonal stripes, contradicts the results of the present calculations in that the dan-
gling bonds on the Si adatoms are empty, as noted above. There are, however, groups of
occupied bands (C1,2 or Si1,2, respectively) below the Cd band in the band structures of
the DP-H3 and SBD-H3 models [see Figs. 5.16(b) and (d)] which could be related to the
measured S2 band. The C1,2 bands in the band structure of the DP-H3 model in fact occur
only about 0.5 eV below the Cd band at Γ, but their dispersion of 0.55 eV is in excellent
agreement with experiment. The Si1,2 bands of the SBD-H3 model indeed occur 0.7 eV
below the respective Cd band, which would be in agreement with experiment, but they
actually show only a very weak dispersion in contradiction to experiment. As to the mea-
sured bands S3 and S4, there are no direct counterparts in the calculated band structures
[see Figs 5.16(b) to (d)]. The energy range from 0 to −3 eV has been scrutinized looking
for pronounced surface resonances but none could be identified. This discrepancy could
be related to bulk states with a small k⊥ dispersion giving rise to uncertainties in the band-
mapping carried out in experiment [90]. To this end the bulk band structure of 4H-SiC
for k⊥ along the surface normal has been calculated as shown in Fig. 5.18. As a matter of
fact, two groups of rather flat bulk bands are found in the energy region in question.
In general, the calculations in this work yield band gaps for all fourteen presented models
of the 4H-SiC(11̄02)-c(2×2) surface in the range of 1.19 to 1.65 eV (cf. Table 5.2). They
are fairly similar due to the similar nature of the states forming the gap and all of them
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Figure 5.18: Band structure of bulk 4H-SiC
for k⊥ along the surface nor-
mal of 4H-SiC(11̄02)-c(2×2).
On this energy scale, two only
weakly dispersing groups of
bands can be identified.

are consistent with the gap estimated from photoemission [90]. This corroborates that
band gaps alone are not suitable to discern between different reconstruction models by
comparison with experiment for the surface at hand.

5.2.3. Scanning tunneling microscopy

Scanning Tunneling Microscopy (STM) makes use of the physical phenomenon of elec-
trons tunneling through a barrier. In the particular situation as depicted in Fig. 5.19, a
thin metallic tip is positioned at a distance d in the order of a couple of Å from a sample
surface. The electronic wave functions of the probe and the sample overlap. If one applies
a bias voltage V to this system, a tunneling current I flows. The magnitude of the current
depends on the overlap of the wave functions and thus is a function of the distance d. A
simple estimate for the current is based on the assumption of a one-dimensional tunneling
effect between two planar electrodes. In the case of a small voltage, i.e. much smaller
than the work function W , it holds that

I ∼ V exp(−2κd), (5.12)

with κ = ~−1
√

2mW . It is apparent that the tunneling current decreases by roughly an
order of magnitude if the distance is increased by 1 Å. This leads to a possible vertical
resolution of about 0.01 Å, while the lateral resolution is determined by the dimension of
the tip.
A three-dimensional sampling of the surface can be achieved by moving the tip parallel
to the surface. Two basic operational modes can be used:

1. Constant Current Mode
In the Constant Current Mode, the vertical position of the tip is adjusted at each
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Figure 5.19: Schematic setup of a scanning
tunneling microscope.

dV

I
probe

sample

sampled position parallel to the surface such that the tunneling current remains
constant. The image of the surface is determined by the respective tip position
z(x, y).

2. Constant Height Mode
If the STM is operated in the Constant Height Mode, the vertical position z is kept
constant and the tunneling current I(x, y) is measured as a function of the lateral
position. Typically this is only suitable for comparatively smooth surfaces.

For any detailed interpretation of such images the simple model used above based on two
planar electrodes is not realistic enough. A more sophisticated approach is that of Tersoff
and Hamann [105]. Here the tip is assumed to be a small sphere located at the position
r0. The tunneling current follows as

I ∼
∑

ν

|ψν(r0)|2δ (Eν − EF − eU) ≈ n(r0, EF − eU) , (5.13)

where ψν(r0) is the wave function of the sample at the position of the tip. Consequently,
the current is proportional to the local charge density n(r0, EF − eU) at the surface. Note
that depending on the applied voltage U , both occuupied and empty states can contribute
to this density. The resulting image is a constant local density contour plot. As ψν decays
exponentially from the surface, the same holds for I . In metals, for which Eq. (5.13) holds,
the local density is closely related to the atomic structure of the surface so that a realistic
representation of the atomic configuration is achieved. However, for semiconductors, this
notion does not directly apply.
When STM images are calculated in the framework of the Tersoff-Hamann approach
[105], the constant-current operational mode is simulated by calculating topograms of
constant charge density above the surface. To this end, at first the three-dimensional
charge density n(r, E ± ∆E) formed by all bands residing in the energy window E −
∆E ≤ E ≤ E + ∆E is calculated. A fixed n0 is chosen and the topogram, i.e.
z(r‖;n0, E), is determined by solving n(r‖, z;E) = n0 = const. by linear interpolation
with respect to z for every r‖. As the resulting topogram is very ragged, it is smoothed by
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folding it with a Gaussian according to

z̃(r‖;n0, E) =
π

α

∫
e−α(r‖−r′‖)2z(r′‖;n0, E) d2r′‖ , (5.14)

where α is a suitably chosen decay constant. In the following α = 2 (in atomic units)
has been chosen. z̃(r‖;n0, E) is finally plotted and can be compared to experimentally
determined STM images.
From the discussion of the band structures of different reconstruction models in Sec. 5.2.2
it has become quite evident that a comparison of the calculated surface band structures
with the ARUPS data [90] is not sufficiently instructive to unequivocally conclude which
model has actually been observed in experiment. However, the band structures of the
DP-H3 and SBD-H3 models in Figs. 5.16(b) and (d) reveal that it is possible to identify
other features that might be useful to resolve this question. The carbon dimers giving rise
to the antibonding bands C∗

1,2, residing within the projected bulk band gap region as true
surface state bands, are oriented orthogonally in the DP and SBD models, respectively.
In addition, antibonding Si dimer bands Si∗1,2 occur in the same energy region as the C∗

1,2

bands of the SBD model, only. It is to be expected, therefore, that empty state STM
images at bias voltages corresponding to that particular energy region show characteristic
differences for the two models.
In Fig. 5.20 calculated constant-current STM images for specifically chosen empty states
of the SBD-H3 and DP-H3 models are shown. The images in the upper (lower) panels
were calculated for a bias voltage of 1.5 V (3.7 V, respectively) above the highest oc-
cupied surface state with an energy window of ∆E=0.25 eV. At a bias voltage of 1.5 V,
only states of the empty Sid band, which is present in both surface models at the same
energy, can contribute to the images. As a consequence, the STM images in the top pan-
els of Fig. 5.20 which only sample the hexagonal stripes are largely similar. The bright
protrusions originate from the empty dangling bonds on the Si adatoms in H3 sites and
their almost triangular shape arises from the charge-density contributions of the antibond-
ing states of the Si−C bonds to the three subjacent C atoms, as discussed above [cf.
Fig. 5.17(a)]. Obviously, the spatial arrangement of the protrusions exhibits the c(2×2)
symmetry of the surface. An arrangement of similar protrusions is seen in experiment, as
well [90]. This finding corroborates that the dangling bonds at the Si adatoms are empty,
indeed, rather than occupied, as conjectured in the interpretation of the ARUPS data [90]
(cf. Sec. 5.2.2). Likewise, the vertical and horizontal distances of the bright protrusions
results as 6.22 and 11.51 Å from the calculations in good accord with the experimentally
determined distances of 6.16 and 11.42 Å, respectively, given the fact that GGA overes-
timates lattice constants by about 1%. The above results yield only information on the
distribution of the Si adatoms on the hexagonal stripes since only states of the empty Sid

band are sampled.
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SBD−H3 DP−H3

Figure 5.20: Calculated constant-current STM images for empty states of the SBD-H3 (left panel)
and DP-H3 (right panel) models of the 4H-SiC(11̄02)-c(2×2) surface. The upper and
lower panels show images calculated at bias voltages of 1.5 and 3.7 V, respectively,
with an energy window of ±0.25 eV in both cases. One exemplary surface unit cell
with the respective atoms is superimposed on both images.
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To become more sensitive to the different dimers and their different arrangement on the
cubic stripes of the SBD and DP models, STM images for more appropriate ranges of
the bias voltage have been calculated. Respective STM images simulated again with an
energy window of ±0.25 eV at a bias voltage of 3.7 V are shown in the lower panels
of Fig. 5.20. In these energy ranges the previously mentioned antibonding carbon dimer
states C∗

1,2 are accessible for both reconstructions. Their nature and origin is very different
in the two models, as discussed before. As a consequence, entirely different STM images
result now sampling the cubic stripes of the surface. Very amazingly, at a first glance,
the STM image for the SBD model shows straight rows of somewhat intricate protrusions
along the [1̄1̄20] direction, pretending a 2×2 reconstruction, although the carbon dimers
are arranged in a staggered pattern. This is due to the fact that not only the antibonding
carbon dimer states C∗

1,2 but also the antibonding Si dimer states Si∗1,2 on the second layer
[see Fig. 5.16(d)] contribute to this image. Thus, if 4H-SiC(11̄02)-c(2×2) reconstructs in
the SBD-H3 model, an experimental confirmation of the full structure by STM from the
subtle intensity variations originating from the antibonding carbon and Si dimer states,
respectively, could be very difficult.
In contrast, the respective STM image of the DP-H3 model calculated at 3.7 V turns out
to be much more clear-cut. From the lack of Si dimers in this model it follows that the
image only contains contributions from the antibonding C∗

1,2 states of the C=C dimers.
As a consequence, the simulated image in the lower right panel of Fig. 5.20 clearly reveals
the pair configuration of the double-bonded carbon dimers at the 4H-SiC(11̄02)-c(2×2)
surface. The dimer pairs occur at different heights in the left and right cubic stripes. The
nodal plane in the middle of the individual dimer bonds is clearly revealed as was the
case in the side view of the charge density in Fig. 5.17(d). Note that the STM image is
plotted in a plane orthogonal to the plotting plane of the charge density. The dimer pair
arrangement in the DP-H3 model thus gives rise to very localized signals in the calculated
STM image.
Given these substantial differences of empty-state STM images in the SBD-H3 and DP-
H3 models, experimental images taken at respectively large bias voltages should yield a
clear indication of the type of carbon dimers forming on the 4H-SiC(11̄02)-c(2×2) surface
and their spatial arrangement thus allowing for an identification of the surface structure
not only in the hexagonal but also in the cubic stripes.

5.3. Summary

The surface atomic and electronic structure of fourteen distinctly different reconstruction
models of the 4H-SiC(11̄02)-c(2×2) surface has been investigated by ab initio GGA and
SIC calculations, respectively. Si adatom adsorption on the hexagonal stripes of the sur-
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face in H3 and T4 positions, as well as a number of configurations of triple-bonded bridg-
ing C≡C dimers or double-bonded C=C dimers on the cubic stripes have been considered.
All reconstruction models investigated exhibit only two surface dangling bonds while the
ideal surface has twelve dangling bonds per unit cell. The DP-H3 reconstruction model
featuring Si adatoms in H3 sites on the hexagonal stripes and pairs of double-bonded car-
bon dimers on the cubic stripes is found to be energetically most favorable. The results
suggest that Si adatoms which might conceivably adsorb initially in metastable T4 sites
convert to the most stable H3 sites during experimental preparation of the surface at high
temperature. Therefore, it is not to be expected that Si adatoms are found in T4 sites
when the surface is eventually investigated at room temperature. The surface electronic
structure of the two energetically most favorable reconstructions (DP-H3 and DP-T41)
and that of the previously suggested staggered bridging dimer model with Si adatoms in
H3 sites (SBD-H3) as calculated using the SIC-∆ approach has been discussed in com-
parison with ARUPS data. So far, this comparison showing several good agreements but
also some disagreements between theory and experiment is not yet sufficiently revealing
to allow for an identification of the true reconstruction of 4H-SiC(11̄02)-c(2×2). Finally
STM images have been reported which reveal that particular empty-state STM topograms
could resolve the question when the bias voltage is chosen appropriately. Nevertheless,
a decisive structure identification by comparing theory with the available experimental
data is not yet possible, at present. This situation calls for a joint experimental (LEED,
STM, CLS, ARUPS) and theoretical (total energy, band structure, charge densities, STM
images) investigation which would try to narrow down the number of possible structures
to a very few and then investigate these candidates in great detail by as broad a spectrum
of methods as possible.
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Chapter 6.

Bulk and surface properties of
alkaline-earth metal oxides

After having studied the electronic structute of bulk silicon carbide polytypes and some
selected surfaces using the SIC approach with considerable success, it is to be expected
that the description of properties of materials with related chemical characteristics will
also be positively influenced by this method.
The alkaline-earth metal oxides constitute a technologically relevant class of materials.
With the exception of beryllium oxide (BeO) the remaining group-II-oxygen compounds
(MgO, CaO, SrO, and BaO) crystallize in the sodium chloride structure and thus share
many physical properties. Due to the highly ionic character of all five compounds, any
study of their properties relying on the SIC pseudopotential approach should yield not
only qualitatively but also quantitatively convincing results.
The first section of this chapter will deal with the structural and electronic properties of
BeO and its (1010) surface. The hexagonal crystal structure of this oxide discerns it from
the remaining alkaline-earth metal oxides and is separately treated in this work, therefore.
In the second section, the properties of bulk MgO, CaO, SrO, and BaO will be analyzed
collectively. For their (001) surfaces, the nature of the unoccupied electronic structure
will be scrutinized with respect to the occurrence of image-potential states.

6.1. Atomic and electronic structure of BeO and the
BeO(1010) surface

The alkaline-earth metal oxides play a vital role as supports in catalysis [106–108]. BeO
is special in this class of materials in that it crystallizes in the hexagonal wurtzite struc-
ture while the other alkaline-earth metal oxides crystallize in the cubic sodium chloride
structure. This indicates that the Be−O chemical bond is not exclusively ionic but has
also some covalent character. BeO is of technological importance, e.g., as catalyst, for
semiconductor devices and as moderator in nuclear reactors. For semiconductor device

117



Chapter 6. Bulk and surface properties of alkaline-earth metal oxides

applications an understanding of the geometric and electronic properties of bulk BeO and
its surfaces is highly desirable. As to more complex structures, very recently graphitic
BeO nanofilms have been shown to be useful as precursors in the growth of wurtzite
films [109] and BeO nanotubes have been investigated [110], as well.
The electronic structure of bulk BeO has been studied previously in experiment and by
first-principles calculations employing standard LDA [111,112], generalized gradient ap-
proximation [112] and Hartree-Fock [112] (HF) calculations. While LDA and GGA cal-
culations yield a band gap that is significantly too small, HF calculations often yield too
large band gaps and valence-band widths. The atomic structure of BeO has been studied
by Chang and Cohen [111], as well as by Van Camp et al. [113] employing LDA total
energy minimization. Both studies show that the ground state configuration of BeO is the
wurtzite structure. According to Ref. [113] it is slightly more stable than the zincblende
structure, the total energy difference per unit cell being as small as 5.6 meV. The atomic
structure of the BeO(101̄0) surface has been calculated by Jaffe and Zapol employing HF
total energy minimization [114]. The electronic structure of the BeO(101̄0) surface has
not been previously investigated.
According to the previous results, it appears that standard LDA calculations fail to de-
scribe the band gap of bulk BeO appropriately. As a consequence, the electronic structure
of BeO surfaces can not result very accurately from such calculations. Therefore, SIC
pseudopotentials are employed to evaluate the atomic and electronic structure of BeO.
In the standard LDA reference calculations nonlocal, norm-conserving ab initio pseu-
dopotentials in separable Kleinmann-Bylander form [31] are employed, as usual. The
pseudopotentials are constructed according to the prescription of Hamann [94]. To ex-
pand the wave functions, three shells of Gaussian orbitals of s, p, d, and s∗ symmetry per
atom are used. The decay constants (in atomic units) 0.18, 0.40, 0.90 for Be and 0.30,
0.90 and 3.50 for O, respectively, yield results with good convergence.
In a first step, O 2s, O 2p and Be 2s atomic term values are calculated within SIC accord-
ing to the prescription of Perdew and Zunger [13] and respective atomic SIC pseudopo-
tentials are constructed. By construction, the overlap of the atomic SIC pseudopotentials
in the solid is largely eliminated by the transfer procedure and the self-interaction correc-
tion of the extended Be 2s conduction band states is mostly suppressed while it is fully
operational in the localized O 2p and O 2s valence bands.

6.1.1. Properties of the BeO bulk crystal

Structural properties of BeO as calculated using the formalism developed in Sec. 3.4 are
summarized in Tab. 6.1 together with respective LDA results for comparison. Lattice con-
stants are usually slightly underestimated in LDA, amounting in the current case to 1.3%
for a and 0.8% for c, respectively. The agreement of the structure parameters resulting in
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Table 6.1: Calculated lattice constants a, c
and internal parameter u (in Å),
a/c ratio and bulk modulus B (in
Mbar) of wurtzite BeO in compar-
ison with experiment.

LDA SIC Exp

a 2.664 2.689 2.699a,b

c 4.337 4.380 4.373a, 4.38b

u 0.377 0.377 0.378a

c/a 1.628 1.629 1.620a, 1.623b

B 2.24 2.21 2.10a, 2.24c, 2.49d

afrom Ref. [115]
bfrom Ref. [116]
cfrom Ref. [117]
dfrom Ref. [118]

SIC with the experimental values is very good, indeed. The lattice constant a is under-
estimated by 0.4 % and the calculated c value overestimates one of the two experimental
values by 0.2 %, only, while it agrees with the other. Comparing LDA and SIC lattice
constants it can be recognized that the latter show an increase of about 1 %. The c/a ratio
and the internal structure parameter u result very close in both LDA and SIC. The calcu-
lated c/a ratios are slightly larger while the experimental ratios are slightly smaller than
the ideal ratio of 1.625 and they agree with experiment to better than 0.6 %. The SIC bulk
modulus is smaller than the one resulting in LDA due to the increased lattice constants.
Both agree reasonably well with the more recent experimental value of 2.10 Mbar [115]
with the SIC value being slightly closer. The same general improvements have been ob-
served in bulk lattice constants and bulk moduli in SIC as compared to LDA previously.
For the cohesive energy of bulk BeO values of 14.72 eV in LDA and 13.63 eV in SIC
per BeO pair are obtained. Lambrecht and Segall [119] have previously reported a theo-
retical value of 13.5 eV. All values are somewhat larger than the estimated experimental
value [119] of 12.2 eV.
Figures 6.1 and 6.2 show the bulk band structure and the density of states of wurtzite BeO
as resulting in standard LDA and SIC, respectively. For a meaningful comparison, in both
cases the theoretical bulk BeO structure is used, as optimized in SIC (see Table 6.1), which
agrees most closely with experiment. In Table 6.2 some band-structure energies at high-
symmetry points of the bulk Brillouin zone are compiled. The general topology of the
LDA and SIC band structures in Fig. 6.1 is largely similar. Both exhibit two O 2s bands
in the lower and six O 2p bands in the upper valence-band energy region, separated by
a large ionic gap (E ion

g ). The former give rise to one pronounced peak while the latter
yield a double peak structure in the DOS (see Fig. 6.2). The conduction bands originate
predominantly from Be 2s states. They are separated by a large fundamental band gap
(Eg) from the top of the valence bands. The large size of the ionic and the fundamental
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Figure 6.1: Bulk band structure of BeO along high-symmetry lines of the bulk Brillouin zone
calculated in standard LDA (left panel) and SIC (right panel). The experimental gap
energy is indicated by the horizontal dashed line.

gap is typical for a highly ionic insulator.
Comparing the LDA and SIC band structures, similarities and very significant quantitative
differences are to be noted. The lower O 2s valence bands have very similar dispersion
(see Fig. 6.1) and bandwidths Ws (see Tab. 6.3) but in LDA they occur about 1 eV higher
in energy than in SIC. As a consequence, their spectral distribution in the DOS is similar
but the O 2s peak results in LDA about 1 eV higher in energy than in SIC. The upper
O 2p valence bands resulting in LDA and SIC are very similar in dispersion and band-
width Wp (see Table 6.3) and so are their spectral distributions in the DOS (see Fig. 6.2).
The total valence-band width Wtot is 18.77 eV in LDA while it is 19.88 eV in SIC (see Ta-
ble 6.3). This increase in Wtot mainly originates from a stronger SIC-induced lowering of
the O 2s as compared to the O 2p valence bands. The Be 2s conduction bands result much
lower in LDA than in SIC. The LDA band gap energy is 7.36 eV strongly underestimating
the measured gap energy of 10.6 eV [120,121], as usual. The underestimate is 3.24 eV or
about 30% in the case at hand. The SIC gap energy of 10.5 eV, on the contrary, is in ex-
cellent agreement with the measured values (see Table 6.3). The DOS in Fig. 6.2 clearly
reveals the main SIC effects. Basically the same O 2p bands result in LDA and SIC, while
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6.1. Atomic and electronic structure of BeO and the BeO(1010) surface

Figure 6.2: LDA and SIC density
of states of bulk BeO
(Lorentzian broadened
by 0.2 eV). -20 -15 -10 -5  0  5  10  15
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Energy (eV)

O 2s O 2p

Be 2s

LDA
SIC

Γ1v Γ3v Γ6v Γ1c K2v K2c H3v H3c

LDA -18.77 -6.41 0.00 7.36 -2.40 8.80 -1.36 11.48
SIC -19.88 -6.53 0.00 10.50 -2.52 11.70 -1.40 14.39

A5,6v A1,3c M4v M1c L1,2,3,4v L1,3c

LDA -0.53 9.67 -0.94 9.55 -1.79 8.79
SIC -0.61 12.76 -1.01 12.44 -1.88 11.77

Table 6.2: Band-structure energies of BeO at high-symmetry points of the bulk Brillouin zone, as
resulting in LDA and SIC.

LDA yields a smaller ionic (about 1 eV) and a much smaller fundamental (about 3 eV)
gap. Comparing the LDA and SIC band structure energies of the lowest conduction band
in Table 6.2 it must be noted that the SIC-induced upward shift is largest for the Γ1c state
amounting to 3.14 eV and smallest for the M1c state amounting to 2.89 eV. Thus the con-
duction bands are not shifted rigidly by SIC. Instead, their dispersion changes, e.g., by an
increase of 0.25 eV for the lowest conduction band. Certainly, this value is small on the
scale of the global band-gap improvement of 3.14 eV or the full width of the lowest con-
duction band. Yet, it is not negligible showing that a rigid shift of the conduction bands
simply does not apply.
Naturally, the theoretical results should be compared with the experimental data com-
piled in Table 6.3. It has been noted already that SIC yields the band gap almost quan-
titatively while LDA underestimates its value by some 30%. The measured band width
Ws of the O 2s bands [112] is smaller than the calculated values and previous theoreti-
cal results [111, 112]. Experimental literature data for the width Wp of the O 2p valence
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LDA SIC Exp

Eg 7.36 10.50 10.6a, 10.63±0.1b

E ion
g 9.79 10.84

Ws 2.57 2.51 1.7±0.2c

Wp 6.41 6.53 4.7±0.2c, 6.8d, 8.8e, 10.8f

Wtot 18.77 19.88 19.4±0.3c, 19.5e, 20.0g 21.3f

afrom Ref. [120]
bfrom Ref. [121]
cfrom Ref. [112]
dfrom Ref. [122]
efrom Ref. [123]
ffrom Refs. [124] and [125]
gfrom Ref. [126]

Table 6.3: Calculated LDA and
SIC gap energies of
the fundamental and
ionic gap (Eg, Eion

g ),
as well as O 2p, O 2s
and total valence-band
widths (Wp, Ws, Wtot),
in comparison with
experimental data (in
eV).

bands, many of which have been measured already quite some time ago, span a consid-
erable range in energy (see Table 6.3). In view of the results of this work, as well as
of several earlier theoretical results [111, 112], the value of 6.8 eV determined in x-ray
photoemission spectroscopy [122] appears to be the most realistic. In particular, the en-
ergy separation of the two peaks of the O 2p double peak structure in the DOS results as
3.7 eV from SIC calculations in close agreement with the experimental XPS value [122]
of 3.9 eV. It should be noted that the relatively small bandwidths of Ws=1.7±0.2 eV and
Wp=4.7±0.2 eV, as measured by transmission electron spectroscopy [112], can neither be
reconciled with the theoretical values nor with previous ab initio results [111] including
the LDA and GGA results of the authors of Ref. [112] themselves. The published data
for the total valence-band width Wtot show considerable scatter, as well (see Table 6.3).
While the valence-band width is clearly defined in one-particle theory as the energy dif-
ference between the Γ6v and the Γ1v band-structure energies, its determination from XPS
or ultraviolet photoemission spectroscopy (UPS) data may be somewhat uncertain due
to manybody effects as well as instrumental broadening, thermal broadening or surface
charging effects making it difficult to directly compare photoemission DOS measurements
with calculations, as has been pointed out already previously [127]. The contribution of
the lower part of the O 2s valence bands around Γ to the DOS is very small due to the
correspondingly restricted phase space. Therefore, the determination of the experimental
valence-band width from a wave-vector integrated XPS or UPS spectral feature related to
the O 2s bands might be complicated as is obvious already in the DOS shown in Fig. 6.2.
While the theoretical valence-band width in SIC results as 19.88 eV, the respective DOS
in Fig. 6.2 shows already an increase of the width to more than 20 eV due to the 0.2 eV
Lorentzian broadening. This increase in the width would even be larger if instrumental
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6.1. Atomic and electronic structure of BeO and the BeO(1010) surface

Figure 6.3: Schematic side view of
the BeO(101̄0) surface
with the structure pa-
rameters defining the
relaxation. For their
actual values, see Ta-
ble 6.5.
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broadening of the spectra would be larger than 0.2 eV, as is often the case. Taking these
complicating facts into consideration, the theoretical valence-band width Wtot resulting in
SIC appears to be in better agreement with experiment than the LDA bandwidth which is
about 1 eV smaller (see Fig. 6.2 and Table 6.3).
In summary, the SIC approach appears to yield a very reliable band structure together with
the associated wave functions for the BeO bulk crystal. It can therefore be considered
as a trustworthy effective one-particle band theory for BeO. In particular, the SIC band
gap is in excellent agreement with experiment so that the usual LDA shortcomings in
describing gap energies seem to be conquerable for the highly ionic insulator BeO by
taking self-interaction corrections into account. The SIC results are in good agreement
with the majority of the experimental data. Therefore, the bulk band structure resulting
from SIC calculations can serve as a reliable basis for electronic structure calculations of
more complex BeO structures.

6.1.2. Structural and electronic properties of the BeO(1010)
surface

In this section, the structural and electronic properties of the nonpolar BeO(101̄0) surface
are addressed. There is one Be and one O atom per (101̄0) layer unit cell so that the
surface is nonpolar. The supercell approach is employed with a slab of ten BeO layers
per supercell and a 16 Å thick vacuum layer between BeO slabs. Six special k‖-points are
used to carry out sums over the surface Brillouin zone. As it turns out, ten BeO layers per
slab are sufficient to electronically decouple its two equivalent surfaces.
The surface atomic structure of BeO(101̄0) has been investigated previously by Jaffe
and Zapol [114] using an ab initio Hartree-Fock supercell approach considering slabs
of six BeO layers per supercell. To find out whether thicker slabs are needed for the
determination of the surface atomic structure, the relaxation geometry has been optimized
using six, eight and ten BeO layers per slab at the theoretical LDA bulk lattice constants.
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The relaxation geometry is schematically shown in Fig. 6.3. The actual displacements of
the Be and O atoms on the first and second layer in surface-parallel (∆x) and surface-
perpendicular (∆z) direction are compiled in Table 6.4.
Obviously, the atomic displacements converge very fast to their final values when the
slab thickness is increased from six to ten layers. For eight layers, the displacements are
already very close to those for the ten layer slab while some of them show small deviations
for the six layer slab. The latter are insignificant, however, since the respective absolute
displacements are very small. Nevertheless, a ten layer slab is employed in the electronic
structure calculations addressed in the next section since specific states on the top and
bottom layer of the slabs show interaction effects of longer range than the total valence
charge density entering the structure optimization.
The displacements of the Be and O atoms on the first and second surface layer compiled in
Table 6.4 highlight already the basic structural changes occuring upon relaxation. These
are most pronounced for Be on the surface layer. The Be cations move significantly down-
ward perpendicular to the surface by 0.24 Å and parallel to the surface by 0.13 Å. The O
anions move only slightly downward perpendicular to the surface by 0.03 Å and parallel
to the surface by 0.04 Å. They thus basically remain in their ideal surface positions. This
is typical for a highly ionic surface. The more electronegative O anions stay on top of
the surface to reduce the Coulomb repulsion of the surface electrons with the backbonds.
The more electropositive Be cations move strongly downward forming planar arrays with
their three neighboring O anions to increase the electrostatic ion-ion attraction as much
as possible. The Be and O atoms, forming BeO dimers in the top layer, move closer
to each other by 0.17 Å. This corresponds to a contraction of the dimer-bond length by
about 10%. The Be and O atoms in the second layer move slightly upward with respect
to their positions at the ideal surface. As a consequence, of the downward movement of
the first and the upward movement of the second layer atoms, the backbond lengths are
contracted by 3 %. This relaxation is another example of the bond-lengths contracting

6 layers 8 layers 10 layers
atom ∆x ∆z ∆x ∆z ∆x ∆z

Be1 + 0.135 - 0.238 + 0.130 - 0.235 + 0.130 - 0.235
O1 - 0.036 - 0.035 - 0.041 - 0.029 - 0.041 - 0.027
Be2 - 0.027 + 0.097 - 0.037 + 0.095 - 0.037 + 0.095
O2 - 0.012 + 0.053 - 0.017 + 0.050 - 0.017 + 0.048

Table 6.4: Relaxation-induced displacements of first and second layer Be and O atoms (indices
1 and 2, respectively) relative to their positions at the ideal surface (in Å) calculated
using slabs of six, eight and ten BeO layers per supercell.
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6.1. Atomic and electronic structure of BeO and the BeO(1010) surface

Table 6.5: Structure parameters of the
BeO(101̄0) surface, calculated
at the respective theoretical bulk
lattice constants, as resulting
from this work and previous
HF structure optimization [114]
(Lengths in Å and bond angle
rotations in ◦).

this work ab initio HF

ideal relaxed ideal relaxed

∆1⊥ 0.00 0.21 0.00 0.11

∆1x 2.70 2.87 2.69 2.86

∆2⊥ 0.00 -0.05 0.00 -0.05

∆2x 2.70 2.68 2.69 2.70

d12⊥ 0.77 0.44 0.77 0.43

d12x 2.17 2.34 2.17 2.27

d23⊥ 1.54 1.63 1.55 1.69

d23x 2.17 2.21 2.17 2.15

ω1 0.0 8.1 0.0 4.1

ω2 0.0 -1.6 0.0 -1.7

d1 1.64 1.48 1.65 1.48

d2 1.64 1.66 1.65 1.63

d3 1.63 1.58 1.63 1.56

d4 1.63 1.57 1.63 1.56

rotation relaxation characteristic for heteropolar ionic surfaces, as observed previously,
e.g., for SiC(110) [75] or ZnO(101̄0) [128, 129]. The physical origins of this type of
relaxation as opposed to the bond-lengths conserving rotation relaxation, typically en-
countered at (110) surfaces of III-V compound semiconductors, have been discussed at
length before [75, 114, 128–130].
Most often structure parameters, as defined in Fig. 6.3, are used to characterize the relax-
ation of a (101̄0) surface instead of considering atomic displacements. For convenience,
respective results are shown in comparison with those of Jaffe and Zapol [114] in Ta-
ble 6.5. Taking into account that HF yields bulk lattice constants slightly differerent from
the DFT values, it can be recognized that both calculations yield many similar relaxation-
induced changes of the structure parameters and a grossly similar relaxation geometry.
There is one very distinct difference to be noted, however. HF yields a ∆1⊥ value of
0.105 Å which is only half as large as our calculated value of 0.209 Å. As a consequence,
the tilt angle ω1 of the BeO surface dimer is only 4.1◦ in HF while it results as 8.1◦ from
our DFT-LDA calculations. A considerably smaller HF value of ω1 has also been ob-
served for ZnO(101̄0) where HF [130] yields 2.3◦ while LDA [129] yields 10.7◦. There
are some minor differences between the HF and the results of this work, in addition. To
mention only one, for example a small increase of the bond length d2 of the BeO dimer
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Figure 6.4: Surface band structure of the ideal (left panel) and relaxed (middle panel)
BeO(101̄0) surface as resulting from SIC calculations. The band structure of the
relaxed surface, as resulting from LDA, is shown in the right panel for comparison.
The gray-shaded areas show the projected bulk band structure. Surface state bands
are indicated by full lines.

on the second layer by 1.2 % is found while the HF result shows a decrease of the same
size (see Table 6.5). The counter-rotation angle ω2 of the Be−O bond on the second layer
is in close agreement with that resulting in HF. In summary, the surface atomic structure
as optimized using ten layer slabs can serve as a reliable basis for the electronic structure
calculations in the next section.
Finally, the surface energy per unit cell of the ideal surface results as 2.05 eV in LDA
and 1.92 eV in SIC from the present calculations corresponding to 2.84 and 2.66 Jm−2,
respectively. Significantly lower values of 1.44 eV (LDA) and 1.37 eV (SIC) per unit cell
are obtained for the relaxed surface corresponding to 1.99 and 1.90 Jm−2, respectively, as
was to be expected.
Based on the optimized geometry the surface band structure of the BeO(101̄0) surface as
resulting from SIC calculations will be discussed in the following1. It is shown in Fig. 6.4
along the high-symmetry lines of the rectangular surface Brillouin zone for both the ideal
surface (left panel) and the relaxed surface (middle panel). The most salient bands related
to localized surface states are labeled by A-C. Bands A and B originate from O 2s and
O 2p bulk valence band states, respectively, while band C originates from Be 2s bulk con-

1It should be noted at this point that the SIC-∆ approach is not needed for the calculation of the surface
electronic structure of the ionic oxides in this chapter since no linear-combined states like on the polar SiC
surfaces are expected to occur.
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AΓ BΓ CΓ AX BX CX AM BM CM AX′ BX′ CX′

SIC
id. -16.4 0.7 6.9 -16.0 0.3 9.5 -16.0 0.4 9.4 -16.6 0.4 7.0
rel. -16.9 0.2 9.3 -16.7 -0.1 10.5 -16.7 0.0 10.3 -17.1 0.2 9.7
LDA
rel. -15.9 0.1 6.5 -15.7 -0.2 7.7 -15.7 -0.1 7.5 -16.1 0.1 7.0
id. -15.4 0.6 4.6 -15.0 0.1 7.1 -15.0 0.3 6.9 -15.6 0.3 4.8

Table 6.6: Energies of the surface states A, B and C at the high-symmetry points Γ, X , M and
X ′ of the surface Brillouin zone for the ideal and the relaxed BeO(101̄0) surface, as
resulting from standard LDA and SIC calculations.

duction band states. To ease the discussion, band-structure energies of the surface states at
several high-symmetry points of the surface Brillouin zone are summarized in Table 6.6.
The LDA results in the table, as well as in Fig. 6.4 will be addressed at a later point.
Both SIC band structures for the ideal and the relaxed surface (left and middle panel of
Fig. 6.4) show the same global topology of the most salient surface state bands. How-
ever, upon relaxation the bands of the ideal surface partially show very significant shifts
in energy and changes in their dispersion. Band A shifts down in energy at the relaxed
surface on average by 0.5 eV reducing its dispersion from 0.6 to 0.4 eV. Band B shifts
down in energy upon relaxation by roughly 0.4 eV reducing its dispersion from 0.4 to
0.3 eV. Thus both occupied surface bands shift down in energy explaining the relaxation-
induced total energy gain. On the contrary, the empty C band strongly shifts up in energy
upon relaxation. In particular, its shift strongly depends on k‖ and thus on the symmetry
point considered and ranges from 0.9 to 2.7 eV reducing the C band dispersion drastically
from 2.6 to 1.2 eV. In general, one can conclude from these findings that the relaxation
shifts the surface bands much closer to their parent bulk projected bands from which they
are derived and reduces their dispersion. The SIC band gap of the ideal surface is 6.2 eV
while that of the relaxed surface is significantly larger amounting to 9.1 eV. The electronic
structure of the BeO(101̄0) surface obviously shows very pronounced relaxation-induced
changes although the atomic structure of the ideal and the relaxed surface is not entirely
different.
Concluding the discussion of relaxation-induced effects, the absolute dispersion of the
surface state bands A-C should be briefly addressed. An orthogonal x, y coordinate sys-
tem in the surface layer is chosen such that the x-direction is parallel to the BeO surface
dimer bonds while the y-direction is perpendicular to them. So the unit cell is long in
x-direction (4.38 Å) and short in y-direction (2.69 Å). As a consequence, the short high-
symmetry lines from X to M and X ′ to Γ correspond to the x- while the long high-
symmetry lines from Γ to X and M to X ′ correspond to the y-direction in real space.
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Figure 6.5: Charge density contours of the B and C
states at the M point of the surface Bril-
louin zone of the relaxed BeO(101̄0) sur-
face, as resulting from SIC calculations.
The size of the densities is defined by the
color code (gray scale) below the plots. Be
and O atoms are shown by black and or-
ange (gray) circles, respectively.

The distance of nearest-neighbor surface atoms in x-direction is 4.38 Å so that their in-
teraction is small. Therefore all surface bands at the ideal and the relaxed surface show a
very small dispersion from X to M and X ′ to Γ, as can easily be seen in Fig. 6.4. On the
contrary, the nearest-neighbor distance of the atoms in the y-direction is only 2.69 Å, so
that they can more strongly interact if their orbitals are sufficiently extended. Since bands
A and B originate from highly localized O 2s and O 2p states they show also little disper-
sion at both the ideal and the relaxed surface from Γ to X and M to X ′. Band C, on the
contrary, shows much stronger dispersion for both surface configurations along the lat-
ter high-symmetry lines since it originates from the spatially more extended Be 2s states
which strongly interact. As a consequence, the dispersion of theC band amounts to 2.6 eV
at the ideal surface. At the relaxed surface, its dispersion is reduced to 1.2 eV, only. This
is due to a very significant change of the electrostatic potential in the surface layer upon
structural relaxation.
Discussing Fig. 6.4 is has already be shown that there occur salient localized surface states
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in the gaps of the projected bulk band structure. To identify their nature more precisely,
charge density contours of the states B and C at the M point of the surface Brillouin
zone are considered. The contours for the corresponding states at the ideal and the re-
laxed surface are largely similar just with slight differences in absolute values. Therefore,
only charge densities for the experimentally more relevant relaxed surface are shown in
Fig 6.5. Obviously, the O 2p-derived dangling-bond state B is mostly localized at the
surface oxygen atom while the Be 2s-derived empty dangling-bond state C is mainly lo-
calized at the surface Be atom. Both have a typical dangling-bond character. The absolute
charge density is considerably larger for the occupied O than for the empty Be dangling-
bond state since O 2p orbitals, from which the former is derived, are much more localized
than Be 2s orbitals, from which the latter is derived.
Having discussed the SIC surface band structure of the ideal and relaxed BeO(101̄0) sur-
face scrutinizing the relaxation-induced effects, one can finally turn to the LDA surface
band structure for comparison sake and identify the SIC-induced effects. The LDA sur-
face band structure of the relaxed surface is shown in the right panel of Fig. 6.4. For
shortness sake, the ideal surface band structure resulting in LDA is not shown but re-
spective band structure energies at high-symmetry points are included in Table 6.6, as
well. The global topology of the LDA surface band structures is similar to those of the
SIC surface band structures (see Fig. 6.4 for the relaxed surface). Qualitatively, the same
surface bands A-C occur. But there are very significant quantitative differences to be
noted. First and foremost the SIC approach yields an appropriate projected bulk band
structure and a realistic projected gap, in particular. In LDA the projected gap is 3.14 eV
smaller than in SIC so that the surface band C resulting from LDA is much too low in
energy at both the ideal and the relaxed surface (cf. Table 6.6). Comparing the LDA
and SIC surface band structures (see Fig. 6.4 and Table 6.6) one can easily identify the
SIC-induced shifts of the bands A-C. Band A is rigidly shifted down in energy by 1 eV at
all symmetry points of both the ideal and the relaxed surface due to SIC, very much like
the O 2s bulk bands from which it is derived (see Fig. 6.1). Band B is essentially shifted
up in energy rigidly by 0.1 eV, only, for both surface geometries. Band C is strongly
shifted up in energy due to SIC very much like the projected Be 2s bulk bands. This shift
amounts to 2.8 eV at the relaxed surface. The LDA surface band gap is 6.4 eV while the
SIC surface band gap is 9.1 eV at the relaxed surface. Thus the surface band gap opens
up by 2.7 eV due to SIC, as compared to the LDA surface band gap (cf. Table 6.6). This
value is somewhat smaller than the SIC-induced opening of the bulk band gap by 3.14 eV,
as discussed above. Similar behaviour has been observed earlier, e.g., in the results of
GW quasiparticle calculations for bulk Si and the Si(001) surface where the quasipar-
ticle corrections of the energy positions of dangling-bond states in the gap are found to
be somewhat smaller than respective quasiparticle corrections of the bulk valence- and
conduction-band edges [131].

129



Chapter 6. Bulk and surface properties of alkaline-earth metal oxides

From this comparison one can conclude that the LDA shortcomings in the BeO bulk band
structure description fully translate into respective shortcomings in the surface band struc-
ture of BeO(101̄0). The surface band structure, calculated within the SIC approach, shows
very significant improvements over the standard LDA surface band structure concerning
the projected bulk band structure, the projected gap and the absolute energy positions of
surface-state bands. The SIC-induced effects are quantitatively very similar to those ob-
tained for the bulk band structure of BeO. It would be highly desirable to check these
notions against experimental data or, e.g., quasiparticle band-structure results.

6.1.3. Summary

SIC pseudopotentials are applied in DFT calculations of bulk BeO to calculate the elec-
tronic structure of the nonpolar BeO(101̄0) surface for the first time. It is found that
typical LDA shortcomings in the description of the electronic structure of BeO and the
BeO(101̄0) surface can almost entirely be overcome by SIC. The results for the bulk
crystal are highly satisfactory and emphasize that the SIC approach to account for self-
interaction corrections is a powerful tool for an accurate description of the electronic
properties of the BeO bulk crystal. In addition, structural parameters, such as bulk lattice
constants and the bulk modulus, derived from total energies calculated employing the SIC
approach, result in very good agreement with experiment. On the basis of these results
it can be concluded that the approximate SIC approach should also be most suitable for
electronic structure calculations on more complex BeO structures. To this end, it could
be shown that the SIC approach yields very significant improvements in the surface elec-
tronic structure of the BeO(101̄0) surface which exhibits three salient bands of surface
states.
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6.2. Bound surface and image potential states of
alkaline-earth metal oxides

Alkaline-earth metal oxides play an important role in many technological applications,
most notably as supports in catalysis. Usually, surface properties of the oxides are ex-
ploited in such applications, putting them in the focus of scientific interest. The role
which metal-supported ultrathin oxide films can play as designable catalysts or catalyst
supports has been discussed most recently by Freund [132]. Due to their importance,
alkaline-earth metal oxides have attracted significant attention and have been studied both
experimentally and theoretically on different levels of sophistication.
In experiment, elastic and electronic properties of the bulk oxides have been derived using
ultrasonic pulse-echo techniques [133], as well as soft x-ray emission spectroscopy [134],
x-ray photoelectron spectroscopy [135,136] and electron momentum spectroscopy [137].
The geometric structure of the MgO(001) surface has been the subject of a number of low-
energy electron diffraction [138–142], reflection high-energy electron diffraction [143,
144], impact collision ion scattering spectroscopy [145] and surface extended energy-
loss fine-structure [146] measurements leading to a geometry model characterized by a
decreased distance between the first and second surface layer with respect to their bulk
distance and a positive rumpling of the surface layer. In contrast, a LEED study for
CaO(001) indicates a negatively rumpled surface [147].
Experimental data on the surface electronic structure of alkaline earth metal oxides is
comparatively sparse. The valence band structure of MgO(001) has been analyzed by
Tjeng et al. using ARUPS [148], while Ochs and coworkers [149] conducted a study on
MgO thin films, combining metastable impact electron spectroscopy, XPS and UPS. From
electron energy loss spectroscopy (EELS), a lowest transition energy of 6.2 eV [150,151]
was established. Using scanning tunneling spectroscopy (STS) and EELS, Schintke et
al. [152] have shown that the same transition energy is constituted already for three atomic
MgO layers on Ag(001).
In theory, quite a number DFT calculations have been performed both on bulk and surface
systems, employing the local-density or generalized gradient approximations [153–160].
In these theoretical studies, the authors arrive at structural parameters, e.g. lattice con-
stants, bulk moduli and surface relaxation geometries that are in good agreement with
experimental findings. However, the description of the electronic structure within these
approximations turns out to be unsatisfactory, as usual, as far as the fundamental gap and
the conduction bands are concerned. Several methods conceived to overcome the well
known DFT gap problem in semiconductors and insulators have been applied to bulk
alkaline-earth metal oxides, most prominently the GW approximation for the quasipar-
ticle band structure [21, 161–165]. Also, results from ab initio Hartree-Fock [166, 167],
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screened exchange and weighted density approximation [168] as well as exact exchange
calculations [169] have been reported.
With the notable exception of the MgO(001) surface [21, 164], all investigations going
beyond LDA or GGA, respectively, have been limited to bulk systems so far.
From a calculational point of view, special care has to be taken in constructing the pseu-
dopotentials for the heavier cations. Nonlinear core effects necessitate the inclusion of
respective s and p states of the highest closed atomic shell. Otherwise, rather unphysical
structural properties of the systems result. Also, the energetic position of the associated
cationic semicore p states is of significance for the electronic structure of the valence
bands since intricate interactions with occupied oxygen states occur. See App. B for de-
tails.
As decay constants (in atomic units) for the basis of Gaussian orbitals employed for the
expansion of the wave functions 0.20, 0.55 and 0.95 are used for Mg, 0.16, 0.38, 0.85
and 1.30 for Ca, 0.18, 0.40, 0.90 and 1.70 for Sr, 0.10, 0.25, 0.42, 0.88 and 1.75 for Ba
and 0.25, 1.00 and 3.70 for O. The properties of the (001) surfaces are calculated within
the supercell approach. The slabs consist of eight anion-cation layers, separated by 8
layers of vacuum so that unphysical interactions between neighboring slabs are avoided.
The vacuum region is filled with slowly decaying s-type orbitals (decay constants 0.14
a.u.) located at virtual atomic positions to appropriately represent the vacuum states.
Brillouin-zone integrations are performed using special k point sets in the irreducible
wedge generated according to the prescription of Monkhorst and Pack [30]. The number
of special points needed to obtain convergent results in bulk and surface systems amount
to 28 and 15 (MgO), 28 and 10 (CaO), 19 and 10 (SrO, BaO), respectively. Lattice
constants of the bulk crystals are optimized by total energy minimization. In the surface
systems, the atomic positions of the two outer layers of the slabs are allowed to relax until
all components of the calculated Hellmann-Feynman and Pulay forces are smaller than 0.6
mRy/aB. Based on the fully optimized geometry, the electronic structure is determined.

6.2.1. Bulk structural and electronic properties

First, the structural parameters of the alkaline-earth metal oxide bulk crystals will be
discussed. They all crystallize under normal conditions in the sodium-chloride structure,
which is typical for ionic compounds such as MgO, CaO, SrO and BaO. In order to
determine the equilibrium structural parameters, the total energy is calculated around its
minimum for different values of the lattice constant a employing the formalism described
in Sec. 3.4. From the resulting Etot(a) curve, the optimized structure parameters are
derived.
In Table 6.7, the resulting lattice constants a and bulk moduli B are summarized together
with reference data from LDA calculations and experiment, for comparison. The LDA
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Table 6.7: Lattice constants a in Å and
bulk moduli B in Mbar, as
resulting from LDA and SIC
calculations. Other LDA ref-
erence data is taken from
Refs. [157] and [158], exper-
imental data from Refs. [170]
and [171].

LDA SIC other LDA Exp.

MgO a 4.16 4.17 4.16, 4.21 4.21
B 1.58 1.57 1.52 1.55

CaO a 4.75 4.78 4.69, 4.72 4.81
B 1.24 1.23 1.25 1.15

SrO a 5.09 5.10 5.07, 5.09 5.11
B 1.09 1.05 1.03 0.89

BaO a 5.44 5.47 5.45, 5.48 5.52
B 0.89 0.88 0.81 0.74

values typically underestimate the lattice constants by ∼ 1%. The SIC results slightly
improve the values for a, as compared to the LDA results. As far as the bulk moduli
are concerned, the increased lattice constants resulting in SIC, as compared to the LDA
values, give rise to somewhat lower B values which are in marginally better agreement
with experiment. In general, the values given in Table 6.7 show that the LDA and SIC
results compare well with other LDA results from the literature [157,158]. This illustrates
that SIC pseudopotentials yield bulk structural properties of the investigated alkaline-earth
metal oxides of the same quality as those resulting from standard LDA pseudopotentials.
In Fig. 6.6 the bulk band structures of MgO, CaO, SrO and BaO as resulting from SIC
calculations, carried out at the experimental lattice constant, are shown. The dashed lines
indicate the respective experimental values for the fundamental energy gap. Basically, the
bands can be classified by the atomic levels they originate from. In the valence bands,
two band groups originating from oxygen occur. There is a low-lying O 2s band at the
bottom separated by a large inter-anionic valence gap from the group of three O 2p bands
at the top of the valence bands. Additionally, for the heavier cations (Ca, Sr, Ba), three
semicore p bands occur close in energy to the O 2s band. The Ca 3p bands reside below
the valence band region shown in Fig. 6.6. They push the O 2s band slightly up in energy
so that the latter is somewhat higher in CaO than in the other three oxides. The O 2s band
has an almost inverted dispersion in SrO and BaO, as compared to MgO and CaO, due
to its interaction with the cationic p bands occuring above the O 2s band in the former
two crystals. The lowest unoccupied band originates in all four oxides from cationic s
states. Note that the conduction band minimum occurs at Γ in MgO while it occurs at X
in the other three oxides and the valence band maximum occurs at Γ in MgO, CaO and
SrO while it occurs at X in BaO. As a consequence, the gap is direct at Γ in MgO and at
X in BaO while it is indirect from Γ to X in CaO and SrO.
Table 6.8 summarizes relevant electronic structure data resulting from SIC calculations
consisting of the fundamental energy gap (Eg), the width of the O 2p band group (Wp),
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LDA SIC GWA Exp.

MgO Eg 4.54 7.86 7.79a,8.2b,8.2c 7.8d

Wp 4.76 4.55 5.5a,5.0b 3.33e.
Es -16.41 -17.22 -18.6a,-17b,-20.1c -17.6f

Ep — — — —

CaO Eg 3.71 7.16 6.64b 7.1e

Wp 2.74 2.29 2.9b 0.9f

Es -14.80 -15.59 -16b -16.5f

Ep -19.10 -21.02 — —

SrO Eg 3.04 6.35 6.39c 5.9e

Wp 2.13 1.64 2.1c —
Es -15.73 -17.39 -17.4c —
Ep -13.85 -14.72 -14.2c —

BaO Eg 1.76 4.77 3.91f 4.3e

Wp 2.46 2.06 3.68d —
Es -15.53 -16.38 — —
Ep -11.19 -11.05 -11d —

afrom Ref. [164]
bfrom Ref. [163]
cfrom Ref. [162]
dfrom Ref. [172], reported values are direct gaps at Γ
efrom Ref. [137]
ffrom Ref. [165]

Table 6.8: Calculated LDA and SIC gap energies (Eg), O 2p band widths (Wp), as well as average
energy positions of O 2s and cationic semicore p bands (Es, Ep) of MgO, CaO, SrO
and BaO bulk crystals in comparison with results from the GW approximation (GWA)
for the quasiparticle band structure and experiments (in eV).
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Figure 6.6: Bulk band structures of MgO, CaO, SrO and BaO along high-symmetry lines of the
bulk Brillouin zone as resulting from SIC calculations. Respective experimental en-
ergy gaps are indicated by the horizontal dashed lines.

the average energetic position of the O 2s band (Es) and the cationic semicore p band
group (Ep), respectively. For further comparison, respective values resulting from stan-
dard LDA calculations as well asGW results and experimental data from the literature are
given. Obviously, the results of the SIC calculations agree favorably with the reference
data. Very good agreement is achieved concerning the fundamental gaps, in particular,
as compared to the GWA results and experiment. Also, trends with the decreasing ion-
icity of the compounds along the series from MgO to BaO, namely a reduction of the
gap energy, a narrowing of the O 2p bands and rising energetic positions of the cationic
semicore p bands are well accounted for. As a matter of fact, the narrowing of the O 2p
bands from MgO to CaO by 2.26 eV, as calculated within SIC, is in close agreement with
the experimentally determined value of 2.46 eV. Yet, it is interesting to note that both the
SIC and GWA calculations yield considerably larger widths of the O 2p valence bands for
MgO and CaO, as compared to experiment. This is astonishing in view of the fact that
valence band widths of wide-band-gap semiconductors such as SiC or BeO result in good
agreement with experiment from SIC or GWA calculations (cf. Sections 3.6 and 6.1.1).
There is a very distinct effect in the SIC results for the valence band structure of SrO.
In LDA, the O 2s band results in resonance with the lower part of the Sr 4p bands at the
bottom of the valence bands. Cappellini et al. [162] have pointed out in their GWA study
of SrO that a splitting of this group of bands into isolated, less dispersive bands fits XPS
data [135] much better than the LDA results. SIC calculations show similar changes with
respect to the LDA. Due to the stronger localization of the O 2s state, its self-interaction-
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∆zac
∆z12
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[001]
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Figure 6.7: Schematic relaxation pattern (side
view) of relaxed alkaline-earth metal
oxide (001) surface, shown in the
[001]-[110] plane. Red (grey) and
black dots represent positions of O
atoms and cations, respectively.

correction is stronger than that of the Sr 4p states. As a consequence, the associated O 2s
band clearly separates from the Sr 4p band group.
In view of this rather accurate description of the bulk electronic structure of the investi-
gated alkaline-earth metal oxides, one can expect that the use of SIC pseudopotentials in
a study of the respective (001) surfaces yields results of comparably good quality.

6.2.2. Structural and electronic properties of the relaxed (001)
surfaces

Based on intensive experimental and theoretical studies, a relaxation model for (001)
alkaline-earth metal oxide surfaces is commonly accepted. A side view of this model is
schematically depicted in Fig. 6.7. It is characterized by small atomic displacements of
the ions which move slightly perpendicular to the surface only. The resulting relaxation
pattern can be described in terms of only two structure parameters, a surface rumpling

drum =
∆zac

db

, (6.1)

defined as the difference of the z positions of surface layer anions and cations ∆zac related
to the ideal bulk distance db and an interlayer relaxation

drel =
∆z̄12

db

, (6.2)

which describes the changed spacing between the average surface and first subsurface
layer in relation to the ideal bulk distance db of these two layers.
The geometric structure of the (001) surfaces has been discussed in the literature already
in quite some detail. Therefore, the results for the surface rumplings, interlayer relax-
ations and surface energies are only briefly summarized together with reference data from
the literature in Table 6.9. First, note that MgO(001) shows an opposite surface rumpling,
as compared to the other three oxides, as observed in experiment. In particular, MgO(001)
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drum(%) drel(%) σsur(J/m2)

MgO this work +2.0 +0.1 1.29
LDAa +1.8 -0.2 1.14
LDAb +2.2 ∼ 0 1.39
LDAc +1.9 +0.2 1.18
GGAd +2.3 ∼ 0 0.90
Exp 0 to +5e 0 to -2e 1.04f to 1.12g

CaO this work -1.1 -2.0 0.95
LDAa -0.6 -2.3 0.81
LDAb -0.6 ∼ 0 1.05
LDAc -1.3 -2.3 0.87
GGAd -0.7 -1.1 0.63

SrO this work -2.5 -2.6 0.84
LDAa -1.5 -3.2 0.69
GGAd -2.3 -1.7 0.53

BaO this work -5.8 -6.3 0.57
LDAa -1.8 -4.6 0.56
GGAd -4.9 -2.5 0.33

afrom Ref. [157], four layer slab
bfrom Ref. [156], three layer slab
cfrom Ref. [156], four layer slab
dfrom Ref. [158], seven, nine and eleven layer slabs
efrom Ref. [139]
ffrom Ref. [138]
gfrom Ref. [173]

Table 6.9: Calculated surface rumpling, interlayer relaxation and surface energy of the relaxed
MgO, CaO, SrO and BaO (001) surfaces in comparison with other theoretical and with
experimental results.

137



Chapter 6. Bulk and surface properties of alkaline-earth metal oxides
E

ne
rg

y 
(e

V
)

O
Mg

−20

−15

−10

−5

 0

 5

 10

 15

Γ J K Γ

MgO

Os

Op

C

O
Ca

Γ J K Γ

CaO

O
Sr

Γ J K Γ

SrO

O
Ba

Γ J K Γ

BaO

Figure 6.8: Calculated SIC surface band structures of the relaxed (001) surfaces of MgO, CaO,
SrO and BaO along the high symmetry lines of the surface Brillouin zone. Red tri-
angles and black circles mark bound surface states that are strongly localized at the
surface oxygen atoms or at the cations, respectively. The parabolas (full lines) ex-
hibit the dispersion of image states residing in vacuum in front of the surface. The
gray-shaded regions represent the projected bulk band structure and the cross-hatched
areas indicate the projected bands of free-electron vacuum states.

exhibits a positive rumpling, meaning that the surface O atoms are located further above
the surface than the Mg atoms, while the latter surfaces show a negative rumpling. A very
small interlayer relaxation is usually found for MgO(001) while it is larger and negative
for the other oxide surfaces. The surface energy is found to decrease from the most to
the least ionic surface, i.e., from MgO(001) to BaO(001). The results, which are well in
accord with the literature data, corroborate these general notions.
The electronic structure of the relaxed (001) surfaces of the four oxides, as resulting
from SIC calculations is shown in Fig. 6.8 along the high symmetry lines of the surface
Brillouin zone. The grey shaded areas represent the projection of the bulk band structure.
Red triangles and black dots mark bound surface states that are strongly localized at the
surface O atoms and cations, respectively. The cross-hatched areas in the conduction band
energy regions indicate the ranges of projected free-electron vacuum states, starting at

E = Evac + ~2k2
‖/2m (6.3)

with k‖ being the two-dimensional wave vector parallel to the surface.
There are two distinctive differences to be noted in the projected conduction bands of the
four surfaces. The projected bulk CBM lies at Γ in the case of MgO(001) while it occurs
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Figure 6.9: Schematic representation of the occurrence of image potential states. The left panel
shows the x-y-averaged effective potential of the surface. In the right panel the energy
range close to the vacuum level is enlarged and the position of an image potential state
(IPS) is indicated.

at the K point of the surface Brillouin zone for the other three oxide surfaces. This is due
to the fact that the bulk CBM is located at the Γ point of the bulk Brillouin zone in MgO
as opposed to the X point for CaO, SrO and BaO.
Much more importantly, in the case of the MgO(001), CaO(001) and SrO(001) surfaces
the projected free-electron vacuum states lie below the projected bulk conduction bands
in sections of the surface Brillouin zone while they occur higher in energy than the latter
in the case of the BaO(001) surface throughout the whole surface Brillouin zone. Thus
the former three surfaces are negative electron affinity systems while the latter is not.
This has significant influence on the surface electronic structure near the bottom of the
projected conduction bands. Negative electron affinity surfaces allow for the formation of
loosely bound image potential states. An electron can be trapped in the image potential
if its energy lies below the vacuum level and it is reflected from the surface due to the
lack of allowed projected bulk states in the range of its energy (cf. Fig. 6.9). Since the
two-dimensional wave vector k‖ is a good quantum number this holds for all k‖ values
at which the projected free-electron vacuum states are lower in energy than the projected
bulk conduction bands.
Addressing the surface band structures in Fig. 6.8, one can note that all surfaces have
some general features in common. They are all insulating, as could be expected. Most
of the surface states occur close to the projected bulk bands which is typical for ionic
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compounds. Separating a bulk insulator in two halfs does not involve cutting covalent
bonds. Thus no dangling bonds are generated at the surface, as is the case for typical
semiconductors, and no salient dangling bond states occur. Instead, the ions are merely
separated from each other giving rise to relatively small changes of the charge densities
of occupied states so that localized surface states or ionic resonances occur very close to
or within the projected bulk band energy regions, respectively.
To be more specific, the MgO(001) surface band structure is addressed in the left panel
of Fig. 6.8 which shows the most salient bands of surface states. Some of these surface
states have been labeled explicitly to ease the following discussion. In the valence band
energy region, the band labeledOs clearly has O 2s character and can be attributed to ionic
O 2s states. Likewise, the almost dispersionless band close to VBM, labeled Op, is solely
derived from O 2pz states. Furthermore, a salient band of unoccupied surface states occurs
below the projected conduction bands which is labeled C, therefore. The character of the
surface states in the C band is more intricate since it changes dramatically as a function of
the surface parallel wave vector k‖. Analyzing the wave functions of the respective states
in detail, one finds that the C band consists from about J to KΓ/3 of surface states which
are truly localized at the surface cations. From Γ to about J and from about KΓ/3 to Γ,
on the contrary, it consists of image potential states which reside in vacuum in front of
the surface. Electrons in these states can move freely parallel to the surface so that the k‖

dispersion of the band of image potential states is basically parabolic. Perpendicular to
the surface they are localized in the image potential. It turns out that the image potential
states exist in the k‖ space regions where the projection of the free-electron vacuum states
is lower in energy than the projected bulk conduction bands, i.e., in the k space regions
where the surface has negative electron affinity. The existence of image potential states at
the MgO(001) surface has been pointed out previously [21, 151, 160].
To highlight the different character of the bound surface states and the image states in
band C, Fig. 6.10 shows charge density contours of the unoccupied C band states at
the K and Γ points of the surface Brillouin zone. They are drastically different. The
C state at K has its charge density maximum above the surface cation, at which it is
mostly localized, and extends into vacuum to some extent as is obvious in the left panel
of Fig. 6.10. There are also small contributions on subsurface layers. Since the interaction
of such localized surface states is weak parallel to the surface the dispersion of the C band
from J to KΓ/3 is fairly weak. The C state at Γ, on the contrary, is mostly delocalized
and neither directly related to the surface cations nor to the anions, as can be seen in the
right panel of Fig. 6.10. Its charge density extends considerably into vacuum showing
a very small surface corrugation, only. As a consequence, the dispersion of the C band
around Γ is parabolic and thus free-electron like.
The band structures of the other three relaxed (001) surfaces in Fig. 6.8 show a number of
similar features. As for MgO(001), also for the (001) surfaces of CaO, SrO and BaO one
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Figure 6.10: Charge density contours (in
10−2a−3

B ) of the unoccupied C
band states at the K and Γ points
of the surface Brillouin zone,
plotted in the [110]-[001] plane. O
and Mg atoms are depicted by red
(gray) and black dots, respectively.
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observes O 2s– and O 2p–derived bands of localized surface states or ionic resonances
very close to or within the projected bulk valence bands, respectively. In addition, sur-
face bands originating from cationic semicore p states occur within the valence bands, as
can be seen in Fig. 6.8 for SrO(001) and BaO(001). Some of these bands originate from
strongly localized surface states (shown by dotted lines) while others are derived from
less localized surface states (shown by full lines). Interestingly, these bands are energet-
ically lower than the projected bulk bands when they are associated with surface layer
cations while the opposite is true for those associated to the subsurface layer cations. This
is related to the reduced interlayer distance in the relaxed geometry and the opposite rum-
pling of the surface and subsurface layers. Like in the case of MgO(001), the C band at
the CaO(001) and SrO(001) surfaces consists of image potential states in similar sections
of the surface Brillouin zone while in the complemetary sections it consists of localized
cationic surface states. Since the BaO(001) surface has no negative electron affinity, the
C band at the latter surface consists of truly bound surface states derived from Ba orbitals
throughout the surface Brillouin zone.
As a more quantitative reference concerning characteristic energies of the four surfaces,
the calculated bulk and surface band gap energies, ionization energies, electron affinities
as well as the energies of the C band at Γ for all four oxide surfaces are summarized in
Table 6.10. As mentioned already, all surfaces are insulating having a band gap decreasing
with decreasing ionicity of the compounds from 6.5 eV for MgO to 4.4 eV for BaO. The
energy difference Eg − E s

g between the bulk and surface gaps reduces from 1.4 eV over
1.3 eV and 0.8 eV to 0.4 eV with decreasing ionicity. This is due to intricate effects on
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MgO CaO SrO BaO

Eg 7.9 (7.8) 7.2 6.4 4.8

E s
g 6.5 (6.9) 5.9 5.6 4.4

EI 7.7 (7.4) 6.5 6.0 5.6

EA -0.2 (-0.4) -0.7 -0.4 0.8

EC at Γ 6.5 (6.9) 5.9 5.6 4.9

Table 6.10: Bulk (Eg) and surface (E s
g ) band gaps, ionization energy (EI), electron affinity (EA)

and energy of the lowest unoccupied state at the Γ point (EC at Γ) of the (001)
alkaline-earth metal oxides surfaces (in eV), as calculated within SIC. The results
of the GW calculation for MgO(001) from Ref. [21] are given in parentheses.

both the energetic positions of the surface VBM and CBM in the compounds. As can
be seen in Fig. 6.8, the surface VBM shows a slight increase in energy with respect to
the bulk VBM, fixed at 0 eV, when proceeding from MgO to BaO. This is related to the
missing cations above the surface O atoms, raising the energy of the surface O pz band.
At the same time, the energy of the C band at Γ moves closer to, or for BaO(001) even
higher than the projected bulk CBM. The ionization energy EI constitutes the onset (at
Γ) of the continuum of projected vacuum states indicated by the cross-hatched areas in
Fig. 6.8. It decreases with decreasing ionicity from MgO to BaO following a well known
general trend. The difference of the vacuum energy and the energy of the bulk gap, given
by EI − Eg, finally yields the value of the negative electron affinity at the Γ point of
the surface Brillouin zone. As pointed out before, BaO(001) does not exhibit negative
electron affinity.
In order to assess the accuracy of the SIC results for the relaxed (001) surfaces, one can
compare the calculated electronic properties with quasiparticle results from GW calcu-
lations [21] and with experimental data which are available for MgO(001)-(1×1), only.
The respective quasiparticle results are given in parentheses in Table 6.10. The overall
agreement between the SIC and the GWA results is very satisfying, the deviations being
0.4 eV at most. Both calculations agreeingly arrive at the result that MgO(001) is a neg-
ative electron affinity surface and obtain the absolute energy position of the image state
EC at Γ in reasonably close agreement (6.5 eV in SIC and 6.9 eV in GWA). Nevertheless,
it should be noted, that the energy position of the image state EC at Γ relative to the vac-
uum level, i.e, relative to the ionization energy EI, results as Evac − 1.2 eV in SIC and
at Evac − 0.5 eV in GWA. Formally, the difference is due to the fact that the deviations
between EI and EC at Γ of the two approaches are opposite. Physically, it is due to the
fact, that the one-particle DFT-SIC calculations do not properly describe the –1/4z depen-
dence of the image potential while the many-body GW approximation does. Therefore,
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Figure 6.11: Comparison of x-y-averaged
image state charge densities on
MgO, CaO, and SrO(001) as re-
sulting from LDA and SIC cal-
culations, respectively.
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the image state results more strongly bound with respect to the vacuum level in SIC than
in GWA. Nevertheless, the absolute energy position of the image state resulting in SIC
(6.5 eV) and GWA (6.9 eV) is satisfyingly close.
In this context, a comparison of the x-y-averaged IPS charge density as resulting form
LDA and SIC calculations as in Fig. 6.11 is instructive. While the previous remark that the
calculations do not properly describe the –1/4z dependence of the image potential holds
for both approaches, slight differences are noticeable, nevertheless. In all three cases, the
images states calculated within the SIC approach reside marginally further in front of the
surface. Especially the local charge density maximum close to z = 0 is reduced compared
to LDA. This is due to more intricate changes to the effective potential. While SIC does
not yield the true long-range characteristic due to the cutoff of the respective components
in the construction of the pseudopotentials, the localized short-range contributions from
the surface anions give rise to the observed changes.
The surface band gap of MgO(001)-(1×1) has been determined by EELS experiments
[150–152] to be 6.2 eV. In view of the fact that EELS measures the onset of transitions
to the lowest exciton state, the result for the one-particle surface band gap of 6.5 eV
compares favorably with experiment. It appears that the exciton binding energy at the
MgO(001) surface is fairly small in the order of 0.3 eV. This notion is further corrob-
orated by the experimental results of Schintke et al. [152] who find basically the same
gap value in their STS and EELS experiments although STS probes transitions between
one-particle states while EELS resolves the onset of transitions to the lowest exciton state.
The above comparison of the results with data from far more elaborate GWA calculations
and experiment for MgO(001)-(1×1) reveal that the description of the surface electronic
structure of MgO(001) within the SIC approach is satisfyingly reliable. On this basis it is
expected that the electronic structure of the other three (001) alkaline-earth metal oxide
surfaces investigated in this work is appropriate, as well.
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Figure 6.12: SIC band structure and charge densities at the Γ- and J-point for the image potential
state at the MgO(001) surface.

6.2.3. On the nature of alkaline-earth metal oxide image
potential states

Image potential states are classically known to appear on metal surfaces due to the easy
polarizability of the free charge density (cf. Ref. [174]). The surfaces of the alkaline-earth
metal oxides (AEMO) investigated in this work are obviously insulating and thus do not
contain free electrons. It can be assumed that the characteristics of the image potential
states hosted at such surfaces differ from the traditional IPS, for instance at Cu(001).
Figure 6.12 again shows the surface band structure of MgO(001) and the charge density
contours of the IPS at Γ and J for easier comparison. The basic features of the IPS
have been discussed above, most notably its tendency to strongly localize depending on
the actual k-point in the surface Brillouin zone. At Γ the charge density is delocalized
and predominantly homogenous in front of the surface plane. Moving to the J-point, a
symmetry-induced formation of a nodal plane through the position of the top layer anions
(oxygen) is found. Concomitantly the charge density localizes, though it still remains
visibly above the surface.
To compare these characteristics to those of a traditional image potential state, the band
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structure of Cu(001) has been analyzed, as well. Figure 6.13 shows the resulting surface
band structure as well as the respective charge density contours of the IPS at the Γ and
J points of the Brillouin zone. Overall, the band structure of Cu is vastly different com-
pared to that of ionic insulators. Copper features one highly dispersive s-band crossing
the Fermi level giving rise to its metalicity. Closely below EF reside five flat d-bands.
Consequently, there is no fundamental surface band gap at Cu(001). However, there are
characteristic pockets in selected regions of the surface Brillouin zone, most notably the
one at Γ.
Principally, there are some analogies between the IPS at Cu(001) and MgO(001). At the
Γ-point the traditional IPS at Cu(001) is almost entirely detached from the surface. It
reaches much further into the vacuum region than the related state at MgO(001). Also,
there is an additional nodal plane parallel to the surface between the top layer copper
atoms and the reflected charge density. Moving to the J-point, one realizes again that
there is a symmetry-induced localization of the density due to the formation of a nodal
plane perpendicular to the surface. Still, the charge density lobes extend considerably into
the vacuum region. Of course, the atomic structure of Cu(001) is conceptually different
to the one of MgO(001) as the positions of the respective Mg atoms in MgO are empty in
the former case. This significantly affects the resulting electronic structure.
In order to highlight the differences between these two image potential states and a tra-
ditional bound surface state, the band structure of MgS(001) is shown in Fig. 6.14. The
atomic structure of the surface has first been determined using the optimized lattice con-
stant. Afterwards, the geometry has been scaled to a smaller lattice parameter to ensure
that the empty surface band resides close to the bulk projection. The band structure itself
hence should only be regarded as a qualitative model system. No quantitative information
should be extracted.
In principle, the surface band structure of MgS(001) exhibits many similarities to that of
MgO(001). In the bulk crystal, anionic p-bands (S 3p) define the upper valence bands and
determine the surface band gap to the Mg 3s conduction bands. Due to the change of the
anionic atom from oxygen to sulfur, the bonding character of MgS is less ionic compared
to MgO. The fact that the empty band resides close to the projected bulk conduction bands
clearly influences the character of the state visible by the charge density plots in Fig. 6.14.
At Γ the charge density is definitely localized at the top surface layer, with contributions
coming both from Mg and S atoms. Also, a significant amount is found at subsurface
layers. No coupling to the vacuum is registered. At the J-point only slight changes are to
be noted. The formation of the symmetry-induced nodal plane again leads to an increased
localization of the respective charge density at the surface cation. Qualitatively, however,
the state is very similar at Γ and J .
In Fig. 6.15 an energy level diagram schematically sketches the different types of surface
states at the Γ point of the surface Brillouin zone. Group A summarizes the energetic
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Figure 6.13: SIC band structure and charge densities at the Γ- and J-point for the image potential
state at the Cu(001) surface.
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Figure 6.14: SIC band structure and charge densities at the Γ- and J-point for the localized surface
state at the MgS(001) surface.
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Figure 6.15: Γ-point energy level schematics for different types of surfaces. The onsets of the
projected valence and conduction bands are indicated by the red and blue bars, re-
spectively. The isolated lines give the energies of the empty surface state. All ener-
gies are referred to the respective vacuum level, for a meaningful comparison. See
text for definition of groups.
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characteristics of the image potential states at the alkaline-earth metal oxide surfaces. As
was discussed above, the respective states reside in closer proximity to the surface than
the traditional IPS at Cu(001). Inspecting Fig. 6.15, two factors become apparent that
contribute to these features. Firstly, the IPS at Γ at Cu(001) is energetically very close to
the vacuum level. Here the effective potential (cf. Fig. 6.9) is very weak and the IPS can
consequently extend very far into vacuum. Secondly, there is a considerable distance to
projected bulk conduction and valence band states. Any coupling to such bulk states is
thus unlikely and the IPS is repelled from the surface. In contrast, the respective states
at the alkaline-earth metal oxide surfaces reside somewhat lower with respect to Evac and
are consequently bound stronger to the surface, in general. More importantly, they are
also rather close to the projected bulk conduction bands. Compared to Cu(001) there is a
much higher possibility for the IPS to couple to these bulk states. It can be argued that the
energetic proximity of the conduction bands inhibits the coupling to the vacuum and the
concomitant detachment from the surface. This notion is further corroborated by the GWA
results known for LiF(001) and MgO(001). In Ref. [21] is has been pointed out that in the
former case the quasiparticle corrections allow for the IPS to extend considerably farther
into vacuum as compared to the LDA result. For MgO(001) in contrast, no such effect is
observed and the IPS remains relatively close to the surface. As the conduction bands are
similarly far away from the IPS for LiF(001) as for Cu(001), this can be considered as an
indication that the stronger possibility for the IPS at alkaline-earth metal oxides to couple
to these states is the driving factor for the stronger localization of their IPS.
To finalize this discussion, the situation for the bound surface state at MgS(001) is straight-
forward. The surface is not negatively electron affine in the first place. The energy of the
surface state is far below the vacuum energy and actually much closer to the projected
bulk states. Coupling to the vacuum is energetically impossible for such a surface.

6.2.4. Summary

In this chapter, the structural and electronic properties of group-II oxides have been stud-
ied using density-functional theory with self-interaction-corrected pseudopotentials. The
properties of bulk BeO, MgO, CaO, SrO and BaO and their relaxed non-polar (1010) and
(001) surfaces, respectively, have been analyzed in detail. For the bulk crystals, the SIC
approach yields reliable structural properties and band structures which are much supe-
rior to standard LDA results and in good agreement with the results of more elaborate
quasiparticle calculations and experiment. Based on optimized relaxation geometries of
the surfaces, the electronic structure of the respective (001) surfaces has been scrutinized
with special attention to the salient bands of unoccupied surface states. In particular, it was
found that the results for MgO(001) on the valence and conduction band structure, as well
as the ionization potential and negative electron affinity agree very well with the results
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of GWA calculations. They are also in satisfying accord with EELS data. The parabolic
sections of its lowest unoccupied surface band are interpreted as originating from im-
age potential states. The surface band structures of CaO(001) and SrO(001) reveal very
similar characteristics with image potential states, as well, also exhibiting an appreciable
separation of the unoccupied C band from the projected bulk conduction bands. In con-
trast, it turns out that BaO(001) is not a negative electron affinity surface and as such can
not give rise to an image state band. In this case the C band constitutes a band of true
surface states throughout the surface Brillouin zone which are mostly localized at the Ba
cations from which they are derived.

149



Chapter 6. Bulk and surface properties of alkaline-earth metal oxides

150



Chapter 7.

Structural, elastic and electronic
properties of SiC, BN and BeO
nanotubes

The initial discovery of carbon nanotubes (CNTs) by Iijima [22] in 1991 has sparked
considerable interest in this kind of nanosized one-dimensional structures due to their
unique physical properties and the associated potential for applications.
While experimental observations indicate that CNTs preferentially exist in multi-walled
configurations with an inter-wall distance comparable to the spacing of planes in graphite,
the generation of single-walled structures consisting of a single rolled-up graphene strip
is technically feasible, as well. The chirality and diameter of such NTs are uniquely
specified [175] by the pair of helical indices (n,m) defining the vector ch = na1 +ma2,
where a1, a2 are the unit vectors of a graphitic sheet.
In addition to CNTs, a considerable number of different composite nanoscale tubular
structures has either already been fabricated, based on crystals like BN, SiC, MoS2,
WS2 [176–179], or suggested, as in the case of BeB2 and B2O [180] or BeO [110] NTs.
Carbon, SiC, BN and BeO NTs differ in their increasing ionicity. As a consequence, the
properties of SiC, BN and BeO NTs are different from those of the covalently bonded,
homopolar CNTs. Most notably, the electronic characteristics are strongly dependent on
the type of chemical binding in these solids. While CNTs have been found to be either
metallic or semiconducting depending on their helicity [175, 181, 182], previous studies
have shown that both BN and SiC NTs are semiconducting, their structural as well as
electronic properties depending in characteristic ways on the chirality and the diameter of
the NTs [23, 183–196].
Theoretically, BNNTs have been studied quite intensively during the last decade on differ-
ent levels of sophistication [183], e.g., by tight-binding calculations [183–185], density-
functional theory within local-density approximation [183, 186–189] and hybrid func-
tional calculations [193]. Studying excitons in NTs, Park et al. [197] as well as Wirtz
et al. [198] have more recently carried out GW quasiparticle energy calculations on a
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(8, 0) or several selected BNNTs, respectively. SiCNTs and defects in SiCNTs have been
adressed only in the last couple of years. Cluster or DFT supercell calculations have been
reported [23, 190–192, 194, 195] and very recently H and its interaction with B acceptors
and N donors in (8, 0) zigzag and (5, 5) armchair SiCNTs have been studied employ-
ing a hybrid density-functional approach, as well [196]. The computations within hybrid
density-functional theory are considerably more demanding than usual DFT-LDA calcu-
lations. Concerning BeONTs, only one recent DFT-LDA study [110] is available.
The application potential of carbon and non-carbon nanotubes is enormous. It ranges
from nano-electronic and nano-mechanic devices, such as nanotube field-effect transis-
tors, nano gears, or gas sensing devices, to macroscopic uses, e.g. in lightweight compos-
ite materials. Their curvature leads to a large surface area that can be used, for instance,
for hydrogen storage and also holds many opportunities for functionalization of nanotubes
by adsorption of atoms or molecules. Among the non-carbon nanotubes those based on
silicon carbide are expected to open roads to the design of nanocables or improved nan-
otips for use in atomic force microscopy or STM [199].
For applications of NTs in electronic devices and from a more fundamental point of view
the accurate determination of the band gap energy of NTs is crucial. Within standard
DFT-LDA band gaps are significantly underestimated, while structural properties follow
with a good level of confidence. Many of the studies reported so far suffer from the LDA
shortcomings as far as the electronic properties of NTs are concerned.
In this chapter a fairly comprehensive comparative study of structural, elastic and elec-
tronic properties of a large variety of SiC, BN and BeO NTs in (n, 0) zigzag and (n, n)

armchair configurations with n values ranging from 4 to 15 and diameters up to 25 Å,
respectively, is performed. Applying the SIC approach to SiC, BN and BeO NTs on equal
footing, yields a host of quantitavively and qualitatively comparable results. In particular,
a most quantitative analysis of the effects which the increasing ionicity of the chemical
bond in these tubular nanostructures has on their physical properties is given.

7.1. Graphitic monolayers

Materials which can under certain conditions occur in a layered graphite-like structure
are of scientific interest in many respects. It is often possible to design very thin films of
such substances, i.e. by chemical vapor deposition. If such a thin film consists of only a
single layer of the graphitic structure, the constituting atoms arrange a planar hexagonal
honeycomb structure.
Figure 7.1 shows the top view of such a single graphitic monolayer. Its hexagonal unit

152



7.1. Graphitic monolayers

Figure 7.1: Top view of a graphitic mono-
layer. The grey shaded area
indicates the two-dimensional
unit cell containing one cation
(black) and one anion (red),
respectively.

a1

a2

cell (grey shaded) is spanned by the two vectors

a1 = a (1, 0, 0)

a2 = a

(
1

2
,

√
3

2
, 0

)
.

(7.1)

The non-primitive cell contains one cation and one anion, respectively, at the positions
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The lattice constant is related to the anion-cation bond length b according to a =
√

3b.
The particular geometric structure evidently influences the electronic structure of such a
system. A planar hexagonal structure as shown in Fig. 7.1 is based on a sp2 hybridization
of the base atoms, most importantly of the anions. Assuming that the layer is oriented
within the x-y-plane, planar hybrids are formed from the atomic s-, px-, and py-states,
while the pz orbitals are oriented perpendicular to the layer. The latter in particular are
of great importance with regard to the electronic structure of the layers. They define the
existence and potential characteristics of a gap between occupied and empty monolayer
bands. Therefore, a most reliable description of such bands is required from a theoreti-
cal point of view. In this respect, published results in the literature for bulk graphite or
hexagonal boron nitride [200,201] point to the importance of so called extended interlayer
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Figure 7.2: Influence of additional vacuum orbital layers (VOL) on the electronic band structure
of a graphitic monolayer of BeO as resulting from LDA calculations. The cross-
hatched area indicates the projection of free electron vacuum states.

states that couple the individual planar layers. These extended states need to be suitably
represented in electronic structure calculations. In the present case, such extended states
are the free-electron states of the vacuum. A basis set of plane waves would be an intuitive
choice as a basis for the expansion of the wave function in such a situation. In terms of the
basis of localized Gaussian orbitals used in this work, this means that not only the atomic
positions can be used as localization points of these orbitals. Instead additional Gaussian
orbitals τ VO

i must be placed into the vacuum, i.e. at a distance κ above and below the
atomic positions τi as in Eq. (7.2) of the monolayer:

τ VO
i = τi ± κẑ. (7.3)

Any pair of such vacuum orbital layers (VOL) is then uniquely defined by the value of κ.
Later, the physical properties of SiC, BN, and BeO graphitic monolayers and nanotubes
shall be studied. For these three substances, the effect of additional VOL is expected to be
largest in BeO. Therefore, a study of the influence of different configurations of VOL is
most instructive for this highly ionic compound. In Figure 7.2 the electronic band struc-
ture along the high-symmetry lines of the two-dimensional Brillouin zone of such a BeO
monolayer is shown as resulting from different configurations of vacuum orbital layers.
The low-lying O 2s band is omitted in the figures. The band structure in the left panel of
Fig. 7.2 is the result of a calculation without an additional orbital layer (0VOL). Three O
2p derived bands are occupied and their energetic maximum is found at the K point. In
contrast the lowest unoccupied band has its minimum at Γ, forming an indirect band gap.
The same characteristics are visible in the other two band structures. The band structure
in middle panel (2VOL) of Fig. 7.2 results from a calculations with two (one above, one
below the monolayer) VOL with a decay constant of 0.24 a.u.−2 and κ = 1.5a. A calcu-
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Table 7.1: Anion-cation bond
lengths (in Å) in
graphitic monolayers
and bulk crystals, as
resulting from LDA
and SIC calculations.
Experimental bulk-bond
lengths are given for
comparison.

graphitic layer bulk crystal
LDA SIC LDA SIC Exp

SiC 1.76 1.77 1.87 1.89 1.89a

BN 1.41 1.43 1.54 1.56 1.56b

BeO 1.52 1.53 1.63 1.65 1.65c

afrom Ref. [57]
bfrom Ref. [202]
cfrom Ref. [116]

lation with four vacuum orbital layer (κ1 = a, κ2 = 2a) yields the electronic structure
in the right panel. While the valence bands are hardly affected, significant changes in
the conduction bands are notable. On the one hand, the width of the band gap reduces
with increasing number of vacuum orbitals (0VOL: 6.38 eV; 2VOL: 5.93 eV; 4VOL: 5.51
eV). On the other hand, the dispersion of the second unoccupied band is dramatically
changed. Without any additional orbitals, this band is rather flat and has a maximum at
the Γ-point. When additional orbitals are introduced into the system, the dispersion of the
band changes since the respective states can now delocalize more. This also affects higher
bands that clearly move down in energy in the conduction band region. With 4VOL the
dispersion of these bands has become more and more parabolic, hinting at the nearly-free
electron character of these states. As expected it is very important to place virtual Gaus-
sian orbitals into the vacuum regions in order to appropriately describe the properties of
unoccupied electronic states at graphitic monolayers.
Keeping in mind that the studies in this work primarily concern the structural and elec-
tronic properties of nanotubes, graphitic monolayers and nanotubes must be calculated
using comparable basis sets. Due to the unique tubular structure of the latter it is not
possible to add two additional vacuum orbital layers above and below the atomic plane
or ring, respectively, as has turned out to be most suitable above. As a compromise, the
subsequent calculations for the monolayers are performed with additional s-like orbitals
with a decay constant of 0.14 a.u.−2 placed at κ = 1.5 a, respectively.
Now, structural and electronic properties of the SiC, BN and BeO graphitic monolayers
constitute the large diameter limit of the NTs and thus the respective results serve as an
important reference for the NTs to be discussed subsequently.
The respective bond lengths for the three graphitic layers, as resulting from standard LDA
and SIC calculations, are summarized in Table 7.1. Respective bulk-bond lengths of
wurtzite SiC and BeO as well as zincblende BN, as calculated previously (cf. Ref. [18]
as well as Sec. 3.6 and 6.1.1) using LDA and SIC, are given for reference in Table 7.1 in
comparison with experimental values. The bulk-bond lengths calculated within SIC are
in very good accord with experiment. Therefore, it is to be expected that the bond lengths
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graphitic layer bulk crystal
LDA SIC LDA SIC Exp

SiC 2.85 3.94 2.12 3.33 3.33a

BN 4.51 6.19 4.45 6.13 6.10b

BeO 5.73 8.72 7.41 10.50 10.6c

afrom Ref. [57]
bfrom Ref. [203]
cfrom Ref. [120]

Table 7.2: Fundamental band gap en-
ergies (in eV) of SiC, BN
and BeO graphitic monolay-
ers and wurtzite SiC and BeO
as well as zincblende BN bulk
crystals, resulting from LDA
and SIC calculations. Experi-
mental bulk gaps are given for
comparison.

for the graphitic layers calculated within SIC are very accurate, as well. The LDA values
slightly underestimate the experimental values by about 1% but these deviations are not
really significant. It is interesting to note that all bond lengths in the graphitic layers are
systematically smaller by about 0.12 Å than in the tetrahedrally bonded bulk crystals. As
a matter of fact, the same obtains for graphene (1.42 Å), as compared to bulk diamond
(1.54 Å).
The energy gaps of SiC, BN and BeO graphitic layers are summarized in Table 7.2. Re-
spective calculated bulk band gaps are given for reference in comparison with measured
bulk band gaps, as well. The LDA bulk gaps underestimate the experimental gaps very
significantly, as usual. On the contrary, the bulk gaps calculated within SIC are in very
good agreement with experiment. In addition, the SIC band gap for the BN graphitic sheet
of 6.2 eV is in good accord with the reported results from quasiparticle [201] (6.0 eV) and
hybrid-functional [193] (6.3 eV) calculations. Hence, one can expect the SIC band gaps
for the three graphitic layers to be also very accurate.
The electronic band structures of graphene and SiC, BN and BeO graphitic sheets are
shown in Fig. 7.3. In contrast to graphene, which exhibits a characteristic degeneracy
of the π and π∗ states at the Fermi level occurring at the K point of the hexagonal Bril-
louin zone, all three types of graphitic sheets investigated in this work are wide-band-gap
semiconductors or insulators. The band gaps of the SiC and BN sheets are direct at K.
The band gap of BeO is indirect with the valence band maximum at K and the conduc-
tion band minimum at Γ. Since the two atoms in the unit cell are not identical for SiC,
BN and BeO graphitic layers, the aforementioned degeneracy of the π and π∗ states is
removed. As a consequence, the electronic properties of respective NTs can be expected
to be qualitatively different from those of carbon NTs.
In all three cases the valence bands consist of a low-lying anionic s band and three upper
mostly anionic s, p bands. The latter originate in all three compounds from mixtures
of anionic p and cationic s states. The uppermost of these s, p bands has mainly s, pz

character. Since the pz orbitals are perpendicular to the graphitic layers their interaction
is a fairly small π-π interaction giving rise to the weaker dispersion of these bands, as
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Figure 7.3: Band structure of graphitic SiC, BN and BeO monolayers along the high-symmetry
lines of the two-dimensional hexagonal Brillouin zone, referred to the top of the va-
lence bands, as calculated within the SIC approach.

compared to the other two upper valence bands. The spatial dependence of the interaction
of the pz orbitals is the same as that of valence s orbitals. As a consequence, the low-lying
s and the upper s, pz valence bands have very similar dispersions, as is most obvious in
Fig. 7.3. The anion px, py orbitals, on the contrary, lie in the graphitic sheets giving rise
to a significantly different and larger dispersion, therefore. The lowest conduction band
in the SiC and BN sheets occurs at the K point of the hexagonal Brillouin zone and has
cationic p character. The lowest conduction band of the highly ionic BeO compound
occuring at the Γ point, on the contrary, mainly originates from cation s orbitals. The
bandstructure of the BN graphitic sheet in Fig. 7.3, in particular in the energy range from
-10 to +10 eV, is in very good accord with the respective GW quasiparticle band structure
as reported by Blase et al. [201].
The dispersion of the lowest conduction band of BeO is basically parabolic and thus
nearly free-electron (NFE) like. The physical origin and the NFE character of the respec-
tive lowest conduction band at Γ in BN has been discussed in detail previously [184,201].
The VBM states of the SiC and BN graphitic sheets are largely similar. The CBM state
of the BeO graphitic sheet, on the contrary, shows very significant differences to the
CBM states of the SiC and BN graphitic sheets. To highlight this difference, only the
charge density contours of the VBM and CBM states of SiC and BeO graphitic sheets
are compared in Fig. 7.4. The figure clearly reveals that the VBM state has anionic pz

character in both compounds The CBM state of the SiC graphitic sheet is of Si pz character
while that of the BeO sheet has O s character. It is largely different from the former state
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Figure 7.4: Charge density contours of the VBM and CBM states of graphitic SiC (left panels)
and BeO (right panels) monolayers (in 10−2 a−3

B ) plotted in the [110]-[001] plane
containing the anion-cation bond, as calculated within the SIC approach. Anions and
cations are depicted by red and black dots, respectively. The VBM and CBM states
for SiC and the VBM state for BeO occur at the K point. The CBM state for BeO
occurs at the Γ point.

exhibiting its NFE-character. This has important consequences for the electronic propeties
of BeO, as compared to SiC and BN NTs.

7.2. Nanotubes

Based on the results obtained for the graphitic monolayers of SiC, BN, and BeO in the
previous section, the attention now turns to the calculation of the respective properties of
the nanotubes that are derived from them.

7.2.1. Geometry of nanotubes

At first, the geometric properties of nanotubes must be defined. For simplicity, this will
be done for the original carbon nanotubes, in which the anionic and cationic positions as
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Figure 7.5: Schematic depiction of (a) the cylinder defining the nanotube and (b) the definition of
the vector c⊥(n, m) for n = 4 and m = 2.

in Eq. (7.2) are both occupied by carbon atoms. As has already been mentioned before,
the starting point for the construction of the nanotubes is a two-dimensional graphitic
monolayer, which is in this case also known as graphene. This layer, or better a certain
stripe of it, shall now be rolled on the surface of a cylinder. Depending on the orientation
of the stripe relative to the graphene layer, a huge variety of configurations is possible in
this regard.
The cylinder as in Fig. 7.5(a) is uniquely characterized by its longitudinal axis and a
circumferential vector c⊥(n,m), which is identical to one of the translational vectors
within the hexagonal graphene layer. With the vectors a1 and a2 as in Eq. (7.1) it is hence
defined as

c⊥(n,m) = na1 +ma2 . (7.4)

The longitudinal axis is to be chosen perpendicular to this vector and consequently can be
considered to be parallel to another vector c‖(n,m), which defines the stripe within the
graphene layer. Finally the nanotube is uniquely identified by the index pair (n,m).
The vector c‖(n,m) parallel to the longitudinal axis of the tube can be generated by
rotating c⊥(n,m) by π/2 around the z-axis and is expressed in Cartesian components as

cλ
‖(n,m) = aλ

[√
3

2
mx̂−

(
n+

m

2

)
ŷ

]
. (7.5)
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Figure 7.6: Planar stripes of a (3,0) zigzag and a (2,2) armchair nanotube within the graphitic
layer. Also shown are the vectors c⊥ and c‖ for both structures as well as the resulting
edge profile of the tubes (red).

The factor λ is introduced to ensure that the vector truly ends at a point of the 2D graphene
lattice, such as

R(n′,m′) = a

[(
n′ +

m′

2

)
x̂ +

√
3

2
m′ŷ

]
. (7.6)

The sought vector c‖(n,m) is now identical to the shortest lattice vector R(n′,m′) point-
ing in the same direction as cλ

‖(n,m). The condition

ĉλ
‖(n,m) = R̂(n′,m′) (7.7)

yields a set of compatible {(n′,m′)} fulfilling the set of conditional equations

√
3m√

n2 + nm+m2
=

2n′ +m′
√
n′2 + n′m′ +m′2

−2n−m√
n2 + nm+m2

=

√
3m′

√
n′2 + n′m′ +m′2

.

(7.8)

Out of this set, the combination for which Ω = |n′ + m′| is smallest, i.e. the shortest
compatible lattice vector, finally defines c‖(n,m).
Typically one distinguishes between nanotubes of different geometry, most notably be-
tween the two special cases of zigzag (m = 0) and armchair (m = n) nanotubes. In
Fig. 7.6 the stripes of the graphene layer that form a zigzag (3,0) and an armchair (2,2)
nanotube, respectively, are shown. The red line indicates the respective edge profile of
the nanotube, which is the basis for the nomenclature. For these special tubes, the deter-

160



7.2. Nanotubes

mination of the translational vectors c‖(n,m) and c⊥(n,m) simplifies.

1. Zigzag nanotubes (m = 0)
In this case, the relation m′ = −2n′ solves Eq. (7.8). It follows that

R(n′,−2n′) = −a
√

3n′ŷ
!
= c‖(n, 0) (7.9)

The shortest vector is found for n′ = −1. Then it finally holds that

c‖(n, 0) = a
√

3ŷ . (7.10)

The length of this vector now equates to the periodicity length of the nanotube and
defines the nanotube unit cell lattice constant aNT =

√
3a. All in all, the stripe of

the graphene layer that belongs to a zigzag nanotube is given by

c⊥(n, 0) = aNT n√
3
x̂

c‖(n, 0) = aNTŷ 6= fnc.(n) .
(7.11)

Note that the vector c‖(n, 0) of a zigzag nanotube is independent of the tube index
n. The circumference of the tube cylinder U is equal to the length of c⊥(n, 0), and
the ideal tube diameter d(n, 0) results as

d(n, 0) =
aNTn√

3π
=
an

π
. (7.12)

2. Armchair nanotubes (m = n)
Here, one obtains solutions of Eq. (7.8) for n′ = −m′. Consequently it follows that

R(n′,−n′) = a

[
n′

2
x̂−

√
3n′

2
ŷ

]
!
= c‖(n, n) (7.13)

Again, the shortest vector is found for n′ = ±1. Choosing n′ = −1 yields

c‖(n, n) = R(−1, 1) = a

[
−1

2
x̂ +

√
3

2
ŷ

]
(7.14)

For an armchair nanotube, the one-dimensional lattice constant amounting to aNT =

a is shorter than for its zigzag counterpart. The graphene stripe that is rolled into
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cylindrical form is then defined by

c⊥(n, n) = aNT

[
3n

2
x̂ +

√
3n

2
ŷ

]

c‖(n, n) = aNT

[
−1

2
x̂ +

√
3

2
ŷ

]
6= Fnc.(n) .

(7.15)

The armchair nanotube has a diameter of

d(n, n) =

√
3aNTn

π
=

√
3an

π
=
√

3d(n, 0) . (7.16)

It is apparently by a factor of
√

3 larger than the diameter of a zigzag nanotube.

With this knowledge of the graphene stripe defined by the vectors c⊥(n,m) and c‖(n,m)

within the layer and the non primitive basis

τ = τxx̂ + τyŷ + τzẑ (7.17)

the stripe can be rolled onto the surface of a cylinder with the respective orientation and di-
ameter. The cylinder is described within a related Cartesian coordinate system (x̂′, ŷ′, ẑ′).
It is suitable to orient the vector c‖ parallel to the z′-axis in such a fashion that the origin
of the stripe is located at the point (R, 0, 0), where R is the radius of the tube. The
original vector c⊥ points into x′-direction. Now this vector can be rolled onto the surface
of the cylinder by uniquely assigning an angle ϕ to the atomic positions along c⊥. If one
explicitly labels these positions as τx = x̄ · |c⊥| = x̄ · U , the angle is calculated as

ϕ = π

(
2x̄+

1

2

)
(7.18)

and the atomic position on the tube cylinder are given by

τ ′ = R [sin (ϕ)x̂′ + cos (ϕ)ŷ′] + τyẑ
′ . (7.19)

This procedure shall be exemplified for the armchair (2,2) nanotube from Fig. 7.6(b) in
the following. If the shown coordinate system is rotated clockwise by π

6
, c⊥ points into

x- and c‖ to the y-direction. The positions of the atoms within the stripe are
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Table 7.3: Determination of the
atomic positions within a
unit cell of armchair (2,2)
nanotube.

x̄ ϕ τ ′
x = R sin τ ′

y = R cos τ ′
z = τy

1
12

2π
3

3a
2π

−
√

3a
2π

a
2

1
6

5π
6

√
3a

2π
− 3a

2π
0

1
3

7π
6

−
√

3a
2π

− 3a
2π

0
5
12

4π
3

− 3a
2π

−
√

3a
2π

a
2

7
12

5π
3

− 3a
2π

√
3a

2π
a
2

2
3

11π
3

−
√

3a
2π

3a
2π

0
5
6

1π
6

√
3a

2π
3a
2π

0
11
12

1π
3

3a
2π

√
3a

2π
a
2

τ1 =
b

2
x̂ +

a

2
ŷ

τ3 = 2bx̂

τ5 =
7b

2
x̂ +

a

2
ŷ

τ7 = 5bx̂

τ2 = bx̂

τ4 =
5b

2
x̂ +

a

2
ŷ

τ6 = 4bx̂

τ8 =
11b

2
x̂ +

a

2
ŷ .

(7.20)

Rolling this stripe onto the surface of the cylinder according to Eq. (7.19) results in the
atomic positions that are summarized in Table 7.3.
Calculating the properties of one-dimensional periodic structures, like nanotubes in this
case, requires an extension of the slab concept used for the calculations of surface prop-
erties. In order to retain the formal three-dimensional periodicity that is necessary for
the Fourier expansion of the local potential, one has to substitute the originally one-
dimensional configuration with a three-dimensional ersatz geometry. Assuming that the
longitudinal axis of the nanotube lies in x-direction and is located in the center of a box
of the edge length L, i.e. at y = z = 0, periodic images of this tube must be placed
at neighboring edges parallel to ex. The size L must be chosen large enough so that the
resulting vacuum region is large enough to electronically decouple periodic images of the
nanotube. So all in all, the nanotube is simulated using a simple orthorhombic unit cell
with the unit vectors

a1 = aNT (1, 0, 0)

a2 = aNT (0, L, 0)

a3 = aNT (0, 0, L) .

(7.21)

163



Chapter 7. Structural, elastic and electronic properties of SiC, BN and BeO nanotubes

The associated reciprocal lattice is spanned by the vectors

b1 =
2π

aNT (1, 0, 0)

b2 =
2π

aNT (0, 1/ζ, 0)

b3 =
2π

aNT (0, 0, 1/ζ) .

(7.22)

It is clear that for large values of L, a one-dimensional Brillouin zone results, effec-
tively. Its irreducible wedge is limited by the two high-symmetry points Γ and X =
2π
aNT (1/2, 0, 0). Along this line, the electronic band structure of the nanotubes must be
determined. For Brillouin zone integrations, an equidistant set of special k-points along
the kx-direction according to

kx =
2π

aNT

1

2

2i+ 1

2N
(7.23)

must be employed. N is the total number of special points and i = 0, . . . , N − 1.

Calculating elastic and structural properties

For the reliable study of the its electronic properties, the exact knowledge of the under-
lying atomic structure of the nanotubes is vital. Concerning possible technological appli-
cations of these NTs their elastic and structural properties are itself of particular interest.
The procedure of the generation of atomic positions for nanotubes as described above
only yields an ideal geometry. Due to significantly distorted bonds in this configuration
compared to the graphitic monolayer, it can be expected that the atoms gain energy upon
relaxation.
Still, the optimized structure of the monolayer constitutes the starting point for any fur-
ther optimization. As the nanotube structure is a very different structure compared to the
planar graphitic sheet, it does not necessarily hold that the ideal lattice constant aNT as de-
fined in the previous paragraph actually yields the minimum energy structure. Therefore
the following procedure has proven to be suitable in terms of an LDA optimization.

1. Determination of the total energy curve Erel,LDA
tot (aNT)

For a set of values around the ideal nanotube lattice constant derived from the
graphitic sheet, the atomic structure is optimized. From the minimum and the cur-
vature of the resulting total energy curve the ground state properties are calculated.

2. At aNT
opt the final atomic structure is optimized. When N is the number of atoms in

one nanotube unit cell, the energy difference

Es =
1

NNT
E tot

NT −
1

2
E tot

sheet (7.24)
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is the energy necessary to form the nanotube from the graphitic sheet, which is
called the strain energy.

3. Finally, for the totally optimized structure, the electronic properties can be deter-
mined.

Due to the lack of an explicit method to calculate SIC forces, there are some intricacies in
the determination of the self-interaction corrected elastic and structural parameters. First
of all, for all LDA optimized structures, the SIC total energy is calculated and evaluated
as before. Then, for the obtained aNT,SIC

opt an LDA calculation is employed to obtain the
relaxed atomic positions at this lattice constant. Based on this optimized geometry, a SIC
calculation yields the respective band structure of the NTs.
As for the calculational details, the wave functions are expanded using three shells of
atom-centered Gaussian orbitals of s, p, d, and s∗ symmetry per atom with the decay con-
stants (in atomic units) 0.18, 0.50 and 1.00 for Si, 0.25, 1.00 and 2.86 for C, 0.20, 0.42
and 1.90 for B, 0.31, 1.36 and 6.00 for N, 0.18, 0.40 and 0.90 for Be and 0.30, 0.90 and
3.50 for O. The inclusion of both fairly localized and extended orbitals is necessary to
achieve an appropriate representation of the localised ionic bond states on the NT cylin-
der as well as the exponential decay of the wavefunctions into vaccuum. To appropriately
describe also the nearly free electron state in the lower conduction bands characteristic
for the hexagonal sheets, as previously discussed, additional localized Gaussian orbitals
are placed on planes in vacuum above and below the hexagonal sheets. Rolling up the
sheets into nanotubes, one point of concern becomes immediately obvious. The addi-
tional orbital localization points outside the tubes constitute a separate tube which causes
no problems. Inside the tubes, however, localization points originating from opposite in-
ner sides of the NT can come very close to one another so that numerical instabilities
could arise. To avoid such instabilities, the additional Gaussian orbitals inside the tubes
are placed only along the tube axis. Vacuum layers of approximately 12 Å thickness in
the lateral directions of the respective systems are used so that unphysical interactions
between neighboring sheets or NTs are avoided. Six and ten uniformly distributed spe-
cial k points along the NT axis are used for the treatment of zigzag and armchair NTs,
respectively.

7.2.2. Structural and elastic properties

First, the structure of the NTs is addressed. When stripes of graphitic SiC, BN or BeO
sheets are rolled up into single cylindrical tubes the anions and cations relax from their
ideal atomic positions. The cations move slightly inward towards the tube axis, while
the anions move outward with respect to their ideal positions. This reduces the total
energy of the system since the electron-electron repulsion is lowered. As a result, the NT

165



Chapter 7. Structural, elastic and electronic properties of SiC, BN and BeO nanotubes

surface becomes buckled. After relaxation, the radial geometry of the tubular structures
is characterized by two concentric cylindrical tubes, with an outer anionic and an inner
cationic cylinder. The strength of the buckling is defined by the radial buckling parameter

β = r̄a − r̄c , (7.25)

where r̄c and r̄a are the mean radii of the cation and anion cylinders, respectively. The val-
ues for the radial buckling of SiC, BN and BeO NTs, as resulting from SIC calculations
are shown in Fig. 7.7. For more quantitative comparisons, the respective values are also
summarized in Tables 7.4, 7.5, and 7.6. Judging from the data, there is no dependence of
β on NT helicity. The independence of the radial buckling on helicity has previously been
observed for BNNTs by Hernández et al. [185], as well. For all three compounds, the ra-
dial buckling decreases with increasing NT diameter and is expected to vanish in the limit
of very large NT diameters. The absolute values for β are larger for SiC than those for
BeO and BN NTs, which can be explained by the larger Si–C bond length (see Table 7.1)
in combination with the physical mechanism giving rise to the relaxed minimum-energy
structure. The observed relaxation pattern is a consequence of the curvature strain in the
ideal NT structure. By rolling a graphitic stripe up into cylindrical form, the previous
planar sp2 environment is distorted. When the ions arrange in two concentric cylinders as
in the equilibrium structure, the cations locally restore that particular coordination with
their three neighboring anions. The bond angles do not deviate significantly from 120◦

after relaxation. Additionally, one observes a small contraction of the bond lengths in the
order of ∼ 1%. Since this restoration of the sp2 coordination is a common tendency in
ionic systems – as has also been pointed out for a number of surface relaxation patterns
of such materials in earlier chapters – it is apparent that the larger absolute values for the
radial buckling of SiC compared to BeO and BN NTs is mainly due to its larger bond
length.
Next the strain energy necessary to form a NT is addressed. It is defined as the difference
in total energy per atom between a NT and the respective graphitic sheet

Es =
1

NNT
E tot

NT −
1

2
E tot

sheet, (7.26)

where NNT is the number of atoms in the NT unit cell. In simple terms, Es is the energy
per atom necessary to roll up the graphitic stripe into tubular form.
In Fig. 7.8 the strain energy Es of the NTs resulting from SIC calculations is plotted
as a function of their average diameter. Respective values are also summarized in Ta-
bles 7.4–7.6. From Fig. 7.8 it becomes apparent that also the strain energy progression
with diameter d is independent of the NT helicity and resembles a classical ∼ d−2 law.
As has been pointed out in Ref. [184], the strain energy of BNNTs is somewhat lower
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further details.

than that of carbon NTs. The ab initio results for BNNTs calculated within the SIC
framework are in good agreement with the respective values calculated previously within
tight-binding [184] or standard LDA [186,191,192]. They are also in general accord with
the strain energies obtained by Hernández et al. [185] for BNNTs from a nonorthogo-
nal tight-binding approach in which the tight-binding parameters have been obtained by
fitting DFT-LDA results. The calculated progression of the strain energy for SiCNTs is
in good agreement with the progression calculated by Zhao et al. [23] within DFT-LDA.
The strain energies for SiC and BN NTs in Fig. 7.8 are fairly similar. For BeONTs, the
strain energy results significantly lower (up to about d∼ 12 Å) which is due to the much
higher ionicity of this compound as compared to SiC and BN. Rolling respective sections
of graphitic BeO layers up into NTs needs less energy. The O 2pz band is very narrow
and the charge density of the CBM state is localized at the O atoms and fairly smooth and
small around the Be atoms. In all three cases, the strain energy approaches zero for large
NT diameters only very slowly since the NTs become equivalent to graphitic layers only
for very large diameters.
Another interesting structural feature of NTs is their behaviour under uniaxial strain along
the NT axis. It is described by Young’s modulus, which is conventionally defined as the
second derivative of the total energy with respect to the strain ε =

a−aopt

aopt

Y =
1

V0

∂2E

∂ε2

∣∣∣∣
ε=0

, (7.27)
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Table 7.4: Structural, elastic and elec-
tronic properties of SiC NTs.
Tube diameters d and radial
buckling parameters β are
given in Å, strain energies
Es in eV per atom, modi-
fied Young’s moduli Ys in
TPa nm, and band gap ener-
gies Eg in eV.

(n,m) d β Es Ys Eg

SiC
(4,0) 4.09 0.230 0.396 0.115 0.62
(5,0) 4.99 0.189 0.238 0.143 1.16
(6,0) 5.90 0.158 0.169 0.149 1.81
(7,0) 6.85 0.133 0.129 0.154 2.38
(8,0) 7.80 0.116 0.104 0.156 2.56
(9,0) 8.75 0.102 0.087 0.160 2.81
(10,0) 9.71 0.091 0.075 0.161 3.04
(15,0) 14.52 0.060 0.046 0.166 3.42

(4,4) 6.73 0.141 0.121 0.157 3.14
(5,5) 8.38 0.109 0.087 0.162 3.47
(6,6) 10.07 0.089 0.067 0.164 3.49
(7,7) 11.73 0.075 0.056 0.165 3.63
(8,8) 13.40 0.065 0.048 0.166 3.65
(9,9) 15.07 0.057 0.043 0.167 3.72

(10,10) 16.77 0.051 0.039 0.168 3.74
(15,15) 25.16 0.035 0.030 0.168 3.78

where V0 is the equilibrium volume. As the volume for a hollow cylinder is V0 =

2πLRδR =: S0δR it is neccessary to adopt a certain convention for the shell thickness
δR in the case of single-walled NTs. In Ref. [185] the authors suggested to describe the
NT stiffness independent of δR by a modified Young’s modulus

Ys =
1

S0

∂2E

∂ε2

∣∣∣∣
ε=0

, (7.28)

which is related to the standard Young’s modulus by Ys = Y δR. In Fig. 7.9 the progres-
sion of the calculated values for Ys with NT diameter is shown. Respective values are
summarized in Tables 7.4–7.6. It is clearly visible that for BN, SiC and BeO NTs the
modified Young’s moduli reach saturation already at fairly small diameters d∼ 10 Å. Sig-
nificant differences between armchair and zigzag configurations are not to be noted. The
saturation values of Ys are 0.28, 0.17 and 0.13 TPa nm for BN, SiC and BeO, respectively.
Obviously, the Young’s moduli are different for the BN, SiC and BeO NTs. Those for
BeONTs are smallest which correlates nicely with the low strain energies (see Fig. 7.8).
The ratio of the Young’s moduli for BN and SiC NTs is in good agreement with that of the
bulk moduli of BN and SiC. The results corroborate the respective tight-binding results of
Hernández et al. [185]. They are in quantitative agreement with the few DFT-LDA values
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(n,m) d β Es Ys Eg

BN
(4,0) 3.35 0.149 0.479 0.227 3.04
(5,0) 4.08 0.122 0.301 0.246 3.45
(6,0) 4.83 0.101 0.218 0.259 3.95
(7,0) 5.60 0.085 0.171 0.263 4.78
(8,0) 6.37 0.073 0.140 0.267 4.89
(9,0) 7.15 0.064 0.118 0.269 5.25
(10,0) 7.99 0.057 0.102 0.273 5.51
(15,0) 11.85 0.037 0.063 0.278 5.83

(4,4) 5.49 0.089 0.168 0.268 5.75
(5,5) 6.87 0.068 0.123 0.272 5.72
(6,6) 8.23 0.055 0.096 0.274 6.06
(7,7) 9.59 0.046 0.080 0.275 6.08
(8,8) 10.95 0.040 0.069 0.276 6.11
(9,9) 12.31 0.036 0.061 0.277 6.22

(10,10) 13.67 0.032 0.055 0.278 6.24
(15,15) 20.48 0.022 0.041 0.279 6.27

Table 7.5: Structural, elastic and elec-
tronic properties of BN NTs.
See caption of Table 7.4 for
details.

given in the latter reference. The deviations between the ab initio results in this work and
the tight-binding results [185] are in the order of 2% for the NT diameters and about 10%
for the Young’s moduli.
It should be noted in passing that all structural and elastic properties of the NTs presented
above have also been calculated within standard LDA. As expected, only small deviations
up to 1 % occur.

7.2.3. Electronic properties

Most fundamentally, it turns out that all SiC, BN and BeO NTs investigated are semicon-
ducting, as was to be expected on the basis of the electronic properties of the respective
graphitic sheets, spanning a huge range of band gap energies from 0.5 to about 9 eV. Thus
many nanoelectronic applications employing band gap energies of such a large range are
conceivable. The band gaps are direct at Γ for (n, 0) zigzag NTs – with the notable ex-
ception of the (4, 0) NTs – and indirect for (n, n) armchair NTs. In a simple picture one
might consider the band structure of the NTs as resulting from backfolding respective
graphitic sheet bands onto the Γ-X line of the one-dimensional NT Brillouin zone. This
backfolding increases the number of bands drastically for large n and the new interac-
tions induced by the symmetry breaking of the graphitic sheets give rise to more or less
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(n,m) d β Es Ys Eg

BeO
(4,0) 3.59 0.156 0.208 0.095 8.69
(5,0) 4.37 0.126 0.134 0.107 8.16
(6,0) 5.17 0.104 0.100 0.111 7.86
(7,0) 5.98 0.089 0.079 0.117 7.71
(8,0) 6.81 0.076 0.067 0.119 7.67
(9,0) 7.63 0.067 0.058 0.121 7.78
(10,0) 8.46 0.060 0.052 0.122 8.03
(13,0) 9.95 0.052 0.044 0.123 8.65
(15,0) 12.61 0.039 0.038 0.125 8.70

(4,4) 5.85 0.092 0.077 0.124 7.27
(5,5) 7.30 0.072 0.058 0.123 7.75
(6,6) 8.74 0.059 0.049 0.124 8.17
(7,7) 10.18 0.049 0.043 0.126 8.65
(8,8) 11.62 0.042 0.040 0.126 8.73
(9,9) 13.07 0.037 0.037 0.127 8.75

(10,10) 14.54 0.033 0.035 0.127 8.77
(15,15) 21.82 0.021 0.032 0.128 8.78

Table 7.6: Structural, elastic and elec-
tronic properties of BeO
NTs. See caption of Ta-
ble 7.4 for details.

pronounced splittings of the backfolded bands due to scattering of the sheet electrons at
the NT lattice. While this simple picture applies for some regions of the valence and con-
duction bands in the case of armchair NTs, in particular, it is not fully appropriate for the
lower conduction bands of SiC and BN zigzag NTs, in general, as will be discussed be-
low. Fig. 7.10 shows a few exemplary results. The SiC and BN (10, 0) zigzag NTs exhibit
a direct gap at Γ while the SiC and BeO (6, 6) armchair NTs show indirect gaps from a k
point on the Γ-X line to the X point or the Γ point of the one-dimensional Brillouin zone
in the former or latter case, respectively. The bandstructure for the BeO (6, 6) armchair
NT is in good agreement with the respective DFT-LDA result reported in Ref. [110] with
the notable exception that the calculated band gap is approximately 3 eV larger than the
one reported in the latter reference.
Fig. 7.11 shows the progression of the band gaps with NT diameter for SiC, BN and BeO
NTs. The respective values are summarized for further comparison in Tables 7.4–7.6,
as well. Several interesting features are to be noted. First, there is a qualitative similar-
ity regarding the evolution of the band gaps in SiC and BN NTs. Both show significant
differences between zigzag and armchair configurations, i.e., very pronounced helicity ef-
fects although their structural and elastic properties are virtually independent of helicity.
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Figure 7.11: Fundamental gap of SiC, BN and BeO (n, 0) zigzag and (n, n) armchair NTs as
functions of the tube diameter d. See caption of Fig. 7.7 for further details.

The same general behavior was found by Zhao et al. [23] for SiCNTs and by Okada et
al. [188], Xiang et al. [191] and Guo et al. [192] for BNNTs in their DFT-LDA results.
The absolute band gap values reported previously [23,188,191,192], however, are signif-
icantly smaller than the values in this work due to the well known underestimate of band
gaps in LDA. Most interestingly, the deviations, e.g., between the SIC band gap values
and those of Okada et al. [188] and Guo et al. [192] for a number of zigzag and armchair
BNNTs are not constant but span a range from about 1 to 1.7 eV showing that it is not
fully appropriate to just apply the same constant shift to the LDA band gaps of all NTs
as is often conjectured. Only the band gaps calculated within hybrid density-functional
theory for SiCNTs [196] and BNNTs [193] are in good accord with present results. For
that matter, Gali [196] finds gap energies of 2.28 and 3.30 eV for (8, 0) and (6, 6) SiC-
NTs, respectively, to be compared to the SIC values of 2.56 and 3.49 eV and Xiang et
al. [193] report gap energies of about 6.2 eV for armchair BNNTs with diameters larger
than 12 Å which compare favorbaly with the respective SIC values for the (9, 9), (10, 10)

and (15, 15) BNNTs, respectively (see Tables 7.4–7.6). For large NT diameters the cal-
culated band gaps converge towards the limiting values of the band gaps of the respective
graphitic sheets. For small diameters, the differences of their gap energy from that of the
respective graphitic monolayers EML

g is very pronounced, indeed. In particular, the gap
of the SiC zigzag NTs reduces dramatically with decreasing diameter almost approaching
a band gap collapse. The gaps of the SiC and BN (15, 0) zigzag NTs still deviate from
EML

g by about 13 and 6 %, respectively, while the gaps for the SiC and BN (9, 9) arm-
chair NTs, having comparable respective diameters, deviate only by approximately 6 and
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0.5 %, respectively (see Table 7.2 and Tables 7.4–7.6).
In contrast, the progression of the band gap energy of BeONTs is remarkably different
(see Fig. 7.11). First of all, there is no discernible difference between zigzag and armchair
tubes, except for the (7, 0) zigzag and (4, 4) armchair NTs. Second, one finds that for
zigzag NTs of very small diameter, the gap is not strongly reduced, as in the case of SiC
and BN, but goes through a minimum and opens up again, instead. In Ref. [110] the
authors conclude on the basis of their DFT-LDA results that the band gap of BeONTs is
independent of chirality. The present results confirm this notion for zigzag and armchair
NTs. At the same time, the authors conclude that the band gap is independent of the NT
diameter amounting to about 5 eV for all BeONTs considered [110]. Here, it is clearly
revealed that this latter conclusion does not apply. Instead, the gap energies depend on
nanotube diameter for d≤ 10 Å and their values range from 7.3 to 8.8 eV (see Fig. 7.11
and Tables 7.4–7.6).
The question whether the band gap narrowing in small diameter SiC and BN NTs origi-
nates from a shift of the VBM or the CBM or from both can not be resolved from band-
structure plots such as those shown in Fig. 7.10 since the top of the valence bands is
defined in each of these plots as the zero of energy, as usual. To shed more light on the
above question, Fig. 7.12 shows sections of the band structure of (5, 0) and (9, 0) zigzag
SiCNTs but now refered to a common reference level which is chosen to be the vacuum
level Evac ≡ EML

vac of the respective graphitic monolayer, as determined from the self-
consistent sheet potential. The energy zero is thus put at Evac. Some prominent bands
(V1, V2 and C1) have been labeled explicitly. The figure clearly reveals intricate changes
of the order of bands near the top of the valence bands with NT diameter, nevertheless,
placing the VBM at nearly the same absolute energy. The CBM, on the contrary, strongly
shifts up in energy with increasing n or NT diameter, respectively. Comparing the band
structures in Fig. 7.12 – and especially the characteristics of the bands V1, V2 and C1 –
two pronounced effects are to noted. First, one can see that the order of the V1 and V2

bands changes from the (5, 0) to the (9, 0) NT, most prominently at the Γ point defining
the VBM. Second, the C1 band strongly separates from the rest of the conduction bands in
the (5, 0) NT while it is located rather close to them in the (9, 0) NT. To put it more quan-
titatively, the transition energy between the two lowest conduction bands at Γ amounts to
1.77 eV for the (5, 0) and 0.35 eV for the (9, 0) NT. For a (15, 0) NT, finally, the transition
energy is only 0.09 eV.
For further comparison, energy-band positions (marked by full dots) at the Γ andX points
as resulting from backfolding the SiC graphitic-layer bands onto the NT Brillouin zone
are included in Fig. 7.12. One can see that for the larger diameter (9, 0) NT the backfolded
valence-band energies are close to the calculated NT energies, due to the respectively low
NT curvature. The same agreement obtains for valence band V1 of the (5, 0) NT. How-
ever, the backfolded energy values corresponding to the valence band V2 of the (5, 0) NT

174



7.2. Nanotubes

Figure 7.12: Sections of the band struc-
ture of (5, 0) and (9, 0) zigzag
SiCNTs (left and right panel,
respectively) along the high-
symmetry line of the one-
dimensional NT Brillouin zone.
The dots result from back-
folding the bands of the SiC
graphitic sheet onto the Γ and
X points of the respective NT
Brillouin zones. See text for the
definition of the energy scale.
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deviate very significantly from the energies of the NT band. Nevertheless, the backfolded
sheet valence bands also yield the VBM of the (5, 0) NT reasonably well. On the contrary,
backfolding the conduction bands of the graphitic sheet does not at all yield appropriate
values for the NT CBM. The deviation is significant for the (9, 0) and very large for the
(5, 0) NT. Compare the green dots with the C1 bands at Γ, for that matter. The results in
Fig. 7.12 can already be viewed as an indication that the band gap narrowing in SiC and
BN zigzag NTs originates mainly from a NT-induced shift of the CBM.
Fig. 7.13 shows the calculated VBM and CBM energies (full symbols) of all investigated
zigzag SiCNTs, referred to the common reference level EML

vac of the graphitic monolayer.
In addition, the open symbols represent the respective energetic positions resulting from
a simple backfolding scheme for the monolayer bands. This figure clearly reveals that the
band gap narrowing with decreasing tube diameter is mainly a result of NT-curvature.
Second, it is most apparent that the dominant contribution to the band gap narrowing orig-
inates from a change of the energy position of the lowest conduction band. In particular,
the energy decrease of the CBM turns out to be entirely monotonous. The variation of
the energy position of the VBM, on the contrary, is not monotonous for small diameters
d< 10 Å. The differences between the monotonous CBM and the non-monotonous VBM
curves directly translates into the non-monotonous band gap progression for zigag SiC-
NTs, as shown in Fig. 7.11, explaining the occurrence of two almost linear regimes with
different slopes for small NT diameters. This holds for both SiC and BN NTs, albeit on
different absolute scales.
This behavior is thus related to the more intricate dependence of the VBM on NT diameter
for small diameters and the respective discontinuous change of the neighbor configura-
tions and interactions between occupied atomic orbitals across the inner NT cylinder.
To elucidate the physical origin of the particular band gap progressions in SiC, BN and
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Figure 7.13: Progression of the VBM and CBM energies in zigzag SiCNTs as a function of tube
diameter d. Full symbols result from NT calculations while the open symbols follow
from backfolding the bands of the graphitic SiC sheet. The solid and dashed lines
are drawn to guide the eye.

BeO NTs, one should first address the qualitatively similar progressions for SiC and BN
NTs (see Fig. 7.11) focussing on SiCNTs, for that matter. Thereafter, the band gap pro-
gression for BeONTs is discussed.
While most of the previous literature on BNNTs discusses the origin of the band gap pro-
gression with tube diameter in k-space in terms of backfolding of the related graphene
sheet bands [183–189], a complemetary line of approach shall be followed here by ad-
dressing its origin in real space using SiC and BeO NTs as examples. When a stripe of
graphitic SiC is rolled up into a NT, changes in the charge density occur. These are dif-
ferent for zigzag and armchair NTs because of their fundamentally different geometry.
The charge densities of the VBM and CBM states of the graphitic SiC sheet, shown in the
left panels of Fig. 7.4, reveal their anionic and cationic pz character, respectively. When
rolling the stripe up into tubular form its curvature generally decreases the distance be-
tween neighboring sites. Much more importantly, the respective charge densities start to
overlap inside the cylinder. Especially for zigzag NTs, this is a very pronounced effect
while it is much smaller for armchair NTs. This is illustrated in Fig. 7.14 by charge den-
sity contours of the CBM state at the K point for the (5, 5) armchair and at the Γ point for
the (9, 0) zigzag SiCNT. Because the CBM states are mainly responsible for the band gap
narrowing, as shown above, they are concentrated upon in the following. In both cases,
the contours are drawn in a plane perpendicular to the NT axis containing an anion-cation
ring for the armchair and a cation ring of the double-ring structure for the zigzag NT be-
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Figure 7.14: Charge density contours of the CBM states (in 10−3 a−3
B ) of the one-dimensional

Brillouin zone at the K point of a (5, 5) armchair (left panel) and the Γ point of a
(9, 0) zigzag (right panel) SiCNT. The contours are drawn in planes perpendicular to
the NT axis containing an anion-cation ring for the armchair and a cation ring for the
zigzag NT. Anions and cations are again depicted by red and black dots, respectively.

cause the latter gives rise to the CBM. One can see that in the armchair NT (left panel),
the charge density remains localized at the cations and is distorted on the inner side of
the ring only slightly in the bond direction towards the anions due to the curvature of
the NT. In contrast, the charge density contour of the (9, 0) zigzag SiCNT (right panel)
very clearly demonstrates that a major redistribution of the charge density has taken place
inside the tube building up a ring-like distribution. The former pz components of the
charge density on the SiC graphitic sheet are pushed towards each other and a significant
rehybridzation leads to a ring-like charge density on the inner side of the tube. The for-
mer atomic character of the states on the inner side of the NT is entirely lost. The CBM
energy is lowered, therefore, and the fundamental energy gap is reduced with respect to
the graphitic sheet. The pz components of the cation orbitals on the outside of the NT
are only slightly affected showing even less coupling between neighboring cations on the
ring than in the graphitic sheet. The effects described above are even more pronounced for
NTs with smaller diameters giving rise to an even stronger band gap reduction. Respec-
tive charge-density contours of the CBM state of (4, 0), (8, 0) and (10, 0) zigzag SiCNTs
at the Γ point are compared in the left panels of Fig. 7.15. Note the dramatic increase of
the charge density within the nanotube when n is decreased from 10 to 4.
In contrast, the insensitivity of the gap of BeONTs to helicity seems to be related to the
particular charge density topology of the CBM state in the graphitic BeO sheet (see the
right panels of Fig. 7.4). The bottom of the conduction bands in BeONTs originates from

177



Chapter 7. Structural, elastic and electronic properties of SiC, BN and BeO nanotubes

SiC

(4,0)

BeO

(4,0)

(8,0) (8,0)

(10,0) (10,0)

 0  1  2  3  4  5

Figure 7.15: Charge density contours of the CBM states (in 10−3 a−3
B ) at the Γ point of the one-

dimensional Brillouin zone of (4, 0), (6, 0) and (9, 0) SiC (left panels) and BeO
(right panels) zigzag NTs. The charge densities for SiC and BeO NTs are plotted in
a plane perpendicular to the NT axis containing a Si or an O ring, respectively, since
the CBM of zigzag SiCNTs is made up of Si p orbitals, while that of zigzag BeONTs
is made up of O s orbitals. For further details, see caption of Fig. 7.14. Note that all
charge densities are plotted on the same absolute scale so that they can be compared
quantitatively.
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localized O s and very extended Be 2s states (of NFE-character) which are not strongly
influenced by rolling up the graphitic BeO stripe into zigzag or armchair NTs. Thus,
there is no helicity-induced difference in the gaps of both types of NTs. The peculiar
dependence of the gap on NT diameter showing a minimum is more intricate. Coming
from the graphitic sheet limit, the gap first decreases with decreasing d for both zigzag
and armchair NTs until d approaches a value of about 7 Å for the (8, 0) NT. The charge
density of the CBM state in (n, 0) zigzag BeONTs is shown for n= 4, 8 and 10 in the
right panels of Fig. 7.15. The figure clearly reveals the different character of the CBM
states of the BNNTs (right panels), as compared to the respective CBM states of the
corresponding SiCNTs (left panels). The charge densities of the (10, 0) NTs of both
compounds approach the respective sheet limit on the outside of the tubes. For the (8, 0)

NTs, already more pronounced changes occur inside the tubes. For the (4, 0) NTs the
charge densities are largely different from those of the graphitic sheets explaining the
specific behavior for n≤ 8. For BeO zigzag NTs with n≤ 8 the gap increases again (see
Fig. 7.11) because the very small NT diameters start to allow for an increased interaction
between the anions and the cations across their respective rings. Generally speaking, an
increasing interaction between second-nearest neighbors, i.e., between anions or cations,
respectively, broadens respective anion- and cation-derived bands. As a result, the energy
gaps between the related bands become smaller. For armchair SiCNTs, e.g., there is
no interaction across the inner NT cylinder (see the left panel in Fig. 7.14) so that the
gap energy remains close to its sheet value. For zigzag SiCNTs (see the left panels in
Fig. 7.15) the interaction is minimal for the (10, 0) NT and increases down to the (4, 0)

NT. Thus the gap decreases with decreasing n or tube diameter d, respectively. For BeO
zigzag NTs, on the contrary, (see the right panels of Fig. 7.15) the interaction across the
inner tube cylinder is small for the (10, 0) NT, becomes largest for the (8, 0) NT and
becomes smaller again for the (4, 0) NT. Thus the (8, 0) zigzag BeONT has the smallest
gap while it is larger for both the (4, 0) and (10, 0) BeONTs. From Fig. 7.15 it becomes
obvious that the CBM states of highest charge density and largest interactions across the
inner ring are the (4, 0) SiCNT and the (8, 0) BeONT. So among the (n, 0) zigzag NTs,
those with the largest interaction across the tube are those with the smallest gap , i.e., the
(4, 0) SiCNT and the (8, 0) BeONT (see Figs. 7.11 and 7.15).

7.3. Summary

In this chapter a comprehensive comparison of structural, elastic and electronic properties
of compound semiconductor nanotubes with increasing ionicity, as studied by ab initio
density-functional theory employing self-interaction-corrected pseudopotentials which
yield accurate band gaps, in particular, has been performed. The progression of the ra-
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dial buckling, strain energy, Young’s modulus and energy gap with NT diameter has been
investigated and related to the increasing ionicity of the SiC, BN and BeO NTs consid-
ered. For all zigzag and armchair NTs investigated, the structural and elastic properties
are largely independent of NT helicity while the electronic structure of SiC and BN NTs
very sensitively depends on it. This is not the case for BeONTs. The origin of the peculiar
helicity dependence of the gap energy in SiC and BN zigzag NTs and its helicity inde-
pendence in BeONTs has been analyzed in detail. In particular, it was elucidated why no
large band gap narrowing occurs for small diameter zigzag BeONTs, as opposed to zigzag
SiC and BN NTs. To this end, the nature and origin of the band gap progressions and the
peculiar differences of it between SiC and BN NTs, as compared to BeONTs, has been
analyzed by considering most relevant charge density contours which highlight the critical
differences between the respective NTs and allows to explain the different progressions
of Eg in SiC and BN NTs, as compared to BeONTs. The structural and elastic properties
of SiC and BN NTs, as resulting from the present calculations, are in good agreement
with previous DFT-LDA results and they corroborate respective earlier tight-binding re-
sults on BNNTs. For BeONTs, the results appear to be the first comprehensive account
of their structural and elastic properties. Concerning electronic properties of SiC, BN and
BeO NTs, the SIC results confirm the qualitative outcome of previous tight-binding and
DFT-LDA calculations and they are in quantitative accord with the selected hybrid den-
sity functional results on the few SiC and BN NTs available in the literature. This should
be valued in view of the fact that the SIC calculations, treating all NTs studied on equal
footing, are numerically not more demanding than any standard DFT-LDA calculation on
NTs.
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Chapter 8.

Electronic structure of alkali-metal
fluorides, oxides and nitrides

Several years ago, Fischer and Jansen [24] reported the anti-ReO3 structure for films
of metastable sodium nitride (Na3N) deposited at low temperatures. Recently single
crystalline and polycrystalline Na3N has been synthesized successfully on a laboratory
scale by reaction of metallic sodium or a liquid Na-K alloy with plasma-activated nitro-
gen [25], thus allowing for an intensive experimental investigation of its structural and
optical properties employing powder and single-crystal X-ray diffraction and optical ab-
sorption [204]. Based on the respective preliminary experimental data, Na3N appears to
be semiconducting with a band gap of 1.6 eV. On the contrary, concomitant band structure
calculations [25] based on density-functional theory within local-density approximation
have yielded a negative gap of 0.6 eV. This theoretically predicted metallicity of Na3N is
in obvious contrast to the experimental data and the expected formulation as (Na+)3N3−.
Now the description of electronic properties of insulators and semiconductors within the
framework of DFT-LDA suffers from the systematic underestimation of the fundamen-
tal band gap, as has been exemplified above for several classes of semiconductors and
insulators. Based on the achievements of the SIC approach as presented in the previ-
ous chapters, one can expect it to be also useful for sheding some light on the question
whether Na3N is a semiconducting or metallic compound.
In this chapter, a comparative study of the k-dependent electronic structure of Na3N
and related compounds ranging from wide-band-gap insulators possibly to metals is per-
formed in order to scrutinize the use of SIC pseudopotentials for the broader class of
lithium, sodium, and potassium fluorides, oxides and nitrides. For the fluroides, in partic-
ular, and less so for the oxides, there is data in the literature to which the SIC results can
be compared.
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Calculational Details

As usual, standard LDA calculations constitute the reference point for the investiga-
tions. The standard pseudopotentials are constructed according to the prescription of
Hamann [94]. A notable difference to the previous calculations concerns the alkali metal
atoms, for which partial non-linear core corrections, as introduced by Louie et al. [205],
are included into the pseudopotentials. The wave functions are expanded employing a
basis set of atom-centered Gaussian orbitals with several shells of s, p, d, and s∗ sym-
metry per atom with appropriately determined decay constants of (in atomic units) 0.30,
1.34 and 6.00 for Li, 0.16, 0.30, and 0.60 for Na, 0.16, 0.37, and 0.88 for K, 0.20, 0.95,
and 4.50 for F, 0.25, 1.00 and 3.70 for O, and 0.31, 1.36, and 6.00 for N. As one has
to deal with some relatively low-density substances for the oxides and especially the ni-
trides, additional slowly-decaying s-like Gaussian orbitals with a decay constant of 0.18
are placed in the empty regions in order to allow for a satisfying description of extended
bulk states. Brillouin-zone integrations are performed using special k-point sets in the
irreducible wedge generated according to the prescription of Monkhorst and Pack [30].
The number of k-points was tested to yield convergent results. The actual numbers of
special k-points in the respective irreducible wedges of the bulk Brillouin zones are 44
(LiF), 28 (NaF), and 19 (KF), 28 (Li2O), 19 (Na2O), and 10 (K2O), as well as 32 (Li3N),
10 (Na3N), and 8 (K3N).

8.1. Atomic term values

Before turning to the properties of the various bulk crystals studied in this chapter, the
term values of the different atomic levels, as resulting from SIC and LDA calculations
with one another and are compared with experimental ionization energies in Table 8.1.
The results show that the cationic s levels experience significantly lower self-interaction
corrections ∆ε than the anionic s and p levels, respectively. This difference gives rise to a
significant shift of the related bands in the fluorides, oxides and nitrides and consequently,
the gap is opened up in these materials due to self-interaction corrections, as compared to
the LDA results. It should be noted that the term values of the highest occupied cationic
(Li, Na, K) s levels as resulting from the SIC calculations agree with the experimental
ionization energies within better that 0.3 eV. In contrast, the LDA results deviate from the
experimental data by 2.49, 2.32, and 1.92 eV, respectively. In the case of the 2p levels
of N, O and F the SIC calculations appear to yield larger deviations from experiment. A
direct comparison of the measured 2p ionization energies with the values in Table 8.1 is
misleading, however, since the latter are obtained from non-spin-polarized calculations
while the former include spin-polarization. As has been discussed in chapter 3, for the
bulk crystals investigated in this work, spin-polarization is irrelevant since the respective
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Element Level Eexp
ion εSIC εLDA ∆ε

Li 2s -5.39 -5.10 -2.90 -2.20

Na 3s -5.14 -4.92 -2.82 -2.10

K 4s -4.34 -4.06 -2.42 -1.64

N 2s — -25.06 -18.41 -6.65
2p -14.53 -13.47 -7.24 -6.23

O 2s — -31.38 -23.74 -7.64
2p -13.62 -16.48 -9.20 -7.28

F 2s — -39.45 -29.61 -9.84
2p -17.42 -20.82 -11.33 -9.49

Table 8.1: Atomic term values (in eV) for Li, Na, K, F, O, and N atoms as resulting from non-spin-
polarized SIC and LDA calculations. Additionally, the energy shifts ∆ε = εSIC − εLDA

of the term values due to self-interaction correction are given. Experimental ionization
energies for the highest occupied levels from Ref. [37] are listed for comparison.

levels are non-spin-polarized in the solids. Yet, to allow for a more meaningful direct
comparison of the results for the atoms with experimental 2p ionization energies the 2p
level energies have also calculated by spin-polarized DFT-SIC calculations. As a result,
the energies amount to -14.91 eV for N2p, -13.89 eV for O2p and -18.05 eV for F2p. These
values agree with experiment (see Table 8.1) within 0.6 eV lending further support to the
appropriateness of the results for the non-spin-polarized case which obtains in the solids.
Starting out from this significantly improved description of the underlying atomic term
values self-interaction-corrected pseudopotentials are constructed and the SIC effects on
the bulk electronic structure of the above mentioned alkali-metal fluorides, oxides and
nitrides can be studied.

8.2. Bulk electronic properties

The results of the SIC calculations for the nine bulk crystals are summarized in Figures
8.1 to 8.3 and Table 8.2, which are repeatedly referred to in the course of the following
discussion.

8.2.1. Fluorides

All three fluorides crystallize in the sodium-chloride structure (space group Fm3̄m) with
lattice constants of 3.99 Å (LiF), 4.57 Å (NaF), and 5.29 Å (KF), respectively [216]. The
calculated SIC band structures for the three fluorides are shown in Fig. 8.1. In these highly
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Band gap anion s-band
LDA SIC Exp. LDA SIC

LiF 8.5 14.7 13.6a, 14.2b, 14.5c -21.3 -21.5
NaF 5.7 11.6 11.5a, 11.7d -20.2 -20.5
KF 5.2 10.6 10.8e, 10.9f, 11.0g -20.1 -20.4

Li2O 4.8 8.3 8.0h -15.2 -16.0
Na2O 1.8 4.9 (4.4 - 5.8)i -14.3 -14.6
K2O 1.1 3.8 (4.0 - 5.4)g -14.1 -15.0

Li3N 1.1 2.6 2.2j -11.2 -11.8
Na3N 0.0 0.5 1.6k -10.8 -10.8
K3N 0.0 0.0 — -11.6 -11.3

afrom Ref. [206]
bfrom Ref. [207]
cfrom Ref. [208]
dfrom Ref. [209]
efrom Ref. [210]
ffrom Ref. [211]
gfrom Ref. [212]
hfrom Ref. [213]
i(lower - upper) limits (from Ref. [214] - estimated), see text.
jfrom Ref. [215]
kfrom Ref. [204]

Table 8.2: Calculated gap energies and average energetic position of the anion s-band (in eV) as
resulting from SIC, compared to experimental results.

ionic compounds the valence bands are basically anion-derived consisting of one low-
lying F 2s band (not shown in Fig. 8.1) and three F 2p bands defining the top of the valence
bands (see Fig. 8.1). These groups of bands are separated in energy by a large ionic gap.
The lowest conduction bands are mostly cationic s bands. All three compounds are ionic
insulators having direct band gaps at Γ of 14.7 eV (LiF), 11.6 eV (NaF), and 10.6 eV (KF),
respectively, according to the DFT-SIC results. The band gaps and average F 2s band
positions, as resulting from the LDA and SIC calculations are summarized in Tab. 8.2.
Experimental gap energies from optical reflection and absorption measurements [204,
206–215] are given in the table for comparison. Those for the fluorides are significantly
underestimated by some 6 eV within DFT-LDA, while the SIC results are in very good
accord with experiment constituting a significant improvement over LDA. In addition, the
SIC band gaps are in reasonable agreement with other theoretical results from correlation-
corrected Hartree-Fock calculations [217–219] ranging from 14.0 to 16.5 eV for LiF, 12.0
to 14.7 eV for NaF, and 10.9 to 13.3 eV for KF. To the best of our knowledge, results of
quasiparticle calculations have only been reported for LiF [207, 220, 221], to date. The
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Figure 8.1: Electronic band-structures of LiF, NaF, KF as resulting from SIC calculations.

authors find a quasiparticle gap of 14.4, 14.3 and 14.3 eV, respectively, which is close to
the calculated gap in this work of 14.7 eV.
An earlier SIC study [43] arrived at band gaps of 16.6, 13.3, and 12.5 eV for LiF, NaF and
KF, respectively, overestimating the experimental values. In this study, an ad-hoc ansatz
is made for corrective SIC potential terms and the single-particle charge densities are
evaluated using approximate Wannier functions. The variational freedom of the single-
particle orbitals is limited in this approach, however, which could be one reason for the
slightly overestimated band gaps.
Along with the reduction of the gap energy from LiF to KF, one also finds a narrowing
of the width of the F 2p valence bands from 3.1 eV in LiF over 1.4 eV in NaF to 0.6 eV
in KF (see Fig. 8.1). They are mainly formed by F2p states. There is only a negligible
admixture from cation s states. Therefore, the dispersion of the F 2p bands originates
almost exclusively from direct interactions between the anions which are second-nearest
neighbors in the lattice. The increasing size of the cations increases the anion-anion
distance from 2.85 Å for LiF over 3.25 Å for NaF to 3.85 Å for KF so that the anion-
anion interaction and the F 2p-band widths decrease accordingly. The same trend was
also observed in UPS experiments [222]. Concerning absolute values, one has to note
that Shirley et al. [207] found for LiF a corresponding band width of 3.5 and 3.6 eV from
experiment and theory, respectively. For NaF, Wertheim et al. [223] observed a width of
1.6±0.2 eV. The present results are in satisfactory agreement with these data.
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Figure 8.2: Electronic band-structures of Li2O, Na2O, K2O as resulting from SIC calculations.

8.2.2. Oxides

Li2O, Na2O, and K2O all crystallize in the cubic-antifluoride structure (belonging to the
space group Fm3̄m), which is antimorphous to CaF2. Positive alkali-metal ions are ar-
ranged on a simple cubic lattice with a spacing of a/2. Alternating cube centers are occu-
pied by O2− ions. The lattice constants are 4.62 Å, 5.56 Å and 6.45 Å, respectively [224].
As these lattices are comparatively open structures, additional slowly decaying s orbitals
are included at a

2
(1, 1, 1) in order to appropriately represent extended cation-derived

states in the solid. The resulting fundamental band gaps and oxide s-band positions are
listed in Tab. 8.2, as well. Experimental data on the value of the band gap is relatively
sparse. For Li2O there is a more recent reflectivity study [213] in which the authors de-
rived a fundamental band gap of 8.0 eV from excitonic spectra. The only reported equiv-
alent for Na2O and K2O is a very early study of corresponding absorption spectra [214]
showing transitions at 6.6, 4.4, and 4.0 eV for Li2O, Na2O and K2O, respectively. These
spectra, however, contain excitonic contributions which have not been accounted for in
Ref. [214]. Considering that the result for Li2O of 6.6 eV deviates from the more recent
exciton-corrected value in Ref. [213] by 1.4 eV, a very rough estimate for the upper limit
of the expected Na2O and K2O gaps can be made by adding this full difference to the
reported values for Na2O and K2O in Ref. [214]. The resulting values of 5.8 eV (Na2O)
and 5.4 eV (K2O) are given in Tab. 8.2 as upper limits, as well. Certainly, the true gaps in
the two latter cases are smaller than the upper limits given in Table 8.2 since the exciton
energies in Na2O and K2O are bound to be considerably smaller than in Li2O because the
oxides of sodium and potassium have significantly smaller energy gaps than Li2O (see
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Figure 8.3: Electronic band-structures of Li3N, Na3N, K3N as resulting from SIC calculations.

Fig. 8.2). So for Na2O one would expect the gap to be considerably closer to the lower
limit and for K2O it ought to be very close to the lower limit. It is obvious (see Tab. 8.2)
that for all three alkali-metal oxides, the band gaps calculated within DFT-LDA show the
usual strong underestimation of the measured gap energies while the SIC gaps are opened
up considerably being in much better agreement with experiment.
Fig. 8.2 shows the calculated SIC band structures for the three oxides. In all three cases,
a low-lying O 2s band (not shown in the figures) occurs (see Table 8.2). Near the top
of the valence bands a group of three O 2p bands whose widths decrease again from
Li2O to K2O is visible. The bottom of the conduction bands originates in each case
from cation ns states with n= 2, 3 and 4, respectively. For Li2O, a band gap of 8.3 eV
results in nice agreement with the experimental value [213] of 8.0 eV and the gap energy
of 8.1 eV resulting from a hybrid-functional calculation [225]. The band gap is indirect,
with the valence-band maximum located at Γ and the conduction-band minimum at X . In
contrast, Na2O has a direct gap at Γ, which is 4.9 eV wide according to the SIC results.
The situation is different again for K2O. Here the results show an indirect fundamental
gap of 3.8 eV between X and Γ. Similar observations regarding the nature of the band
gaps have recently been reported by Eithirjai et al. based on a TB-LMTO study [226].
Their calculated LDA band gaps of 5.8 eV for Li2O, 2.4 eV for Na2O and 1.8 eV for K2O
are considerably lower, however.
The valence electronic structure of the alkali-metal oxides has been studied experimen-
tally by Mikajlo and coworkers using electron momentum spectroscopy [227–229]. In
particular, the authors derived the width of the upper O 2p valence bands to be 1.6 eV
for Li2O, 0.6 eV for Na2O and 0.3 eV for K2O with an uncertainty of ±0.2 eV each. The
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respective values from the SIC calculations of 2.4 eV, 1.0 eV and 0.5 eV are in reasonable
accord with the data.

8.2.3. Nitrides

Lithium nitride (Li3N) crystallizes in a hexagonal structure with the space group P6/mmm.
In this peculiar structure each N atom is surrounded by eight Li atoms in a layered con-
figuration along the hexagonal axis consisting of one Li2N layer and a layer of pure Li.
The lattice constants [230] are a = 3.65Å and c = 3.87Å. Accounting for the unique
character of the atomic structure of Li3N, additional slowly decaying Gaussian orbitals
are placed at (a/2, ±a/2

√
3, c/2), i. e., at positions within the Li layer above and below

Li atoms of the Li2N layer, to accurately represent the more extended bulk states. From
optical absorption experiments [215, 231] a gap energy of about 2.2 eV results. In con-
trast, the calculated LDA gap energy is only 1.1 eV (see Table 8.2) in agreement with the
results of previous LDA studies [232, 233]. In earlier Hartree-Fock calculations [234], a
gap energy of 7.8 eV was obtained.
In the left panel of Fig. 8.3 the band structure of Li3N as resulting from SIC calculations
is shown along the high symmetry lines of the hexagonal Brillouin zone. Also Li3N has
a low-lying anionic N 2s valence band (see Table 8.2) and three N 2p bands near the top
of the valence bands. The lowest conduction band is mainly derived from Li2s states.
The band structure shows an indirect band gap between the A and Γ points. The gap is
2.6 eV wide and deviates only by 0.4 eV from the experimental value [215] of 2.2 eV. As
a consequence of the hexagonal structure, a crystal field splitting occurs for the highest N
2p bands at the Γ point. While the components perpendicular to the hexagonal axis remain
degenerate, the pz-component is shifted down in energy showing an inverted dispersion.
The crystal field splitting is rather large amounting to 1.2 eV.
Contrary to Li3N, sodium nitride (Na3N) was experimentally found to occur in a cubic
anti-ReO3 crystal structure (space group Pm3̄m) with a lattice constant [25] of 4.73Å.
This structure (see Fig. 8.4) can be interpreted as a cubic perovskite (CaTiO3) structure

[001]

[100] [010]

Figure 8.4: Lattice structure of Na3N. Posi-
tions of the Na (N) atoms are
indicated by large (small blue)
circles.
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with a removed Ca atom so that the N atoms are located in the Ti sites while the Na atoms
occupy the O sites. Slowly decaying Gaussian orbitals are placed on the cube centers.
As noted before, standard LDA calculations yield an electronic structure with a negative
gap of 0.6 eV for this crystal rendering Na3N metallic. The band structure of Na3N as
resulting from SIC calculations is shown in the middle panel of Fig. 8.3.
Compared to the band structure of Li3N, the energy separation between the top of the N 2p
valence bands and the bottom of the Na 3s conduction band has decreased considerably.
Yet, Na3N clearly exhibits a band gap of 0.5 eV in the SIC results while it appears to
be a metal within LDA. Nevertheless, it should be noted that the calculated SIC gap is
significantly smaller than the measured gap (1.6 eV). The width of the three N 2p bands
has strongly decreased, as compared to Li3N. The reason appears to be more subtle than,
e. g., for the respective fluorides. The anion-anion distance is as large as 4.73 Å, indeed,
but the anion-cation interaction in the N-Na-N bridges (see Fig. 8.4) comes into play in
Na3N. This can happen, since the Na3s bands at Γ are relatively close in energy to the N2p

bands allowing for a certain interaction.
In order to elucidate the origin of the metallicity resulting within LDA the respective band
structure of Na3N is shown in the left panel of Fig. 8.5. In the figure bands are marked
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3[1    0]

view
side top view

[001] [010]

[100]

Figure 8.6: Side view of a single K3N column and top view of the arrangement of the columns in
the hexagonal anti-TiI3 crystal structure. Positions of the K (N) atoms are indicated
by light and dark red (blue) circles. The green line represents the boundary of the
basal plane of the unit cell.

according to their orbital character, as resulting from a Mullikan analysis. Bands that can
uniquely be identified as being derived from N2p states are marked by open circles. Red
filled triangles and open squares label bands that are derived from Na3s and Na3p states,
respectively. It becomes clear that the metallic character of Na3N resulting within LDA
originates from an overlap of the Na 3s with the occupied N 2p bands occurring at the Γ

point of the cubic Brillouin zone. This leads to a significant mixture of the two orbital
contributions throughout the Brillouin zone. One of the three former N 2p bands is pushed
down in energy due to non-vanishing contributions from Na3s states. At the same time,
the anionic 2p states also mix with the cationic 3s states for energies above the Fermi
level, as can clearly be seen in the left panel of Fig. 8.5. This figure also indicates that
Na3p and Na3d states do not play a significant role for the metallicity of Na3N as resulting
within LDA.
The right panel of Fig. 8.5 shows the orbital-resolved Na3N band structure as resulting
from SIC calculations. From the band markings according to the Mullikan orbital decom-
position it becomes apparent that the inclusion of self-interaction corrections significantly
reduces the previously discussed mixture of N2p and Na3s states around the Fermi level
so that a gap opens.
Potassium nitride (K3N) is the third compound in the row of alkali-metal nitrides ad-
dressed in this work. It exists in a low-density anti-TiI3 crystal structure (space group
P63/mcm) with lattice constants [235] of a = 7.80Å and c = 7.59 Å. A top and side
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8.2. Bulk electronic properties

Figure 8.7: Charge density contours (in
10−2 aB) of the occupied K-
derived state at the Γ point of
the hexagonal Brillouin zone
at E = -0.81 eV. The density is
shown in a [100]-[010] plane
containing one potassium layer.
Filled rose and open blue circles
represent positions of K atoms
within and N atoms above and
below the plotting plane. 0 2 4 6 8 10

K plane

view of the lattice is shown in Fig. 8.6. This structure can be considered as hexagonal
columns consisting of K3N, in which the K and N atoms are ionically bonded. The length
of the K-N bond is 2.78Å. Within the potassium planes, the K atoms form trigonal arrays
with a mutual distance of 3.51Å. To accurately represent the more extended bulk states in
this fairly open structure, twenty slowly decaying s-type Gaussians are placed in the unit
cell. They are located in the same four planes as the K and N atoms of the K3N columns
(see side view in Fig. 8.6) and are stacked on five respective columns of orbitals. These
columns pierce the top view of the lattice in Fig. 8.6 in the middle between neighboring
K3N units (three of them) and in the middle of the two triangles formed by the K3N units
(the other two).
The band structure of K3N is shown in the right panel of Fig. 8.3. Obviously, K3N turns
out to be metallic even after inclusion of self-interaction corrections. Also in this case,
there is a low-lying N 2s band (see Table 8.2). The lowest bands shown in the figure can
mainly be attributed to occupied N2p states. They exhibit only a very small dispersion,
which is due to the rather large unit cell. Above the Fermi level there is a group of bands
that shows similarities to loosely bound, almost free electron-like s bands extending down
in energy to −0.81 eV at Γ. They originate from K atoms. Thus SIC leads to a certain
separation of the K 4s and N 2p bands but it is not as complete as the related separation
of the Na 3s and N 2p bands in Na3N (cf.right panel of Fig. 8.5). The situation resembles
more the LDA result for Na3N in the left panel of Fig. 8.5 where the Na 3s and N 2p
bands overlap near Γ.
Along the high-symmetry lines on the kz = 0 plane from Γ to K and from M to Γ of
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the hexagonal Brillouin zone, the lowest of the free-electron-like bands is resonant in
energy with the N 2p bands leading to the metallicity of K3N according to the present
calculations. The columns at the corners of the hexagonal base plane appear bonded
together by metallic electrons between K atoms over a distance of 5.15Å. This peculiar
atomic structure has interesting consequences on the electronic structure. Fig. 8.7 shows
charge density contours of the lowest occupied free-electron-like state at Γ. The density
is rather delocalized and fills the empty space between the columns. The free-electron-
like bands in the right panel of Fig. 8.3 can be attributed to this charge density and the
associated metallic binding between the stacked K3N columns on the hexagonal lattice.
As this metallic contribution to the binding appears to be essential to keep the crystal
together from a calculational point of view, the respective bands must be at least partially
occupied. The mixture of the ionic intra-column binding and the metallic inter-column
binding manifests itself in the overlap of the metallic and ionic bands near the Fermi
energy. The SIC effects turn out to be less pronounced for K3N than for Li3N and Na3N.
Nevertheless, they have some influence on the band structure as can be exemplified for
selected points in the hexagonal Brillouin zone. The direct gap, e. g., at the A point opens
up from 0.35 eV in LDA to 0.72 eV in SIC. At present, there are no experimental band-
structure data available on the highly fragile K3N for comparison, as yet.
From a chemical point of view, K3N is expected to be ionic in accord with the formulation
(K+)3N3− and thus its electronic structure should feature a band gap between the filled N
2p and empty K 4s states. However, the self-interaction corrections alone, as employed in
this work, appear to be not sufficient to open up such a gap, perhaps due to the remaining
underestimation as also in the related Na3N with the expected formulation (Na+)3N3−.
This aspect of the electronic structure remains to be resolved by further experiments and
by more advanced calculations.

8.3. Bulk structural properties

In the previous section the electronic properties of alkali-metal fluorides, oxides and ni-
trides have been presented as calculated at the experimental lattice constants (aexp), to
allow for a most meaningful direct comparison of LDA and SIC results and a clear iden-
tification of the SIC effects on the band structures. In addition, the use of experimental
lattice constants appears to be the most realistic for comparison with experiment. If one
were to use theoretical lattice constants (ath), which depend on the theoretical method em-
ployed, their differences would have an additional effect on the band structures obscuring
the pure SIC effect to a certain extent.
To identify this combined effect the lattice constants of the investigated solids have been
calculated within LDA and SIC. In Table 8.3 the optimized lattice constants and bulk
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Table 8.3: Calculated lattice con-
stants (in Å) and bulk
moduli (in Mbar) as
resulting from LDA
and SIC calculations
in comparison with
other theoretical and
experimental results.

LDA SIC Other Exp

LiF a 3.97 3.91 3.91a,4.03b 3.99c

B 0.80 0.95 0.87a,0.76b 0.77d

NaF a 4.52 4.44 4.51a,4.63b 4.57c

B 0.64 0.72 0.63a,0.51b 0.54d

KF a 5.20 5.13 5.49b 5.29c

B 0.50 0.65 0.30b 0.36d

Li2O a 4.52 4.50 4.53e,4.57f 4.62g

B 0.88 0 91 0.95e,0.95f 0.89h

Na2O a 5.35 5.29 5.47e,5.48f 5.56g

B 0.62 0.67 0.59e,0.61f

K2O a 6.46 6.42 6.36e 6.45g

B 0.30 0.34 0.33e

Li3N a 3.56 3.55 3.51i 3.6510

c 3.80 3.79 3.75i 3.87j

B 0.60 0.61

Na3N a 4.57 4.56 4.73k

B 0.27 0.28

K3N a 7.76 7.89 7.65l 7.80l

c 7.29 7.10 7.50l 7.59l

B 0.19 0.18

afrom Ref. [236], LDA
bfrom Ref. [237], Hartree-Fock
cfrom Ref. [216]
dfrom Ref. [238]
efrom Ref. [226], LDA
ffrom Ref. [239], Hartree-Fock
gfrom Ref. [224]
hfrom Ref. [240]
ifrom Ref. [241], LDA
jfrom Ref. [230]
kfrom Ref. [24]
lfrom Ref. [235], LDA, Exp.
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moduli are summarized for the nine bulk crystals studied. While LDA is known to un-
derestimate lattice constants of common elemental, III-V and II-VI semiconductors only
by roughly 1%, in the case of the alkali-metal fluorides, oxides and nitrides the respective
underestimates span a range from 0.5 to about 4% (see Table 8.3). This can be viewed as
an indication that the calculation of structural properties of the latter, partially much more
ionic materials, is more intricate. This seems to apply to K3N, in particular.
The lattice constants resulting within SIC are even somewhat smaller than those resulting
from LDA. This appears to be related to the fact that both term values of the anions are
drastically lowered relative to those of the cations due to SIC by similar amounts (see
Table 8.1). As a consequence, the atomic 2s and 2p orbitals of the anions become more
localized in SIC than in LDA and the lattice constants are reduced accordingly. The
underestimate of the lattice constants in LDA and SIC results in respective overestimates
of the bulk moduli, as compared to experiment.
One should note that the SIC approach yields larger lattice constants than LDA for IIB-VI
semiconductor compounds [16], group III-nitrides [18], as well as silicon carbide poly-
types and earth-alkali metal oxides studied in this work, which are in close agreement
with experiment. In all of these cases, SIC also leads to a stronger localization of anionic
orbitals. This does not give rise to smaller lattice constants, however, since the stronger
orbital localization is accompanied by a partial weakening of the bonds in these materials
giving rise to an increase in lattice constants. In the alkali-metal fluorides, oxides and
nitrides, the valence bands are built up exclusively from anion orbitals while the cation
orbitals give rise to the lower conduction bands. As a result, there is no reduction in ionic
bonding and no increase in lattice constants involved when the anion orbitals become
more localized.
One interesting notion in this regard is the fact that in these calculations pseudopotentials
including non-linear core corrections have been employed. In the present pseudopotential
approach, a self-interaction corrected treatment of the core charge density is conceptually
not accounted for. Usually, the energetically deep core states are a truly atomic property
even in the bulk crystal that does not influence its chemical characteristics. In terms of
the self-consistent calculation of the structural properties of the solids, this means that
any SIC for the core states will only lead to a constant shift of the total energy that does
not contribute to any of the calculated properties which are based on derivatives of E(V ).
In order to test this assumption, the structural properties of LiF have also been calculated
using a pseudopotential for lithium based on the electronic configuration 1s2, i.e. like in
the case of the alkaline earth metal oxides as sketched in Appendix B. The Li 1s core
state is explicitly included in the pseudopotential as a valence state. A SIC calculation
based on such a configuration yields a band structure with a band gap of 14.6 eV and a
SIC induced downward shift of the Li 1s band comparable to that found in a GWA cal-
culation [221]. This particular pseudopotential produces a reasonable electronic structure
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and can therefore be expected to work reliably in terms of a total energy minimization.
Just as in the case of the NLCC calculation, a lattice constant of bulk LiF results smaller
in SIC (3.87 Å) than in LDA (3.91 Å). Hence, the above assumptions concerning the SIC
treatment of the core charge appear to be justified and the smaller lattice constants for
such highly ionic compounds seem to be an intrinsic feature of the SIC pseudopotentials.
As is well-known, energy gaps are sensitive to the lattice constants and to the theo-
retical method used to calculate them. Very recently, for example, von Lilienfeld and
Schultz [242] have investigated in great detail the sensitivity of the band gaps of GaAs,
GaP, and GaN on pseudopotentials and lattice constants where the Ga 3d semicore states
are of particular importance. Concerning the materials studied in this work, the band gaps
vary linearly with the lattice constants around Eg(aexp). The dependance of Eg on the
lattice constant a can be described as

Eg(a) = Eg(aexp) + (aexp − a)S (8.1)

where S is the slope. The resulting slopes are given in Table 8.4 in eV/Å. For the hexag-
onal Li3N the slope is calculated at cexp. Note that the differences between measured and
calculated lattice constants are only in the order of 0.1 Å in most cases. The gap depen-
dance on lattice constants turns out to be stronger in SIC than in LDA and it is largest for
the most ionic solids in the studied material class. With the lattice constants in Table 8.3
and the slopes in Table 8.4 the band gaps for the LDA and SIC lattice constants can easily
be calculated. For example, the largest effect of the lattice constants occurs for the gap of
LiF. It results as 8.5 and 14.7 eV from LDA and SIC at aexp, respectively, (see Table 8.2)
while the LDA gap at aLDA

th is 8.6 eV and the SIC gap at aSIC
th is 15.3 eV. Thus in the for-

mer case the pure SIC-induced opening of the gap amounts to 6.2 eV while in the latter
case the combined influence of the lattice constants and of SIC opens the gap by 6.7 eV
seemingly increasing the SIC effect by 0.5 eV. Nevertheless, also the gap energies at the
different theoretical lattice constants clearly reveal the superiority of SIC as compared to
LDA. In any case, it is most realistic to use the experimental lattice constants when the
results are to be compared with experiment, as has been done in the previous section.

8.4. Summary

The bulk electronic structure of alkali-metal fluorides, oxides and nitrides as resulting
from density-functional theory including self-interaction corrections by employing corre-
sponding pseudopotentials has been invesitaged in this chapter. Except for K3N, all other
alkali-metal fluorides (MF), oxides (M2O) and nitrides (M3N) with M = Li, Na, and K
turn out to be semiconductors or insulators. In particular, the band structure of Na3N has
been analyzed in more detail since this compound has been synthesized more recently
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LDA SIC

LiF 6.21 7.10
NaF 3.53 4.49
KF 2 22 3.00

Li2O 1.23 1.97
Na2O 1.99 2.88
K2O 0.97 1.70

Li3N 0.97 1.22
Na3N no gap 0.38
K3N no gap no gap

Table 8.4: Slope S of the variation of
calculated band gaps with
lattice constants (in eV/Å)
according to Eq. (1).

and was shown to be a semiconductor much in contrast to the results of LDA calculations
which find Na3N to be metallic. On the contrary, the SIC results clearly corroborate that
Na3N is a semiconductor. In general, SIC results for all compounds studied are in good
agreement with available experimental data and with the results of calculations going be-
yond LDA, such as correlation-corrected Hartree-Fock or GW quasiparticle calculations.
The latter have been restricted so far to the fluorides, however. K3N results as a metal
both from LDA as well as from SIC calculations. According to the results, this appears to
originate from the peculiar lattice structure of K3N giving rise to a mixed metallic-ionic
binding. More advanced calculations, such as many-body quasiparticle band-structure
calculations, might be necessary to eventually clarify this point. They are however be-
yond the scope of this work.
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Chapter 9.

Conclusions and Outlook

All in all, self-interaction corrected pseudopotentials have turned out the be an extremely
useful and reliable tool in calculating the electronic structure of bulk solids, surfaces, and
nanostructures like graphitic layers or nanotubes, with better qualitative and quantitative
accuracy than standard LDA calculations. This is cleary shown by Fig. 9.1, in which the
calculated energy gaps for the bulk systems studied in this work are plotted against their
respective experimental values, if available. Compared to other beyond-LDA approaches,
the SIC pseudopotential approach pragmatically treats the inherent problems of the local-
density approximation in a way that is computationally undemanding. This fact is of
particular importance when it comes to the study of systems that have to be described
in large unit cells with a large number of atoms, as e.g. in the case of large surface
reconstructions or nanotubes.
In the light of the remarkable success of the method as presented for the systems studied
in this work, it must also be pointed out that there is still room for improvement as is
exemplified by the two examples to follow.

SIC depending on the magnetic quantum number

Strongly localized electronic states often contribute significantly to the physical properties
of condensed matter. A very important aspect has not been dealt with in the present work,
namely magnetism. Recently, a system that is intimately related to substances studied in
this work has come to the attention of scientific interest. Among others, doped oxides
are expected to exhibit so called d0 magnetism, i.e. magnetism that is not associated
with narrow d-bands but instead with partially filled p-bands. In particular, MgO with
substitutional nitrogen defects (NO) has been studied theoretically using LSDA+U [243]
and the so called ASIC method [244], which is related to the SIC method in this work.
In Fig. 9.2(a) the spin-resolved DOS of a system with one N impurity replacing one out
of 16 oxygen atoms, i.e. a Mg16O15N system, as resulting from a standard LSDA calcu-
lation [245] is shown. It turns out that the system is ferromagnetic with a half-metallic
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Figure 9.1: Calculated bulk band gap ener-
gies of materials studied in this
work as resulting from SIC cal-
culations compared to their re-
spective experimental values.

ground state since the Fermi level cuts through the 2/3 filled minority N 2p impurity band.
Actually the magnetic moment is µ=1µB. In this case, the impurity hole is delocalized in
the sense that it is equally distributed over px, py, and pz states of the nitrogen atom. Ac-
cording to Ref. [244], this indicates that such a system exhibits large magnetic interactions
between the impurities based on a Zener mechanism. However, as was discussed before,
the use of the local-density approximation underestimates the attractive potential effect-
ing localized charges. As was pointed out in both Refs. [243, 244], the better treatment
of such localized contributions leads to a stronger localization of electrons and a splitting
of the formerly degenerate N 2p level in a doubly occupied level (i.e. px and py) and an
empty singlet (pz) occurs. In such an insulating ground state, the magnetic coupling be-
tween the NO impurities can only be explained by a weak superexchange. Obviously, the
treatment of the localized charges is essential for predicting the fundamental aspects of d0-
magnetism in such systems. When the SIC approach as used in this work is applied to this
particular system, a spin-resolved density of states as in Fig. 9.2(b) results. Apparently,
the fundamental half-metallic character of the ground state remains unchanged. This is
due to the fact that the approach as of now does not explicitly discriminate between the
different usually degenerate m-states of the atom. As the method contains no immediate
”feedback” between occupancy in the solid and the atomic states used to construct the SIC
pseudopotential, all three p-states equally experience self-interaction corrections. Without
any additional external changes, i.e. an unusually large Jahn-Teller-like lattice distortion
that would result in a crystal field split already in LSDA, there is no incentive for the
electrons to prefer the doublet-singlet spin configuration as reported in Refs. [243, 244].
This indicates that it might be worthwhile to consider more intricate modifications to the
SIC pseudopotentials. In particular, one should be able to treat states with different m
for a fixed l independently. For the moment, one can assume a minority spin electron

198



-6 -4 -2  0  2  4  6  8  10  12

D
en

si
ty

 o
f s

ta
te

s 
(a

rb
. u

ni
ts

)

Energy (eV)

LSDA

SIC

modSIC
(c)

(a)

(b)

Figure 9.2: Spin-resolved density of states relative to the Fermi energy for Mg16O15N as resulting
from LSDA (a), SIC (b), and modified SIC (c) calculations, respectively. Majority and
minority spins are represented by black and red lines, respectively, as indicated by the
inset arrows.

199



Chapter 9. Conclusions and Outlook

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

Figure 9.3: Valence charge density contours
(in a−3

B ) of the silicon bulk crys-
tal, shown in the [011]-[100]
plane.

distribution as in Refs. [243, 244] and manually switch off the N 2pz contribution to the
minority spin Hamiltonian. For such a case the DOS as shown in Fig. 9.2(c) turns out
to show the same features as reported, i.e. an insulating ground state and a level split
by 2.2 eV, which is comparable to that found by LSDA+U (∼1.8 eV) and ASIC (∼3 eV).
As the system does not automatically arrive at this electronic configuration, only a com-
parison of the total energies of the standard SIC and manually restricted calculations can
serve to identify the true SIC ground state. Evaluating Eq. (3.25), the term

∑occ
α EHXC[%α]

has usually been omitted in the calculation because for the bulk solids investigated, the
principally constant electronic configuration only leads to a constant term in the total en-
ergy. Now comparing the total energies of the degenerate and split configurations in the
minority spin for Mg16O15N, one has to take the local orbital configuration of the nitrogen
impurity explicitly into account. As it turns out, the split configuration results as 0.32 eV
per unit cell more favorable than the degenerate one. This energy gain justifies the above
modifications and makes it all the more evident that a modification of the SIC approach
with regrads to m-dependent self-interaction corrections is worth to be developed.

Purely covalent bonds: Silicon

Another aspect for which the simple SIC approach fails to deliver any improvment in the
calculation of the electronic structure is the case of purely covalently bonded crystals, i.e.
silicon, diamond, or germanium.
The reason why the atomic SIC pseudopotential approach cannot be successfully applied
to these systems is evident. By construction these corrections largely affect the valence
charge located at the ion cores. However as can be seen in Fig. 9.3, which shows a charge
density contour plot for the silicon bulk crystal in the [011]-[100] plane, the bond charge
is not located at these cores. Instead the fundamental nature of the covalent bond leads
to maxima of charge density at the bond centers (BC) between the constituent atoms. In
Ref. [246] is was shown that the description of phonons in covalently bonded crystals can

200



Figure 9.4: Band structure of the Si bulk
crystal with a gap of 1.2 eV
as resulting from an experimen-
tal bond-center SIC calculation.
Note that the quantitative effect
is coincidental because of the
arbritrary nature of the used SIC
potential.
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be improved by adding additional force constants at these bond centers.
If one borrows this idea for the problem at hand, a first step is to add additional Gaussian
orbitals at the bond centers. In fact in a simple LDA calculation, positioning a single shell
of such additional only s-like orbitals with a decay constant of 0.18 (in atomic units) im-
proves the total energy by 0.08eV per unit cell. If one artificially attaches a simple very
weak SIC pseudopotential to this s-orbital, a band structure of bulk silicon as depicted in
Fig. 9.4 results. Astonishingly, the band structure contains all the usual features of the
electronic structure of bulk silicon. Its gap, however, is not resulting as 0.6 eV showing
the typical LDA underestimate. Instead one finds an indirect band gap of 1.2 eV, which is
in excellent agreement with experimental reference values. The question arises whether
there is any chance to uniquely define the self-interaction correction that should be associ-
ated with such an additional BC orbital. Actually the basis of Gaussian orbitals might be
very helpful in this regard. If τBC defines the position of the additional orbital in the bulk
unit cell one can use the associated expansion coefficients cn,s,BC(k) obtained during the
diagonalization and constructs a k-averaged pseudo-atomic bond-center s-wavefunction
according to

ψs,BC(r) =
∑
nocc

∑
k

cn,s,BC(k)χs,BC(k, r). (9.1)

It could be possible to use the spherically defined atomic SIC for such a pseudo-atomic
function and determine its corrective potential based on %s,BC(r). The resulting potential
can possibly be employed in the next step of the calculation for the solid. In fact, this
could be generalized for all angular momentum components and all atoms of the non-
primitive basis, i.e. a natural partitioning of the total valence charge density in atomic
contributions defined by the Gaussian basis. Further studies are needed to investigate
whether such an approach is viable.
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Summary

In this work, the structural and electronic properties of a multitude of materials in bulk
configurations as well as with reduced periodicity has been investigated using an approx-
imate self-interaction correction scheme that transfers well-defined atomic corrections to
the solid.
As has been pointed out in the beginning, the calculation of the electronic structure within
the framework of the standard local-density approximation of density-functional theory
suffers from the systematic underestimate of fundamental energy gaps in semiconductors
and insulators by roughly 50%. After introducing the methodology of self-interaction
corrected pseudopotentials for the prototypical case of bulk silicon carbide polytypes,
this pragmatic approach has at first been applied to the determination of the electronic
structure of several selected surfaces of 3C-SiC and 4H-SiC. In the process it has turned
out that the use of SIC pseudopotentials results in a reliably improved description of the
surface band structure of the non-polar 3C-SiC(110)-(1×1) surface. Its surface charac-
teristics are largely similar to that of the respective bulk crystal leading to a pronounced
effect of the SIC pseudopotentials on the calculated surface band gap, which opens from
0.25 eV (LDA) to 1.17 eV (SIC). In contrast, 3C-SiC(001) is a polar surface which shows
intricate surface reconstructions. In particular, for the Dimer Row Model of the (2×1)
and the Bridging Dimer Model of the c(2×2) reconstructions studied in this work, car-
bon dimers form on the surface top-layer. Both bonding and anti-bonding dimer states
are linear combinations of carbon p-like orbitals, which are equally affected by the C 2p
contribution to the SIC pseudopotential. An appropriate description requires a modifi-
cation of the SIC approach. In order to accurately account for the fact that the empty
anti-bonding states are not SI corrected, the SIC-∆ approach was introduced, which sub-
tracts the spurious self-interaction correction from the calculated energies of unoccupied
bands. For the Dimer Row Model of 3C-SiC(001)-(2×1) this approach yields a surface
band gap of 0.99 eV – in contrast to the metallic character as determined by LDA – which
is in very good agreement with the result of a quasiparticle calculation (0.94 eV) [79].
For the Bridging Dimer Model of the 3C-SiC(001)-c(2×2) surface, good agreement of
calculated bands with experimental ARPES [80] and ARIPES [81] data is found.
Experimentally and theoretically, the surfaces of 4H-SiC have been less intensively stud-
ied in the literature. In analogy to the 2H-SiC(1010) surface [70], a so called relaxed
Type A surface is favored from structure optimizations for 4H-SiC(1010) in this work.
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Four salient surface bands can be identified in this structure, two of which are occupied
and two are empty. From an analysis of charge density distributions and localized Wannier
functions, one pair of these bands (πA, π∗A) can be associated to the formation of a Si=C
double bond on the outer surface layer. The second pair (πB, π∗B) contains more features
of common occupied carbon and unoccupied silicon dangling bonds. The SIC-∆ band
structure reveals that the fundamental surface gap is formed between πB and π∗B bands
amounting to 1.74 eV. Very much in contrast to these findings, a preliminary photoemis-
sion study [85] alludes to the formation of only one occupied surface state. Comparing
experimental and theoretical results, there is a good probability that the observed band
corresponds to the πA band. The attenuation or disappearance of the πB band, however,
cannot easily be resolved. Surface models with hydrogen adsorption and different sur-
face stoichiometries have been investigated as well, all unable to reconcile theory and
experiment.
In the case of the 4H-SiC(1102)-c(2×2) surface, fourteen different reconstruction models
have been investigated by total energy calculations, including the one originally proposed
by Virojanadara et al. [90] on the basis of their experimental results. It turns out that
this model, which features the formation of two staggered bridging triple-bonded carbon
dimers in the surface unit cell accompanied by the adsorption of a single silicon atom
in the so-called H3 position, is energetically unfavorable. While the H3 site for silicon
adsorption is indeed favored over the alternative T4 site, the optimized model features
the formation of a double-bonded carbon dimer pair (DP-H3). The calculation of the
respective electronic structures reveals that this surface is semiconducting for all investi-
gated models when using the SIC-∆ approach. In particular, the gap is formed between
dispersion-less occupied carbon and empty silicon adatom dangling-bond bands. As a
consequence all models result in a similarly large band gap of around 1.2 to 1.5 eV, which
renders the electronic structure unsuitable to differentiate between the models in experi-
ment. However, calculated empty state STM images at a simulated bias voltage of 3.7 V
clearly reveal significant differences between the models as respective anti-bonding states
of carbon dimers are mapped in one case and carbon as well as silicon dimers are mapped
in the other case. Respective experiments should hence be able to identify the definite
nature of the carbon dimers on the 4H-SiC(1102)-c(2×2) surface.
The SIC pseudopotential approach has furthermore been used to study the electronic
structure of alkaline-earth metal oxides in bulk as well as surface geometries. The calcu-
lated band gaps for bulk BeO, MgO, CaO, SrO, and BaO are in very good agreement with
experimental and theoretical reference data. This enables a detailed and both qualitatively
and quantitatively reliable investigation of the respective surface properties. In particular,
the unoccupied electronic structure of the non-polar (001) surfaces of MgO, CaO, SrO,
and BaO has been scrutinized for the occurrence of image potential states. Generally, the
surface electronic structure is largely similar to that of the projected bulk band structure.
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Due to the highly ionic character of the materials, no significant surface relaxations are
encountered that could lead to notable changes in the electronic characteristics. In the
case of MgO(001), the SIC band structure with a calculated surface gap of 6.5 eV agrees
well with a quasiparticle calculation [164] (6.9 eV) and experimental evidence [150–152]
(6.2 eV), highlighting the strong usefulness of the SIC pseudopotential approach for these
surface systems. Moreover, at the (001) surfaces of MgO, CaO, and SrO the respective
lowest unoccupied surface band could be identified as arising from image potential states,
in which the electron density is nearly-free-electron-like parallel to the surface and resides
in the vacuum. The related band on BaO(001), in contrast, turns out to originate from lo-
calized surface states bound to the surface cation. The nature of image potential states
at alkaline-earth metal oxides has been compared to traditional IPS at metal surfaces and
traditional bound empty surface states by an analysis of charge density contours and en-
ergy diagrams. The differences are interpreted in terms of the energetic accessibility of
and potential coupling to bulk, surface, and vacuum states.
Based on these successes the SIC approach has been used to study structural, elastic,
and electronic properties of SiC, BN, and BeO nanotubes with diameters ranging from
3 to 25 Å. The progression of the radial buckling, strain energy, Young’s modulus, and
energy gap with the diameter has been investigated. With the exception of the energy
gap, all nanotube properties turn out to be largely independent of helicity for all three
ionic materials. In case of SiC and BN nanotubes, a sensitive dependence of the energy
gap is found. While for armchair nanotubes the calculated band gaps remain close to the
limiting value of a single graphitic sheet (3.94 eV for SiC, 6.19 eV for BN, and 8.72 eV
for BeO) with only small deviations for small diameters, their zigzag counterparts feature
a strong breakdown of the energy gap. In contrast to usual LDA calculations, however,
they remain semiconducting. The nanotubes of highly ionic BeO in contrast show a very
different behavior. First of all, the progression of the band gap is virtually independent of
helicity. Secondly, no narrowing of the band gap is found at small diameters but instead
the gap reopens after running through a minimum at approx. 7 Å. The differences have
been analyzed in terms of real space charge densities and can be attributed to the highly
ionic character of BeO and the associated less directional bonding.
Finally the electronic structure of nine alkali-metal fluorides, oxides, and nitrides has
been studied using the SIC approach. For such highly ionic systems, it is a well suited
approach and has yielded electronic band structures that are in very good agreement with
experimental and theoretical reference data. For instance the SIC band gap for LiF re-
sults as 14.7 eV, which compares favorably to the range of 13.6 eV to 14.5 eV measured
in experiment [206–208] and 14.4 and 14.3 eV as resulting from quasiparticle calcula-
tions [207, 220, 221]. The investigation especially intended to scrutinize the electronic
characteristics of the more recently synthesized Na3N [24, 25]. Standard LDA calcula-
tions predict a metallic material with a negative gap of -0.6 eV resulting from an overlap
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of Na 3s and N 2p bands near the Γ point of the Brillouin zone. This overlap vanishes
within DFT-SIC and a band gap of 0.5 eV is obtained, clearly supporting the notion of
sodium nitride being a semiconductor as is inferred from experiment [204].
All in all, it can be stated that the use of self-interaction corrected pseudopotentials in
density-functional calculations has resulted in substantially improved description of the
electronic properties for a number of different solids, surfaces, and nanotubes. Due to
its low numerical demand, this method presents an efficient way to obtain reliable results
even for comparatively large systems.
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Appendix

A. Explicit forms of Pulay-, Hellmann-Feynman- and
Madelung forces

In section 2.5, it was shown that the force Fν on the atom located at the position τν

consists of three different terms (2.40):

Fν = −∇νEtot = −2Re〈Ψ|Ĥ|∇νΨ〉︸ ︷︷ ︸
:=FPul

ν

−〈Ψ|∇νVext|Ψ〉︸ ︷︷ ︸
=:FHF

ν

−∇νEMad︸ ︷︷ ︸
:=FMad

ν

. (A.2)

The key to finding explicit expressions for the Pulay- and Hellmann-Feynman forces is the
Hellmann-Feynman theorem. It deals with the derivatives of the single-particle energie εi
with respect to an arbritrary parameter. In this case, we assume that this parameter is the
j-th component of the position vector τν of the ν-th atom and abbreviate

∂ :=
∂

∂τν,j

. (A.3)

Furthermore, let us expand the wave functions |ψi〉 in terms of a not neccessarily or-
thonormal basis {|χα〉}

|ψi〉 =
∑

α

ciα|χα〉 . (A.4)

Using the norm 〈ψi|ψi〉 = 1 and the equation of the eigenvalue problem∑
α′

Hαα′ciα′ = εi
∑
α′

Sαα′ciα′ (A.5)

yields in combination with eq. (2.36):

∂εi = ∂〈ψi|Ĥ|ψi〉 = 2Re
∑
αα′

ciα
∗
ciα′

(
∂̃Hαα′ − εi∂̃Sαα′

)
+ 〈ψi|∂Ĥ|ψi〉 , (A.6)

where we have introduced

∂̃Hαα′ =

∫
χ∗α(r)Ĥ∂χα′(r) d3r (A.7)
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and
∂̃Sαα′ =

∫
χ∗α(r)∂χα′(r) d3r . (A.8)

Eq. (A.6) is a Hellmann-Feynman theorem for an incomplete basis. We can use it to
derive an expression for the Pulay force:

FPul
ν = −2Re〈Ψ|Ĥ|∇νΨ〉 = −2Re

2

N0

occ∑
n,k

∫
V0

ψ∗
n,k(r)Ĥ[∇νψn,k(r)] d

3r

= −2Re
2

N0

occ∑
n,k

∑
αµ

∑
α′µ′

cn,k
αµ

∗
cn,k
α′µ′

{
∇̃νH

k
αµ,α′µ′ − εkn∇̃νS

k
αµ,α′µ′

}
,

(A.9)

where we have defined

∇̃νO
k
αµ,α′µ′ :=

∫
V0

χ∗αµ(k, r)Ô∇νχα′µ′(k, r) d3r

= δνµ′

∑
j

eikRj

µµ′
{
∇̃νO

j
αµ,α′µ′ + ikOj

αµ,α′µ′

}
,

(A.10)

with
∇̃νO

j
αµ,α′µ′ =

∫
φαµ(r− τµ)Ô[∇µ′φαµ′(r−Rj

µ′)] d
3r . (A.11)

As the terms linear in ik from the Hamilton and overlap matrices cancel each other (Kohn-
Sham equation), the Pulay force is finally determined by

FPul
ν = −2Re

2

N0

occ∑
n,k

∑
αµ

∑
α′µ′

cn,k
αµ

∗
cn,k
α′µ′

∑
j

eikRj

µµ′
{
δνµ′∇̃νH

j
αµ,α′µ′ − εkn∇̃νS

j
αµ,α′µ′

}
.

(A.12)
At this point it should be mentioned that based on the self-interaction correction scheme
presented in Chapter 3.4, one could also try to calculate self-interaction corrected forces.
However, the variational principle is not strictly fulfilled in this case rendering it impossi-
ble to make use of the Kohn-Sham equations as in the way above. No analytic expression
equivalent to Eq. (A.12) can be derived. Instead, one would have to calculate the forces as
derivatives of the total energy directly by a finite difference method. Since the structure
parameters obtained by total energy minimization for bulk solids are in good agreement
with those resulting in SIC, the somewhat more involved force calculations for surfaces
within SIC is omitted in this work and the surface structure is determined within standard
DFT-LDA framework.
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B. Pseudopotentials including semicore states

rc,l a B Eg ∆CB
ΓX Eg(Γ) Eg(X)

A rc,s = 1.6
rc,p = 1.0 5.02 1.09 2.90 0.53 3.43 2.98
rc,d = 1.2

B rc,s = 1.8
rc,p = 1.0 5.04 1.26 2.84 1.05 3.89 2.92
rc,d = 1.2

C rc,s = 1.9
rc,p = 1.0 5.09 1.09 2.80 0.71 4.23 2.90
rc,d = 1.2

D rc,s = 1.9
rc,p = 1.1 5.07 1.23 2.87 1.44 4.30 2.98
rc,d = 1.5

Table B.1: Structural (lattice constant a in Å and bulk modulus B in Mbar) and selected electronic
properties (band gap Eg, separation of the lowest conduction band ∆CB

ΓX between Γ and
X , direct gaps at Γ and X all in eV) of SrO resulting from different constructions of
the strontium pseudopotential based on the ionic configuration [Ar] 4s2 4p6.

B. Pseudopotentials including semicore states

In Chapter 6.2, pseudopotentials for the alkaline-earth metals which explicitly include
semicore states are used in the calculation of the electronic structure of the respective
oxides. The procedure of how those pseudopotentials are generated shall be exemplified
for the case of the strontium pseudopotential to be used for SrO in the following. Using
the electron configuration [Ar] 4s2 4p6 guarantees the reliable calculation of structural
properties, most importantly during structure optimization of the (001) surface. The ex-
plicit inclusion of the upper core states into the valence configuration reduces the error
regarding the interaction of core and valence charge. During the construction process of
the pseudopotentials, it is important to ensure its transferability by a suitable choice of the
core radii rc,l.
Table B.1 comparatively shows calculated structural and selected electronic properties of
the SrO bulk crystal as resulting from four (A-D) choices of the core radii. It becomes
immediately obvious that properties like the optimized lattice constant a and fundamental
band gap Eg do not depend significantly on the core parameters. The dependence of the
bulk modulus B as well as the energetic position of the lowest conduction band at the
Γ-point of the Brillouin zone is by far more pronounced. The results for the bulk modu-
lus obtained using potential B and D deviate strongly in comparison to experimental data
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(Bexp = 0.91 Mbar). Potentials A and C seem more reliable. These two however yield
a markedly different electronic structure. In particular, the electronic properties resulting
from potential A depend substantially on the lattice constant. If the band structure is cal-
culated at the experimental lattice constant, the formerly indirect Γ-X band gap becomes
direct at Γ. There is no experimental indication at all, that SrO features such a direct
gap. In contrast, calculations using potential C are consistent in this regard. The differ-
ent behavior of potentials A and C can easily be understood. In the first case, a rather
small core radius of 1.6 a.u. is used for the s-component of the pseudopotential. With this
component which is based on the Sr 4s level, the 5s levels shall be suitable described,
as well. A small core radius in this case leads to worse transferability which particularly
influences the lowest conduction band state at Γ. A Mulliken analysis of the conduction
bands reveals a dominant s∗ contribution (Sr 5s) to the lowest band at Γ while the higher
ones are mostly derived from Sr 4d. At X , this situation is inverted, visible by a band
crossing along the Γ-X line. Due to the small core radius, the transferability of the pseu-
dopotential, most notably its s-component, is compromised, which leads to the observed
behavior of potential A.

C. Decay constants for Gaussian orbitals

In Table C.1, the decay constants (in atomic units) used for the elements in this work are
listed. If not mentioned otherwise, s, p, d, and s∗ functions are treated equally.

Element shells

Si (bulk) 0.20, 0.60
Si (surface) 0.18, 0.50, 1.00
C (bulk) 0.35, 1.70
C (surface) 0.25, 1.00, 2.86
H 0.35
Be 0.18, 0.40, 0.90
Mg 0.25, 0.55, 0.95
Ca 0.16, 0.38, 0.85, 1.30
Sr 0.18, 0.40, 0.90, 1.70

Element shells

Ba 0.10, 0.25, 0.42, 1.75
O 0.30, 0.90, 3.50
B 0.20, 0.42, 1.90
N 0.31, 1.36, 6.00
Li 0.30, 1.34, 6.00
Na 0.16, 0.30, 0.60
K 0.16, 0.37, 0.88
F 0.20, 0.95, 4.50
vacuum 0.14 (s), 0.18 (s,p,d,s∗)

Table C.1: Decay constants (in atomic units) for the elements in this work. The sets for silicon
and carbon atoms at surfaces are also referred to as extended sets in the text.
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[131] M. Rohlfing, P. Krüger, and J. Pollmann, Efficient scheme for GW quasiparticle band-
structure calculations with applications to bulk Si and to the Si(001)-(2x1) surface, Phys.
Rev. B 52, 1905 (1995).

[132] H.-J. Freund, Metal-supported ultrathin oxide film systems as designable catalysts and
catalyst supports, Surf. Sci. 601, 1438 (2007).

[133] P. R. Son and R. A. Bartels, CaO and SrO single crystal elastic constants and their pres-
sure derivatives, J. Phys. Chem. Solids 33, 819 (1972).

[134] V. A. Fomichev, T. M. Zimkina, and I. I. Zhukova, Investigation of energy structure of
MgO by ultrasoft x-ray spectroscopy, Sov. Phys. Solid State 10, 2421 (1969).

[135] S. P. Kowalczyk, F. R. McFreely, L. Ley, V. T. Gritsyna, and D. A. Shirley, The elec-
tronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2), Soild
State Commun. 23, 161 (1977).

[136] H. van Doveren and J. A. T. Verhoeven, XPS spectra of Ca, Sr, Ba and their oxides, J.
Electron Spectrosc. Relat Phenom. 21, 265 (1980).

[137] V. A. Shashin, H. E. Dorsett, M. A. Bolorizadeh, and M. J. Ford, The valence band
structures of BeO, MgO, and CaO, J. Chem. Phys. 113, 8175 (2000).

[138] G. Jura and C. W. Garland, The Experimental Determination of the Surface Tension of
Magnesium Oxide, J. Am. Chem. Soc. 74, 6033 (1952).

[139] C. G. Kinniburgh, A LEED study of MgO(100). II. Theory at normal incidence, J. Phys.
C: Solid State Phys. 8, 2382 (1975).

[140] M. R. Welton-Cook and W. Berndt, A LEED study of the MgO (100) surface: identifica-
tion of a finite rumple, J. Phys. C: Solid State Phys. 15, 5691 (1982).

219



Bibliography

[141] T. Urano, T. Kanaji, and M. Kaburagi, Surface structure of MgO(001) surface studied
by LEED, Surf. Sci. 134, 109 (1983).

[142] D. L. Blanchard, D. L. Lessor, J. P. Lafemina, D. R. Baer, W. K. Ford, and T. Guo,
A low-energy electron diffraction study of the MgO(001) surface structure, J. Vac. Sci.
Technol. A 9, 1814 (1991).

[143] Y. Murata, S. Murakami, H. Namba, T. Gotoh, and K. Kinosita.
in R. Dobrozemyski, editor, Proceedings of the 7th International Vacuum Congress.
Berger, Vienna (1977).

[144] P. A. Maksym, Analysis of intensity data for rheed by the MgO(001) surface , Surf. Sci.
149, 157 (1985).

[145] H. Nakamatsu, A. Sudo, and S. Kawai, Relaxation of the MgO(100) surface studied by
ICISS, Surf. Sci. 194, 265 (1988).

[146] A. Santoni, D. B. T. Thoai, and J. Urban, MgO (100) surface topology determination by
surface extended energy loss fine structure, Solid State Commun. 68, 1039 (1988).

[147] M. Prutton, J. A. Ramsey, J. A. Walker, and M. R. Welton-Cook, A LEED study of the
structure of the (100) surface of CaO, J. Phys. C: Solid State Phys. 12, 5271 (1979).

[148] L. H. Tjeng, A. R. Vos, and G. A. Sawatzky, Electronic structure of MgO studied by
angle-resolved ultraviolet photoelectron spectroscopy , Surf. Sci. 235, 269 (1990).

[149] D. Ochs, W. Maus-Freidrichs, M. Bause, J. Günster, V. Kempter, V. Puchin, A. Shluger,
and L. Kantorovich, Study of the surface electronic structure of MgO bulk crystals and thin
films, Surf. Sci. 365, 557 (1996).

[150] V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Energy-dependent electron-energy-loss
spectroscopy: Application to the surface and bulk electronic structure of MgO, Phys. Rev.
B 22, 4764 (1980).

[151] P. A. Cox and A. A. Williams, Surface excitons on ionic crystals, Surf. Sci. 175, L782
(1986).

[152] S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. De Vita,
and W.-D. Schneider, Insulator at the Ultrathin Limit: MgO on Ag(001), Phys. Rev. Lett.
87, 276801 (2001).

[153] K. J. Chang and M. L. Cohen, High-pressure behavior of MgO: Structural and electronic
properties, Phys. Rev. B 30, 4774 (1984).

[154] E. Taurian, M. Springborg, and N. E. Chirstensen, Self-consistent electronic structures
of MgO and SrO, Solid State Commun. 55, 351 (1985).

[155] P. Cortona and A. V. Monteleone, Ab initio calculations of cohesive and structural prop-
erties of the alkali-earth oxides, J. Phys.: Condens. Matter 8, 8983 (1996).

220



Bibliography

[156] D. R. Alfonso, J. A. Snyder, J. E. Jaffe, and A. C. Hess, Opposite rumpling of the MgO
and CaO (100) surfaces: A density-functional theory study, Phys. Rev. B 62, 8318 (2000).

[157] P. Broqvist, H. Grönbeck, and I. Panas, Surface properties of alkaline earth metal oxides,
Surf. Sci. 554, 262 (2004).

[158] N. V. Skorodumova and K. Hermansson an B. Johansson, Structural and electronic
properties of the (100) surface and bulk of alkaline-earth metal oxides, Phys. Rev. B 72,
125414 (2005).

[159] A. Schleife, F. Fuchs, J. Furthmüller, and F. Bechstedt, First-principles study of ground-
and excited-state properties of MgO, ZnO, and CdO polymorphs, Phys. Rev. B 73, 245212
(2006).

[160] Y. Cho, Ch. Kim, H.-S. Ahn, E. Cho, T.-E. Kim, and S. Han, First-principles study on
secondary electron emission of MgO surface, J. Appl. Phys. 101, 83710 (2007).
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Zusammenfassung

In der vorliegenden Arbeit wurden die strukturellen und elektronischen Eigenschaften ei-
ner Vielzahl von Materialien sowohl in Volumenkristallkonfiguration als auch in reduzier-
ten Dimensionen unter Verwendung einer näherungsweisen Selbstwechselwirkungskor-
rektur, die für atomare Systeme wohldefinierte Korrekturen auf den Festkörper überträgt,
untersucht.
Zu Beginn wurde bereits hervorgehoben, dass die im Rahmen der Dichtefunktionaltheorie
unter der Standardnäherung der Lokalen Dichteapproximation berechnete elektronische
Struktur eine systematische Unterschätzung der fundamentalen Bandlücke in Halbleiter-
und Isolatormaterialien von ca. 50% aufweist. Nach der Vorstellung der Methode der
selbstwechselwirkungskorrigierten Pseudopotentiale anhand der Beispiele der Volumen-
kristalle von Siliziumkarbid wurde dieser pragmatische Zugang zunächst auf einige aus-
gewählte Oberflächensysteme von 3C-SiC und 4H-SiC angewandt. Im Verlauf dieser Stu-
dien hat sich herausgestellt, dass die Verwendung von selbstwechselwirkungskorrigierten
Pseudopotentialen in einer zuverlässig verbesserten Beschreibung der Bandstruktur der
nicht-polaren 3C-SiC(110)-(1×1) Oberfläche resultiert. Die Charakteristika der Ober-
fläche sind sehr ähnlich zu denen des Volumenkristalls, was den deutlichen Effekt auf
die Bandlücke, die sich von 0.25 eV (LDA) auf 1.17 eV (SIC) vergrößert, begründet. Im
Gegensatz dazu ist die 3C-SiC(001) Oberfläche polar und weist kompliziertere Rekon-
struktionen auf. Insbesondere bilden sich sowohl im ”Dimer Row Model“ der (2×1) als
auch im ”Bridging Dimer Model“ der c(2×2) Rekonstruktion, die beide in dieser Arbeit
untersucht wurden, Kohlenstoffdimere in der äußersten Oberflächenschicht aus. Sowohl
bindende wie auch antibindende Dimerzustände sind Linearkombinationen Kohlenstoff
2p-artiger Zustände, die im Rahmen der hier vorgestellten SIC Pseudopotentialmethode
gleichermaßen beeinflusst werden. Eine angemessene Beschreibung solcher Zustände er-
fordert eine Modifikation des SIC Zugangs. Um der Tatsache ausreichend Rechnung zu
tragen, dass derartige unbesetzte, antibindende Zustände nicht selbstwechselwirkungs-
korrigiert werden, wurde der SIC-∆ Zugang eingeführt, in welchem die überschüssige
Selbstwechselwirkungskorrektur wieder von den Energien der unbesetzten Bänder abge-
zogen wird. Für das ”Dimer Row Model“ der 3C-SiC(001)-(2×1) Oberfläche liefert dieser
Zugang eine Bandlücke von 0.99 eV – ganz im Gegensatz zu dem von der LDA vorherge-
sagten metallischen Verhalten – was in sehr guter Übereinstimmung mit den Ergebnissen
einer Quasiteilchenrechnungen (0.94 eV) [79] ist. Für das ”Bridging Dimer Model“ der

227



Zusammenfassung

3C-SiC(001)-c(2×2) Oberfläche wird eine ebenfalls gute Übereinstimmung der berech-
neten Bänder mit experimentellen ARPES [80] und ARIPES [81] Daten festgestellt.
Die Oberflächen von 4H-SiC sind im Vergleich zu denen von 3C-SiC bislang in der Litera-
tur sowohl aus experimenteller, als auch aus theoretischer Sicht deutlich weniger intensiv
untersucht worden. In Analogie zur 2H-SiC(1010) Oberfläche [70] wird eine so genannte
relaxierte Typ A Geometrie durch die Strukturoptimierungen in dieser Arbeit favorisiert.
Vier lokalisierte Oberflächenzustände, von denen jeweils zwei besetzt und zwei unbesetzt
sind, können für diese Struktur identifiziert werden. Durch eine Analyse der entsprechen-
den Ladungsdichteverteilungen sowie lokalisierter Wannierfunktionen kann ein Paar die-
ser Zustände (πA, π∗A) mit der Ausbildung einer Si=C Doppelbindung in der äußersten
Oberflächenschicht in Verbindung gebracht werden. Das zweite Paar (πB, π∗B) weist im
Vergleich dazu mehr Eigenschaften gewöhnlicher besetzter und unbesetzter dangling-
bond Zustände auf. Eine SIC-∆ Bandstruktur für die optimierte Oberflächenstuktur zeigt,
dass die fundamentale Bandlücke durch πB und π∗B Bänder gebildet wird und 1.74 eV groß
ist. Im Gegensatz hierzu legt eine vorläufige Photoemissionsstudie [85] nahe, dass nur ein
einzelner besetzter Oberflächenzustand gebildet wird. Eine Vergleich der experimentel-
len und theoretischen Ergebnisse lässt den Schluß zu, dass es sich bei dem im Experiment
beobachteten Band um das πA Band handelt. Die Abschwächung bzw. das Verschwinden
des πB Bandes ist jedoch nicht einfach erklärbar. Oberflächenmodelle mit adsorbiertem
Wasserstoff sowie unterschiedlicher Stöchiometrie sind ebenfalls in dieser Arbeit unter-
sucht worden. Keines dieser Modelle konnte allerdings erfolgreich eine Übereinstimmung
zwischen Theorie und Experiment herstellen.
Im Fall der 4H-SiC(1102)-c(2×2) Oberfläche wurden vierzehn verschiedenen Rekon-
struktionsmodelle im Rahmen von Gesamtenergieminimierungen untersucht. Zu diesen
Modellen gehört auch die ursprünglich von Virojanadara et al. [90] auf Basis ihrer ex-
perimentellen Daten vorgeschlagene Struktur. Es hat sich gezeigt, dass dieses Modell,
welches auf der Bildung von versetzten, dreifach gebundenen Kohlenstoffdimeren in der
Oberflächeneinheitszelle zusammen mit der Adsorption eines Siliziumatoms in einer so
genannten H3 Position beruht, energetisch ungünstig ist. Während die H3 Position in der
Tat energetisch gegenüber der alternativen T4 Position zu favorisieren ist, weist das opti-
mierte Modell die Ausbildung eines Paares aus zweifach gebundenen Kohlenstoffdimeren
(DP-H3) auf. Die Berechnung der jeweiligen Bandstrukturen verrät, dass im Rahmen des
SIC-∆ Zugangs alle Modelle halbleitend sind. Insbesondere wird die Bandlücke in allen
Fällen zwischen weitestgehend dispersionslosen dangling-bond Bändern gebildet. Dabei
sind die Zustände des besetzten Bandes kohlenstoffartig, während die des unbesetzten
Bandes am Siliziumadatom lokalisiert sind. Als Folge davon liegt die Bandlücke in allen
vierzehn Modellen zwischen 1.2 und 1.5 eV, wodurch diese Eigenschaft der elektroni-
schen Struktur ungeeignet ist, im Experiment zwischen den Modellen zu unterscheiden.
Jedoch zeigen berechnete STM Bilder unbesetzter Zustände bei einer Spannung von 3.7 V
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signifikante Unterschiede, da in einem Fall (DP-H3) nur die jeweiligen antibindenden
Zustände der Kohlenstoffdimere abgebildet werden, im anderen Fall aber auch die der
Siliziumdimere in der zweiten Oberflächenschicht zu sehen sind. Entsprechende Experi-
mente sollten daher in der Lage sein, die definitive Struktur der 4H-SiC(1102)-c(2×2) zu
identifizieren.
Weiterhin wurde der SIC Pseudopotentialzugang benutzt, um die elektronische Struk-
tur der Volumenkristalle und (001) Oberflächen der Erdalkalimetalloxide zu untersu-
chen. Die berechneten Bandlücken für BeO, MgO, CaO, SrO und BaO sind in guter
Übereinstimmung mit Referenzdaten aus Theorie und Experiment. Dies ermöglicht eine
detaillierte und zuverlässige Untersuchung der Eigenschaften der jeweiligen Oberflächen.
Insbesondere wird die unbesetzte elektronische Struktur der nicht-polaren (001) Ober-
flächen auf das Vorkommen von Bildpotentialzuständen hin untersucht. Generell lässt
sich feststellen, dass die Oberflächenbandstruktur in ihren wesentlichen Charakteristika
größtenteils volumenartig ist. Aufgrund des stark ionischen Charakters der Materialien
werden keine signifikanten Oberflächenrelaxationen, die zu einer bedeutsamen Änderung
der elektronischen Struktur führen könnten, beobachtet. Für den Fall von MgO(001)
stimmt die SIC Bandstruktur gut mit dem Ergebnis einer Quasiteilchenrechnung [164]
und experimentellen Hinweisen [152] überein, was die hohe Nützlichkeit des SIC Pseu-
dopotentialzugangs noch einmal verdeutlicht. Desweiteren zeigt sich, dass an den (001)
Oberflächen von MgO, CaO und SrO die jeweiligen tiefsten unbesetzten Oberflächenbän-
der von Bildpotentialzuständen abgeleitet sind, in denen die Ladunsgdichteverteilung der
fast-freier Elektronen entspricht und im Vakuumbereich über der Oberfläche zu finden
ist. Das entsprechende Band an BaO(001) ist im Gegensatz dazu von einem am Ober-
flächenkation lokalisierten gebundenen Zustand abgeleitet.
Auf Basis dieser Erfolge wurde der SIC Zugang in dieser Arbeit auch dazu benutzt,
die strukturellen, elastischen und elektronischen Eigenschaften von SiC, BN, und BeO
Nanoröhren mit einem Durchmesser von 3 bis 25 Å zu studieren. Der Verlauf der ra-
dialen Verkrümmung, der Verzerrungsenergie, des Young-Moduls und der Bandlücke in
Abhängigkeit des Durchmessers wurde untersucht. Es ergibt sich, dass für alle drei ioni-
schen Materialien alle Eigenschaften mit Ausnahme der Bandlücke so gut wie unabhängig
von der Helizität der Nanoröhren sind. Im Fall von SiC und BN Nanoröhren stellt man
eine sensible Abhängigkeit der berechneten Bandlücke fest. Während bei den armchair
Nanoröhren die Bandlücken nahe bei dem Grenzwert einer graphitartigen Monolage lie-
gen, weisen ihre zigzag Gegenstücke ein starkes Einbrechen dieser Größe bei kleinen
Durchmessern auf. Anders als bei LDA Rechnungen bleiben sie aber im Rahmen des SIC
Zugangs selbst für die kleinsten betrachteten Durchmesser halbleitend. Die Nanoröhren
des stark ionischen BeO verhalten sich grundlegend anders. Zunächst einmal ist der Ver-
lauf der Bandlücke unabhängig von der Helizität. Weiterhin lässt sich kein Verkleinern der
Bandlücke bei kleinen Durchmessern feststellen. Stattdessen weitet sie sich nach Durch-
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schreiten eines leichten Minimums bei ca. 7 Å wieder. Die grundsätzlich unterschiedli-
chen Verhaltensweisen wurden durch Analysen der Ladungsdichten im Realraum analy-
siert und können demnach auf die Unterschiede in der Ionizität der Bindungen und damit
ihrem weniger gerichteten Charakter für BeO verglichen mit SiC und BN zurückgeführt
werden.
Schließlich wurde im Rahmen dieser Arbeit noch die elektronische Struktur von neun
Alkalimetallfluoriden, -oxiden und -nitriden mit Hilfe des SIC Zugangs untersucht. Für
solch stark ionische Systeme ist dies eine sehr gut geeignete Methode, die Bandstruktu-
ren in sehr guter Übereinstimmung mit experimentellen und theoretischen Referenzdaten,
sofern vorhanden, liefert. Ziel dieser Untersuchungen war es insbesondere, die elektro-
nischen Eigenschaften des erst kürzlich synthetisierten Na3N [24, 25] zu klären. LDA
Rechnungen sagen für dieses System einen metallischen Charakter mit einer negativen
Bandlücke von -0.6 eV voraus, die aus einem Überlapp von Na 3s und N 2p Bändern
in der Nähe des Γ-Punkts der Brillouin Zone resultiert. Dieser Überlapp verschwindet
im Rahmen des SIC Zugangs und eine Bandlücke der Größe 0.5 eV wird berechnet, was
deutlich die experimentelle Einordnung von Natriumnitrid als Halbleiter [204] stützt.
Alles in allem hat sich in dieser Arbeit herausgestellt, dass die Verwendung selbstwech-
selwirkungskorrigierter Pseudopotentiale in Dichtefunktionalrechnungen zu einer sub-
stanziellen Verbesserung der Beschreibung der strukturellen und elektronischen Eigen-
schaften einer Vielzahl von Volumenkristallen, Oberflächen und Nanoröhren geführt hat.
Dank ihrer geringen numerischen Anforderungen erweist sich diese Methode als effizi-
ente Möglichkeit, zuverlässige Ergebnisse auch für vergleichsweise große Systeme zu
erzielen.
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