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A GENERAL FRAMEWORK FOR CONSISTENT ESTIMATION OF
CHARGE TRANSPORT PROPERTIES VIA RANDOM WALKS IN

RANDOM ENVIRONMENTS∗

OLE STENZEL† , CHRISTIAN HIRSCH† , TIM BRERETON† , BJOERN BAUMEIER‡ ,
DENIS ANDRIENKO‡ , DIRK KROESE§ , AND VOLKER SCHMIDT†

Abstract. A general framework is proposed for the study of the charge transport properties of
materials via random walks in random environments (RWRE). The material of interest is modeled
by a random environment, and the charge carrier is modeled by a random walker. The framework
combines a model for the fast generation of random environments that realistically mimic materials
morphology with an algorithm for efficient estimation of key properties of the resulting random walk.
The model of the environment makes use of tools from spatial statistics and the theory of random
geometric graphs. More precisely, the disordered medium is represented by a random spatial graph
with directed edge weights, where the edge weights represent the transition rates of a Markov jump
process (MJP) modeling the motion of the random walker. This MJP is a multiscale stochastic
process. In the long term, it explores all vertices of the random graph model. In the short term,
however, it becomes trapped in small subsets of the state space and makes many transitions in these
small regions. This behavior makes efficient estimation of velocity by Monte Carlo simulations a
challenging task. Therefore, we use aggregate Monte Carlo (AMC), introduced in [T. Brereton et al.,
Methodol. Comput. Appl. Probab., 16 (2014), pp. 465–484], for estimating the velocity of a random
walker as it passes through a realization of the random environment. In this paper, we prove the
strong consistency of the AMC velocity estimator and use this result to conduct a detailed case study,
in which we describe the motion of holes in an amorphous mesophase of an organic semiconductor,
dicyanovinyl-substituted oligothiophene (DCV4T). In particular, we analyze the effect of system size
(i.e., number of molecules) on the velocity of single charge carriers.
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1. Introduction. Random walks in random environments (RWRE) are funda-
mental models in many branches of the physical sciences (see, for example, [11]).
Generally, the random environment models a disordered system, and the random
walker represents the motion of a single particle through this system. The RWRE
formalism allows for the study of numerous mathematically and physically interesting
properties of disordered systems. Continuous time versions of these random walks are
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particularly important in materials science, where they provide a basis for the study
of the transport properties of materials. Much of the discussion of RWRE has fo-
cused on mathematically tractable models, often in infinite settings (e.g., [31]). These
models have been very successful in describing important physical phenomena. In
practice, however, it is often necessary to consider more complex environments. An
example is when the morphology of an organic semiconductor plays an important role
in determining charge transport characteristics.

The main quantity of interest when studying charge transport is the average
velocity with which charges traverse the random environment at a given external
field (inducing a drift to the charges), which corresponds to charge mobility when
normalized by the field. A key feature of many RWRE is the presence of “traps” in the
random environment, where the random walker becomes stuck for long periods of time.
These traps have a significant impact on the average velocity of the random walker. In
addition, trap regions present considerable difficulties in obtaining numerical solutions
of the Markov jump process (MJP) modeling the random walk. This is because the
resulting stochastic process is effectively multiscale. At long timescales, the random
walker moves between trap regions, exploring the state space. At short timescales,
the walker moves about within trap regions. In the theory of numerical solutions
of (embedded) Markov chains, such processes are said to have the property of being
nearly completely decomposable.

In this paper, we propose a novel framework to study charge transport proper-
ties of materials via random walkers in disordered random media. This framework
combines a stochastic model for the fast generation of random environments that re-
alistically models materials morphology with an algorithm for efficient estimation of
key properties of the resulting random walk. This algorithm, called aggregate Monte
Carlo (AMC), was originally introduced in [5] and is a method for estimating the
velocity of a random walker as it passes through a realization of the random environ-
ment. The algorithm works by first identifying, and then aggregating, problem regions
in the random environment. We show that we are able to do this in such a way that
our estimator is strongly consistent. Our stochastic morphology model represents the
disordered medium as a random spatial graph with directed edge weights, where the
edge weights represent the transition rates of an MJP modeling the motion of the ran-
dom walker, and extends the spatial graph model introduced in [2]. It makes use of
tools from spatial statistics and the theory of random geometric graphs. A particular
strength is that it allows efficient simulation of large-scale molecular systems.

We then present our methodology. We describe a model of an example which illus-
trates an amorphous mesophase of an organic dye, used as an electron-donor in organic
solar cells; see Figure 1. Here, the random environment represents a molecular mor-
phology, and the random walker describes the movement of a charge (hole) through
the morphology. More specifically, we adjust the parameters of the model to the
electronic properties of dicyanovinyl-substituted oligothiophene (DCV4T) molecules
in a small (microscopic) system. The fitted model can be used to predict the mobil-
ity of holes in a morphology of DCV4T molecules. Such a model can be of use for
better understanding solar cells, as it allows for larger-scale (experimentally relevant)
modeling of such microscopic structures.

The stochastic approach presented here is not limited to the particular organic
semiconductor (DCV4T) we have used as a test system. In fact, the majority of host
materials in organic light emitting diodes have large energetic disorder (deep traps)
and are therefore challenging to model using small systems and the conventional
variable step size method; see [16, 17, 20]. Stochastic modeling helps to increase the
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Fig. 1. Left: Large-scale morphology of DCV 4T gained by microscopic simulations. Right:
corresponding three-dimensional ( 3D) graph extracted from DCV 4T morphology (cut-out), where
vertices are displayed in red and edges are marked in yellow.

size of the system, while AMC provides an efficient way of evaluating its properties,
e.g., charge carrier mobility. Moreover, the developed techniques are not restricted
to organic semiconductors. Similar problems are encountered, for example, when
studying surface reactions (catalysis) (see [12]) or hydrogen and oxygen transport in
biological systems (see [30]).

The paper is organized as follows. In section 2, we introduce our model of ran-
dom environments. Section 3 deals with estimation of the random walker’s velocity,
describing the standard estimation technique and the AMC approach. We give a
proof that the AMC provides a strongly consistent estimator of the random walker’s
velocity. In section 4, we use our framework to analyze charge transport properties of
DCV4T molecules for a number of different realizations of the stochastic morphology
model and different system sizes. Conclusions are given in section 5.

2. A stochastic model of disordered media. The random environment that
we propose is a random spatial graph with directed edge weights, where the edge
weights describe the transition rates of an MJP governing the motion of the random
walker. This model has been designed primarily as a tool for the study of charge trans-
port. However, note that the graph model introduced in the following has numerous
other potential applications (see, e.g., [11, Chapter 5]).

The random graph model consists of spatially distributed random vertices and
random weighted edges. More precisely, the random geometric graph can be described
by a triple G = (V,E,W ), with V being the set of random vertices, E the set of ran-
dom edges, and W the set of random edge weights. We divide our modeling approach
for the random three-dimensional (3D) graph G into three parts: the modeling of the
set of vertices, the modeling of the set of edges, and the modeling of the set of edge
weights. The procedure for generating the graph (without edge weights) is illustrated
in Figure 2.

As stated above, this model has been designed primarily as a tool for charge
transport studies. In this context, note that every material system in the real world
is of finite spatial extent. The active layer of an organic solar cell, for instance,
consists of a blend of electron-donor (e.g., DCV4T) and electron-acceptor molecules
and has a thickness of around 100–200 nm. Thus, it is reasonable to simulate a
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Fig. 2. The first two stages in generating the random environment model. First, the vertices
are generated using the dominance-competition model (left). Second, the edges are placed according
to the model detailed in section 2.3 (right).

random environment not in an infinite but in a finite setting. Therefore, the random
graph model will be simulated in a bounded (cubic) observation window A = [0, ax]×
[0, ay]× [0, az] ⊂ R

3, ax, ay, az > 0. In particular, in our case study (see section 4), we
analyze the effect of system size (i.e., the volume of A) on the transport properties of
single charges. It turns out that the system size has a significant effect on transport
properties. Although we define the stochastic morphology model for bounded, cubic
observation windows, the model could be defined on R

3. In particular, if defined on R
3,

the model has the properties of stationarity and isotropy which allow the application
of important structural (point process and image) characteristics. Restricting a model
to a bounded observation window means that boundary effects may be an issue. In
this paper, we avoid boundary effects by imposing cyclic boundary conditions (see
section 2.1). This essentially means changing the distance metric, as explained below.

2.1. Cyclic boundary conditions. We impose cyclic boundary conditions as
follows. More precisely, we measure the signed x, y, and z distances between two
vertices, si = (xi, yi, zi) and sj = (xj , yj , zj), by

(2.1) dsi,sj =
(
dxsi,sj , d

y
si,sj , d

z
si,sj

)ᵀ
,

where

(2.2) dxsi,sj =

⎧⎪⎨⎪⎩
xj − xi if |xj − xi| ≤ ax/2,

ax + (xj − xi) if |xj − xi| > ax/2 and xi > xj ,

−ax + (xj − xi) if |xj − xi| > ax/2 and xi < xj ,

and dysi,sj , d
z
si,sj are defined analogously. We can then introduce the metric

(2.3) δ(si, sj) =

√(
dxsi,sj

)2
+
(
dysi,sj

)2
+
(
dzsi,sj

)2
.

2.2. The vertex model. To model the vertex set V of the graph G, we use the
dominance-competition model (see [26]), which is based on a thinning of a Poisson
point process in R

3. The dominance-competition model, adapted for the simulation
in a bounded observation window A, can be described as follows: first, a set of points,
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{ξk}L
0

k=1, is generated, where the points are independent and uniformly distributed in
A, given the total number of points, L0, which follows a Poisson distribution with
parameter λ · ν3(A), with ν3(A) being the volume of A. We refer to λ as being the
intensity (average number of points per volume unit) of the random set of points

{ξk}L
0

k=1. Each point ξk is assigned a ball B(ξk, Rk) with midpoint ξk and a random

radius Rk ∼ Gamma(ιmean, ιvar) + rh, where rh > 0. We then thin the set {ξk}L
0

k=1

as follows. A point ξk is retained only if there does not exist another point, ξj ,
such that ξk ∈ B(ξj , Rj) and the volume of B(ξj , Rj) is bigger than the volume

of B(ξk, Rk). The random set of remaining points, {Si}Li=1, where L is the total
number of remaining points, is called a dominance-competition process; see [26] for
more details. Note that each “surviving” point Si has a distance of at least Ri ≥ rh
from its nearest neighbor. For any fixed parameters ιmean, ιvar, and rh of the radii
distribution, the maximum intensity that can be obtained by this point process model
is limited (see, for example, [7] for the case in which Ri = rh). The intensity, however,
can be increased by further iterations. More specifically, in each step a dominance-
competition process is generated independently of all preceding processes. Points
from this new process are added to the existing process provided that they do not
“interact” with any existing points (i.e., they are not included in the sphere of any
existing point and no existing point is included in their sphere). See [2] for more
details. The dominance-competition model has a broad range of applications. This is
because it provides a large degree of control over many important properties of point
processes.

1. The intensity can be adjusted by changing λ, the intensity of the underlying
Poisson process. Large intensities can be obtained by further iterations of the
dominance-competition process.

2. The hard-core distance rh sets a minimum distance between neighboring
points. This is important because particles cannot overlap in most physi-
cal models (e.g., grains and molecules).

3. The distribution of the distances between points can be controlled by changing
the parameters ιmean and ιvar of the Gamma distribution and the hard-core
distance rh.

4. It is possible to adjust the degree of regularity. A highly ordered point pro-
cess can be obtained by combining a high intensity (optionally by applying
further iterations of the dominance-competition process) with a large hard-
core distance and a Gamma distribution with small variance. In contrast, a
more disordered point process can be obtained by increasing the variance of
the Gamma distribution.

This model is parsimonious but captures the “hard-core” nature of molecules and
allows considerable control over the degree of regularity of the point process (which
is important when modeling irregular systems). Models with fewer parameters were
considered but were unable to combine a flexible distribution for the distances between
centers of mass with sufficient control over the regularity of the resulting system. The
parsimony of the model means that it is relatively easy to fit to experimental data.
In addition, dominance-competition point processes are stationary and isotropic if
defined on the entirety of R

3, allowing the use of many important point process
characteristics; see section 4.2.

2.3. The edge model. Given a set of vertices V = {si}�i=1, we place edges be-
tween neighboring vertices to generate a 3D spatial graph. The edge model, presented
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in the following, has four important features:
1. Edges are placed between all sufficiently close vertices: those less than rmin

apart.
2. No edges are placed between vertices that are more than rmax distant from

one another.
3. The probability of an edge being put between two vertices decreases as the

distance between the vertices increases.
4. In so far as possible, a minimum vertex degree of dmin is obtained.

These features allow considerable control over the connectivity properties of the graph.
Algorithm 2.1 (edge placement algorithm). For each vertex, si ∈ V , do the

following.
1. Find Nmax

i = {j ∈ N : sj ∈ V \ {si} and δ(si, sj) < rmax}.
2. Find Nmin

i = {j ∈ N : sj ∈ V \ {si} and δ(si, sj) < rmin}. Place edges be-
tween si and all sj , j ∈ Nmin

i . Put N rem
i = Nmax

i \ Nmin
i . Let Ki = |Nmin

i |. If
Ki ≥ dmin, go to step 4.

3. Let Mi = |Nmax
i |. If Mi < dmin, then connect si to all the remaining nearest

neighbors less than rmax away, and terminate the algorithm. Otherwise, place
dmin −Ki edges between si and vertices in N rem

i . This is done as follows.
i. Set k = 0.
ii. Select a vertex sj , j ∈ N rem

i , with probability
f(δ(si,sj))∑

l∈N rem
i

f(δ(si,sl))
, where f :

[0,∞) → [0, 1] is a suitably chosen, monotonically decreasing function.
iii. Place an edge between sj and si, set N rem

i = N rem
i \{j}, and set k = k+1.

iv. If k ≥ dmin −Ki, terminate. Otherwise, go to step ii.
4. Put an edge between si and each remaining sj , j ∈ N rem

i , with probability αi,j ,
where

αi,j = min

(
1,

cf (δ(si, sj))∑
l∈N rem

i
f (δ(si, sl))

)
.

The parameter c > 0 controls the average number of edges being added.

2.4. The edge weight model. The set of directed edge weightsW is generated
according to the high-temperature limit of nonadiabatic transfer (Marcus theory;
see [15]) with the transfer rate given by

(2.4) wij =
2π

�

J 2
ij√

4πλijkBT
exp

[
− (Δηij − λij)

2

4λijkBT

]
,

where T is the temperature, � the reduced Planck constant, and kB Boltzmann’s
constant. The quantities on the right-hand side of (2.4) that are specific to pairs
of vertices are the reorganization energy, λij , the electronic coupling element (or
transfer integral), Jij , and the energy difference, Δηij = Δηel + Δηext. The energy
difference consists of the difference in electrostatic site-energies, Δηel = ηi − ηj , and
the influence of an externally applied electric field F ∈ R

3, Δηext = q〈F,dsi,sj 〉, where
q is the charge of the carrier and 〈 , 〉 denotes the scalar product.

In this paper, we model the two most important pair-specific components: elec-
trostatic site-energies ηi and electronic coupling elements Jij . The reorganization
energy, λij , is taken to be constant.

In charge transport, transfer rates depend exponentially on energy differences
between neighboring molecules. A key feature is that the energy of each molecule
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is strongly positively correlated with the energies of neighboring molecules. To re-
produce these correlations, we use a flexible moving-average–type model for these
energies. In addition, we model the distribution of electronic coupling elements be-
tween molecules. Given the molecular energies and the electronic coupling elements,
we are able to calculate transfer rates using (2.4).

We associate an energy ηi to each vertex si. The {ηi}�i=1 are generated according
to a process similar to that used by [2]. We generate two independent sequences of

independent and N(0, σ2
η)-distributed random variables, {εi}�i=1 and {ε̃i}�i=1. Let

N k
i =

{
j1, . . . , jk ∈ {1, . . . , �} : max

k∈{1,...,k}
δ(sjk , si) ≤ min

l∈{1,...,�}\{j1,...,jk}
δ(sl, si)

}
be the indices of the k nearest neighbors of vertex si (including index i). Then, we
set

(2.5) ηi =
√
ωεi +

√
1− ω

k

∑
j∈Nk

i

ε̃j + μη , i = 1, . . . , �,

where μη > 0 is a constant chosen to fit empirical data. The number K controls the
range of the spatial correlation, and the weight ω ∈ [0, 1] controls the magnitude of
the spatial correlation. The resulting energies, {ηi}�i=1, are N(μη, σ

2
η)-distributed with

the desired correlation structure.
Roughly speaking, the electronic coupling elements, {Jij}�,�i=1,j=1,i�=j , describe

the quality of the connections between molecules. The quality of the connection
between a molecule at si and a neighboring molecule at sj is highly dependent on
the distance between the two vertices. We model the squared electronic coupling
elements as log-normal random variables with parameters that are distance depen-
dent. That is, for each i and j, i �= j, we set J 2

ij = exp {Xij}, where Xij ∼
N
(
μJ (δ(si, sj)), σ

2
J (δ(si, sj))

)
. Both μJ (·) and σ2

J (·) are polynomial functions. For
i = j, we set Jij = 0.

If an edge exists between si and sj , then the weights between them are given
by wij > 0 and wji > 0 as defined in (2.4). Otherwise wij = wji = 0. Note that
the random geometric graph constructed in this way is connected, as unconnected
realizations are rejected.

3. Aggregate Monte Carlo. A fundamental quantity in charge transport is the
charge mobility. This corresponds to the average velocity of a charge carrier under the
influence of an external electric field normalized by the magnitude of the field. The
difficulty in calculating charge mobility lies in calculating the velocity of the charge
carrier. In our case, this corresponds to calculating the velocity of a random walker
in the appropriately chosen random environment. The continuous time random walk
approach which directly describes the microscopic motion of carriers was pioneered
in [21] and [22] (see also [18]).

Tractable closed form expressions for the velocity of random walkers in random
environments are only available for very simple models. In complex models, such as
that presented above, the velocity must be estimated statistically. In order to estimate
the velocity, a realization or a number of realizations of the stochastic morphology
model is generated, and Monte Carlo simulations are performed by simulating random
walks on these realizations. The two algorithms we describe for estimating charge
mobility do not rely on a particular shape of the density of states (DOS) but on rates
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only. This means the algorithms are generally applicable and can be used for any
DOS. Time, field, and temperature dependencies all enter the rates and are fully
incorporated into all resulting calculations.

A key feature of RWRE models is that the velocity of the random walker tends to
be slower than it would be in an equivalent environment without random distribution
of energies. This is because of the presence of energetic traps in which the random
walker becomes stuck for long periods of time. In the charge transport context, these
regions can be thought of as “valleys” in the energy surface. These traps present
significant difficulties to the estimation of random walker velocity, as the random
walker exhibits multiscale dynamics: over larger timescales it moves between trap
regions; over shorter timescales it moves about within trap regions. In many cases, the
MJP governing the motion of the random walker is nearly completely decomposable.
An MJP with this characteristic causes a number of numerical difficulties; see the
discussion in [6]. In particular, when the random environment is large, many standard
techniques for computational solutions of Markov chains fail (see, e.g., [25]).

We have developed an algorithm, AMC, that is particularly efficient in estimating
the velocity of random walks in environments with traps (see [5]). It uses aggrega-
tion techniques similar to those used to approximate steady state solutions to nearly
completely decomposable Markov chains: problem regions are aggregated into single
states in such a manner that the velocity estimator remains consistent. Because ve-
locity is a quantity that is much more dependent on the long-run dynamics of the
MJP than it is on the short-run dynamics, this estimator gives considerable efficiency
gains over standard techniques. It is important to stress that this estimator does not
result in any loss of information when calculating charge mobility, as all pertinent
information is preserved during the aggregation step. In particular, the AMC algo-
rithm does not reduce the system size or replace multiple states with single states,
whose sojourn times are approximated by exponential random variables. Instead, we
replace a stochastic process on the fine state space (an MJP) with a qualitatively
different process on the coarsened state space (a discrete time Markov chain). This
second process completely captures the long-run properties of the original MJP. In
the case of estimating charge mobility, we make this explicit by providing a proof of
consistency; see Theorems 3.1 and 3.2.

We begin by describing the standard process by which the velocity of a continuous
time random walker is estimated, either for a realization of a random environment
model, as above, or for a completely deterministic environment. We call this approach,
used extensively in the physics literature (see, for example, [27, 29]), the crude Monte
Carlo (CMC) approach.

3.1. Crude Monte Carlo.

3.1.1. CMC estimator for the velocity. Consider a finite connected graph
with directed edge weights, G = (V,E,W ), in the bounded window A. We take the
edge weights to be the transition rates of an MJP, M = {Mt}t≥0, with state space V .
We set � = |V | and label the vertices from 1 to �; that is, we identify vertex si with
state i for i ∈ {1, . . . , �}. The generator matrix {qi,j}i,j∈V of the MJP is given by

qi,j = wij for i �= j and qi,i = −qi = −∑j �=i qi,j . We define M̃ = {M̃n}n≥0 to be the
embedded Markov jump chain whose transition matrix is denoted by J = {pi,j}i,j∈V ,

with pi,j = qi,j/qi, i �= j. The associated sequence of waiting times is given by
{Tn}n≥0. Let Nt be the random number of transitions up to time t > 0.
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The average velocity of the random walker is the vector quantity defined by

(3.1) v = lim
t→∞

1

t

Nt−1∑
n=0

d
M̃n,M̃n+1

.

We will see later that the limit in (3.1) exists almost surely (a.s.) and, moreover, that
v is a.s. constant given the weighted graph G = (V,E,W ). This immediately gives
the following natural estimator of the velocity:

(3.2) v̂cmc(t) =
1

t

Nt−1∑
n=0

d
M̃n,M̃n+1

.

This estimator is straightforward to implement in the bounded window A.
Algorithm 3.1 (crude Monte Carlo (CMC) estimation of velocity).

1. Select M̃0 uniformly from 1, . . . , �. Put t = 0 and d = 0. Put n = 0.
2. Put M̃n+1 = i with probability q

M̃n,i
/q

M̃n
.

3. Put t = t+ τ , where τ ∼ Exp(q
M̃n

).
4. Put d = d+ d

M̃n,M̃n+1
.

5. Put n = n+ 1, and repeat from step 2 until t > t0.
6. Return the estimator v̂cmc(t) = d/t.

3.1.2. Asymptotic properties of the CMC estimator. Note that the MJP
M is irreducible, as we require our graph to be connected, so there exists a unique
stationary limiting distribution π = {πi}�i=1. This yields an alternative definition of
the velocity in terms of the stationary distribution of the random walker that is used
in the following asymptotic result.

Theorem 3.1. Let ṽ =
∑

s,s′∈V πsqs,s′ds,s′ . Then v = limt→∞ v̂cmc(t) = ṽ a.s.

and in L1.
The velocity ṽ defined above has the following heuristic interpretation. Asymp-

totically, the fraction of time the MJP M spends in state s ∈ V is given by πs. When
the walker is in state s it moves to state s′ ∈ V at the infinitesimal rate qs,s′ with
an associated displacement vector given by ds,s′ . This yields an instantaneous veloc-
ity of qs,s′ds,s′ . Averaging these velocities over all possible transitions results in the
expression ṽ =

∑
s,s′∈V πsqs,s′ds,s′ .

Note that Theorem 3.1 follows easily from the standard ergodic theorem for
MJPs [19, Theorem 3.8.1]. Some minor complications arise from the observations
that the sum in (3.2) is associated with the (embedded) jump chain, while the aver-
age in (3.2) is considered in the continuous time variable t and in that the distances
appearing in (3.2) have to be considered as functionals of a related bivariate Markov
chain. To be more precise, in order to apply the ergodic theorem for MJPs it is
convenient to consider the intermediate estimator

vc,1(t) =
1

t

∑
s,s′∈V

Ts,s′(t)qs′ds,s′ , t > 0,

where Ts,s′(t) denotes the time the MJP M spends in state s′ with state s being the
previously visited state. That is, for s, s′ ∈ V ,

Ts,s′(t) = ν1

(
t′ ∈ [0, t] : M̃Nt′−1 = s, M̃Nt′ = s′

)
,
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where ν1 is the one-dimensional Lebesgue measure. In the appendix we show that

lim
t→∞ (v̂cmc(t)− vc,1(t)) = 0

with probability 1; see Lemma A.1.
Next, we show that P (limt→∞ vc,1(t) = ṽ) = 1. For this purpose it is convenient

to introduce the bivariate process M sub =
(
M sub

1,t ,M
sub
2,t

)
t≥0

defined by M sub
1,t = M̃Nt−1

and M sub
2,t = M̃Nt . Here we choose M̃−1 to be an arbitrary neighbor of M̃0. Then M sub

forms an irreducible MJP on the subset V sub of V 2 consisting of those (s, s′) ∈ V 2 with
qs,s′ > 0. We denote the stationary limit distribution of M sub by {πsub

(s,s′)}(s,s′)∈V sub

and observe that the ergodic theorem for MJPs (see [19, Theorem 3.8.1]) implies

(3.3) P

⎛⎝ lim
t→∞vc,1(t) =

∑
(s,s′)∈V sub

πsub
(s,s′)qs′ds,s′

⎞⎠ = 1.

In order to represent πsub
(s,s′)qs′ds,s′ in terms of the stationary distribution of the orig-

inal chain (M̃n)n≥0, we first note that the generator (qsub(s,s′),(s′,s′′))(s,s′),(s′,s′′)∈V sub of

M sub is determined by qsub(s,s′),(s′,s′′) = qs′,s′′ for s
′ �= s′′. Hence, for every (s′, s′′) ∈ V sub,∑

s∈V \{s′}
πsqs,s′q

sub
(s,s′),(s′,s′′)/qs′ =

∑
s∈V \{s′}

πsqs,s′qs′,s′′/qs′ = πs′qs′,s′′ =
πs′qs′,s′′

qs′′
qsub(s,s′′).

Additionally,
∑

(s,s′)∈V sub πsqs,s′/qs′ =
∑

s′∈V πs′ = 1, so that πsub
(s,s′) = πsqs,s′/qs′ .

This completes the proof of the a.s. convergence in Theorem 3.1. The proof of L1-
convergence is provided in the appendix (see Lemma A.2).

3.2. AMC. The CMC estimator performs very poorly in many settings (see, for
example, [5]). This is because the realizations of the random environment can contain
traps in which the walker becomes stuck. The walker then spends a very large number
of steps moving around in a small region before it is able to escape and explore more
of the environment. Simulating all of these steps is computationally very expensive.
However, because velocity is a long-run quantity, its value is largely unaffected by the
short-run behavior of the random walker within trap regions. The idea of the AMC
algorithm is to replace these traps with single states so that the random walker can
explore the entire random environment much more rapidly. Because the expected time
spent in each problem region and the probabilities of moving into and out of problem
regions can be calculated exactly, this procedure results in a velocity estimator that is
strongly consistent. In comparative studies (see [5] and [6]), this estimator has been
found to be between 100 and 1000 times faster than the CMC estimator (that is, to
achieve equally accurate answers using CMC, a sample size 100 to 1000 times larger
would be required).

The AMC approach consists of three steps:
1. Identifying the problem regions in a given environment.
2. Aggregating these problem regions into single states.
3. Carrying out a simulation of the random walk on the resulting coarsened

environment.

3.2.1. Identifying the problem regions. We wish to define a partition {Vj}Lj=1
of the state space V , such that traps in the original state space are contained within
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single elements of the new partition, where L denotes the number of “superstates.”
In order to identify the problem regions in the state space, we consider the embedded
jump chain M̃ . This is because the computational cost of simulating the random
walker depends not on the physical time spent in each state but rather on the num-
ber of transitions between states required to adequately explore the state space. The
problem regions are regions within which the walker moves with high probability but
from which it escapes with low probability. The walker quickly reaches almost sta-
tionarity within these regions but takes much longer to reach stationarity over the
whole environment.

We use a clustering algorithm given in [8] for partitioning nearly completely de-

composable Markov chains. Consider the weighted directed graph G̃ = (Ṽ , Ẽ, W̃ )

which is derived from J , the transition matrix of M̃ , in the following way. The set of
vertices, Ṽ , represents the states of M̃ , which is simply V . The edge set, Ẽ, repre-
sents the possible transitions. The set of edge weights, W̃ , represents the transition
probabilities. The idea is to partition G̃ into subgraphs based on connectivity prop-
erties. We begin by placing all the vertices of Ṽ in a set C. The algorithm works by
taking a vertex, s, of minimal vertex degree in C. It uses this vertex as the basis of
a superstate S. The algorithm considers all vertices adjacent to S. For each adjacent
vertex, s′, if the subgraph of G̃ formed by s′ and S satisfies certain criteria, then s′

is added to S. The process continues until no more vertices can be added to S. At
that stage, the vertices in S are removed from C and classified as a superstate, and
the algorithm begins again, considering the remaining unclassified vertices.

The criteria that the subgraph of G̃ defined by the vertex set {s′}∪S must satisfy
are the following.

1. Either a completeness criterion or a fullness criterion.

(i) The completeness criterion requires that
φ{s′}∪S

φS
> α for some α > 0,

where φG is the ratio of the number of edges in the graph G to the
number of edges that G would have if it were complete.

(ii) The fullness criterion requires that s′ be adjacent to at least a proportion
β of vertices in S for some β > 0.

2. A threshold criterion. This requires that at least one transition probability
from s′ into a state in S be bigger than γ and that at least one transition
probability from S to s′ be bigger than γ for some γ > 0.

The algorithm can be summarized as follows.
Algorithm 3.2 (graph-theoretic decomposition of the jump chain).
1. Put C = V . Set j = 1.
2. Put S = S′ = ∅.
3. Choose from C a vertex s of minimal degree, mark it, and add it to S.
4. Move to S′ all vertices adjacent to s.
5. Choose a vertex s′ in S′.
6. If the fullness or connectivity criterion is satisfied and the threshold criterion

is satisfied, then move s′ to S and add to S′ all vertices in C adjacent to s′.
Otherwise, move s′ to C.

7. If S′ �= ∅, repeat from step 5.
8. Put aside the vertices in S as superstate Vj.
9. If C �= ∅, set j = j + 1, and repeat from step 2.

We choose the parameters α, β, and γ so that the superstates are quite small but
contain all problem regions. A discussion of how to choose these parameters is given
in [5]. In practice, we try a number of different parameter combinations and choose
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the one that gives the best tradeoff between performance (measured, for example, by
the average amount of physical time achieved by the algorithm in a fixed number of
steps) and fineness of segmentation. Note that the spatial extent of the superstates
must be considerably smaller than the size of the observation window in order to
avoid problems in calculating distances traveled by the random walker. To be more
precise, in the following we assume that for every j ∈ {1, . . . ,L} there exists s ∈ Vj

with δ(s, s′) ≤ min(ax, ay, az)/4 for all s′ ∈ Vj and all s′ adjacent to an element of Vj .

3.2.2. Aggregating the problem regions. Given a partition, {Vj}Lj=1, of the
state space V , we calculate the expected time spent in each superstate and the tran-
sition probabilities from superstates to adjacent superstates. These quantities are
dependent not only on the current superstate but also on the state (in the original
state space) from which it was entered. Thus, in order to retain the Markov property,

we adopt a finer state space than {Vj}Lj=1. We define our state space to be the states
on the boundaries of the superstates. We call these states the outer states and denote
them by V̊ ⊂ V . More precisely, a state s ∈ Vj is contained in V̊ if and only if
there exists s′ ∈ V \ Vj such that M can move from s to s′ with a positive transition
rate. We are able to model the random walker as it moves from an outer state of one
superstate to an outer state of another superstate in such a way that the process is
Markovian and the expected times spent in superstates and transition probabilities
between superstates can be calculated exactly.

Fig. 3. Left: Superstates, with outer states identified in red. Right: The possible transitions
for the Markov chain on the outer states. Note that states 1 and 2 are not adjacent in the original
state space V , but on V̊ they are.

For each state s ∈ V̊ and each adjacent state s′ ∈ V̊ of another superstate,
we calculate p̊s,s′ , the probability of the walker moving from s to s′, and τ̊s,s′ , the
expected time that the walker spends in the superstate before it moves from state s to
state s′. Note that since we consider the transitions between superstates, in resolution
of the outer states, s and s′ can be adjacent although they are not adjacent in the
original graph G (see also Figure 3). The quantities p̊s,s′ and τ̊s,s′ are calculated
by treating the states of a superstate as the transient states of an MJP, with the
adjacent (outer) states acting as absorbing states. That is, for j ∈ {1, . . . ,L} we
denote by V ′

j the union of Vj and all outer states V̊ which can be reached from a
state in Vj with positive probability. Then for each j ∈ {1, . . . ,L} we consider an
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MJP M (j) = {M (j)
t }t≥0 on the state space V ′

j whose transition rates are determined
as follows. The rate of moving from a state s ∈ Vj to a state in s′ ∈ V ′

j is given by the
transition rate from state s to state s′ in the original MJP M . Additionally, every
state in V ′

j \ Vj is absorbing.
The transition probability from an outer state s to an adjacent outer state s′ from

a different superstate is then given by the probability of absorption in s′, given that
the MJP starts in s. This is calculated by considering the jump chain of M (j), where
j corresponds to the superstate containing s. The transition matrix of the jump chain
can be written in the form

(3.4) J (j) =

(
I 0

J (j),TA J (j),TT

)
,

where J (j),TA is the matrix of transition probabilities from transient states to absorb-
ing states, J (j),TT is the matrix of transition probabilities from transient states to
transient states, I is an identity matrix of appropriate size, and 0 is a matrix of zeros.
The probability of absorption in state k′, having begun in state k, is then given by

(P̃ (j))k,k′ , where P̃ (j) =
(
I − J (j),TT

)−1
J (j),TA. The probability p̊s,s′ is the element

of this matrix where k corresponds to s and k′ corresponds to s′.
The conditional expected time to absorption in state s′ starting in state s can be

calculated by considering the generator matrix of M (j), which can be written in the
form

(3.5) Q(j) =

(
01 02

Q(j),TA Q(j),TT

)
.

The matrix of conditional expected absorption times is given by (τ̃ (j))k,k′ = T̃
(j)
k,k′/P̃

(j)
k,k′ ,

where T̃ (j) =
(
(Q(j),TT)2

)−1
Q(j),TA. The expected time τ̊s,s′ is the element of this

matrix where k corresponds to s and k′ corresponds to s′. Note that these expected
times are then used in place of the exponentially distributed times used in the original
MJP.

3.2.3. Simulating the random walk. Given an aggregation of the state space,
we consider the Markov chain M̊ = {M̊n}n≥0 on V̊ with �̊ = |V̊ |. We denote the

transition matrix of M̊ by J̊ = (p̊s,s′)s,s′∈V̊ , where p̊s,s′ = 0 when s and s′ are not
adjacent or are contained in the same superstate. The AMC estimator of the velocity
is formally defined as

v̂amc(t) =
1

t

N̊t−1∑
i=0

dM̊i,M̊i+1
,

where N̊t = sup{n ≥ 0 :
∑n−1

i=0 τ̊M̊i,M̊i+1
< t}. It is implemented as follows.

Algorithm 3.3 (aggregate Monte Carlo (AMC) estimation of velocity).

1. Select M̊0 uniformly from 1, . . . , �̊. Put t = 0 and d = 0. Put n = 0.
2. Put M̊n+1 = s with probability p̊M̊n,s

.
3. Put t = t+ τ̊M̊n,M̊n+1

.
4. Put d = d+ dM̊n,M̊n+1

.
5. Put n = n+ 1, and repeat from step 2 until t > t0.
6. Return the estimator v̂amc(t) = d/t.
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3.3. Asymptotic properties of the AMC estimator. In this section we
prove a number of consistency results for the AMC estimators v̂amc(t). We again
defer all proofs to the appendix.

Theorem 3.2. It holds that limt→∞ v̂amc(t) = ṽ a.s. and in L1, where ṽ is the
limit considered in Theorem 3.1.

Similarly to the approach used in section 3.1, it is convenient to consider an
intermediate estimator {va,1(t)}t≥0 whose precise definition is given below. The proof

of Theorem 3.2 is then subdivided into showing limt→0 v̂cmc(t) − va,1(t) = 0 a.s. on
one hand and limt→0 v̂amc(t)−va,1(t) = 0 a.s. on the other. The L1-convergence is an
immediate consequence of the dominated convergence theorem, as v̂amc(t) is bounded
from above by

max
s,s′∈V̊

ds,s′/ min
s,s′∈V̊
τ̊s,s′>0

τ̊s,s′ .

To introduce the estimator {va,1(t)}t≥0 we make use of a coupling of M̊ and M in

the sense that we define a Markov chain M̊ c that is defined on the same probability
space as the MJP M and has the same distribution as the Markov chain M̊ ; see
Lemma B.1. The idea for defining M̊ c is to trace the superstate transitions of the
jump process M̃ , as illustrated in Figure 4.

M̊ c
0

M̊ c
1

M̊ c
2

Fig. 4. Possible trajectory of the random walker M with outer states identified in red. The
highlighted states M̊c

0 , M̊
c
1 , M̊

c
2 correspond to the outer states at which M enters a new superstate.

In order to define M̊ c precisely, we will need some notation that allows us to
easily switch between the state space V associated with the CMC algorithm and the
state space of V̊ associated with the AMC algorithm. For every s ∈ V denote by
σ(s) ∈ {V1, . . . , VL} the superstate containing s. In order to convert the CMC time
scale into the AMC time scale, we define a function fca : N0 → N0 by

fca(n) =
∣∣∣{i ∈ {1, . . . , n} : σ

(
M̃i

)
�= σ

(
M̃i−1

)}∣∣∣ ,
where N0 = {0, 1, . . .} denotes the set of nonnegative integers; i.e., fca(n) counts the

number of superstates visited by M̃ in the first n steps. The function fca can also
be considered as a random clock that advances every time a superstate transition is
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observed and remains constant otherwise. Similarly, in order to convert the AMC
timescale into the CMC timescale, we define a function fac : N0 → N0 by

fac(n) = inf {n′ ≥ 0 : fca(n
′) = n} ;

i.e., fac(n) denotes the number of steps performed by M̃ at the time of the nth
superstate transition. Thus, the function fac can also be considered as generalized
inverse of the random clock fca. Using these definitions, we consider the process
M̊ c = {M̊ c

n}n≥0 given by M̊ c
n = M̃fac(n). We also put N̊ c

t = fca(Nt) and define the
intermediate estimator

(3.6) va,1(t) =
1

t

N̊c
t −1∑
i=0

dM̊c
i ,M̊

c
i+1

, t > 0,

where we show in Lemma B.2 that P (limt→∞ v̂cmc(t)− va,1(t) = 0) = 1.
Finally, we consider the difference between va,1(t) and the AMC estimator v̂amc(t).

Indeed,

|v̂amc(t)− va,1(t)| = 1

t

∣∣∣∣∣∣
N̊t−1∑
n=0

dM̊c
n,M̊

c
n+1

−
N̊c

t −1∑
n=0

dM̊c
n,M̊

c
n+1

∣∣∣∣∣∣
≤ 1

t

∣∣∣N̊t − N̊ c
t

∣∣∣ (ax + ay + az),

where in the equality we used the fact that the processes M̊ and M̊ c have the same
distribution; see Lemma B.1. Hence, the proof of Theorem 3.2 is completed once we
show that

P

(
lim
t→∞

1

t

(
N̊t − N̊ c

t

)
= 0

)
= 1.

This is done in Lemma B.3.

4. Application to DCV4T molecules. A major application of our framework
is in describing charge transport in amorphous organic semiconductors, which are used
in organic electronics. In this setting, the random environment represents a molec-
ular morphology, and the random walker describes the movement of charges (holes
or electrons). In general, organic electronic devices are built from organic semicon-
ductors such as polymers or small molecules. Examples of organic electronic devices
are organic solar cells and organic light emitting diodes. Organic solar cells are an
alternative to classical silicon-based solar cells, as they are environmentally friendly
and mechanically flexible. In order to build efficient organic electronic devices, it is
important to understand elementary processes (e.g., charge transfer) within the de-
vice. It is important, for example, that holes and electrons (charges) traverse the
network at a high velocity, measured via charge carrier mobility. In this section, we
consider the problem of estimating the drift velocity or charge mobility of a weighted
spatial graph corresponding to systems of DCV4T molecules. DCV4T is a small
molecule used as an electron-donor in organic solar cells; see Figure 5 for its chemical
structure. To increase the understanding of charge transport processes in organic
semiconductors, there are several physical modeling approaches, one of which is mi-
croscopic simulation. Here, a large-scale molecular morphology is simulated using
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molecular dynamics, and the network of molecules is represented as a spatial graph,
where the vertices correspond to centers of mass of molecules and edges to possible
transitions between neighboring molecules; see Figure 1 (right). Transition or hop-
ping rates are determined using first principles calculations. In this section, we fit
the stochastic morphology model introduced in section 2 to a realization of a DCV4T
graph obtained using microscopic simulation.

S       

N       
N       

S       

S       

S       

N       

N       

Fig. 5. Molecular structure of DCV 4T.

4.1. Microscopic simulation. We briefly summarize how the molecular mor-
phology of an amorphous system of DCV4T molecules is obtained by microscopic
simulation. An example of such a morphology is given on the left-hand side in Fig-
ure 1. The extracted graph is given on the right-hand side. For general information on
the microscopic approach, see [20], where a large-scale morphology of Alq3 molecules
is simulated. For specific details on the microscopic simulation of DCV4T, we refer
the reader to [10, 23, 24].

The microscopic model is constructed in two stages. In the first stage, a spatial
graph is obtained which represents the molecular morphology. This is achieved by
simulating an amorphous morphology of 4096 DCV4T molecules using atomistic mo-
lecular dynamics. As an initial configuration, the molecules are placed on a cubic lat-
tice. Then, this system of molecules is equilibrated for 10 ns using molecular dynamics
well above the glass transition temperature, 800 K. This system is then quenched (i.e.,
cooled down) to room temperature. The centers of mass of the molecules for a given
snapshot define the vertices of the graph. An edge is placed between two vertices
if the distance between any of the thiophene or dicyanovinyl groups is less than a
threshold of 0.8 nm (see [24]).

In the second stage, the transfer rates between neighboring molecules are deter-
mined. For neighboring molecules, transition rates (i.e., charge hopping rates) are
calculated using the Marcus transfer rate equation, given as (2.4), with the pair-
specific quantities (the reorganization energy λij , the electronic coupling element Jij ,
and the site-energy ηi) determined using electronic structure techniques, polarizable
force-field methods, or a combination of both (see [4, 9, 20]).

For DCV4T, the reorganization energy of 0.21 eV was used for all molecules.
Electronic coupling elements Jij are calculated for each pair of neighboring molecules
based on the semiempirical ZINDO approach as implemented in the Molecular Orbital
Overlap module of the VOTCA package (see [13, 20]). Site energies ηi are calculated
by using the Thole model (see [28]) as implemented in the VOTCA package (see [20]).

The result of the microscopic approach is a weighted spatial graph GMol =
(V Mol, EMol,WMol) in a bounded observation window A ⊂ R

3. The set of vertices
V Mol describes the positions of the centers of masses of the DCV4T molecules. The
set of edges EMol describes those pairs of vertices (i.e., pairs of centers of masses of
molecules) between which charge transfer is sufficiently likely. Charges can only make
transitions along the edges of the graph. The edge weights WMol give the transition
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rates between neighboring vertices. Note that the resulting graph is connected and
that all distances are determined using cyclic boundary conditions; see section 2.1.

4.2. Model fitting and validation of the random spatial graph. We fit
the parameters of the random spatial graph model, G = (V,E,W ), introduced in
section 2, to a system of DCV4T molecules gained by microscopic simulation, as ex-
plained in section 4.1. We make use of fitting techniques similar to those described
in [2]. To begin with, the parameters of the dominance-competition model repre-
senting the vertex model are fitted to the set of vertices V Mol of the microscopic
simulation.

Fig. 6. Nearest neighbor distance distribution function (left), spherical contact distribution
function (center), and pair-correlation function (right) for vertices obtained using the microscopic
approach (black) and vertices from the corresponding realization of the stochastic model (red).

We use the minimum contrast method (see, e.g., [1]) to fit the parameters of our
vertex model. The parameters are chosen to minimize the discrepancy between the
estimated nearest neighbor distance distribution functions of the microscopic model’s
vertices and the points of the dominance-competition process; see Figure 6 (left).
The nearest neighbor distance distribution function D(r) gives the probability that
the nearest neighbor of a randomly chosen vertex is within distance r. To check if
the set of vertices V Mol of the microscopic simulation is adequately represented by the
stochastic vertex model, the point patterns are visually compared to each other in
Figure 7, where a very good agreement is found. For a more formal model validation,
we compute further structural characteristics for the vertex set V Mol and realizations
of the dominance-competition process; see Figure 6 (center and right). In particular,
we compute the spherical contact distribution function H : [0,∞) → [0, 1], where
the value H(r) describes the probability of reaching a vertex from a randomly chosen
point in the observation window within distance r and the pair-correlation function
g : [0,∞) → [0,∞), where the value g(r) is proportional to the relative frequency of
point pairs with distance r. For both characteristics a reasonable agreement is found;
see Figure 6.

The fitting technique for the vertex marks and edge weights of the random graph
is the same as that described in [2]. We give here only a brief summary. The marks of
the vertices are fitted using the minimum contrast method with the mark-correlation
function as the summary statistic. Maximum likelihood as well as least-squares are
used to fit the remaining parameters to the observed edge weights of the microscopic
simulation. The good fit of the mark-correlation functions (which were used for model
fitting) is evident in Figure 8 (left).

To fit the edge model of the random spatial graph to the edge set EMol of the
microscopic simulation, the values of rmin and rmax are estimated by the minimum
and maximum edge lengths observed in the edge set EMol. Furthermore, we estimate
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Fig. 7. Left: 3D vertices obtained using the microscopic approach (cut-out) and a realization
of the fitted stochastic point-process model (right).

dmin as the minimum vertex degree observed in EMol. Choosing c = 7 yields an
average vertex degree dmean = 17.4 for the stochastic model which can be compared
to dMol

mean = 17.0 for the microscopic model. The function f : [0,∞) → [0, 1] introduced
in section 2.3 is described by a piecewise polynomial of the form

f(r) =

⎧⎪⎨⎪⎩
1 for r ≤ rmin,

a1r
2 + a2r + a3 for rmin < r ≤ rmax,

0 else,

whose parameters a1, a2, and a3 are fitted to match the trend of decreasing edge
putting probabilities observed in GMol; see also Figure 8 (right). The edge length
distributions of EMol and the edge model match very well (see Figure 8, center). The
visual agreement between the stochastic graph and the microscopic counterpart is also
very good; see Figure 9.

Fig. 8. Left: Mark-correlation function. Center: Density of edge lengths. The black curves
indicate the microscopic approach and the red curves the stochastic model. Right: Edge connection
probability estimated from the microscopic model (black) and fitted polynomial function f (red).

The transition rates depend on the energies associated with each vertex, {ηi}�i=1,

and the transfer integrals, {Jij}�,�i=1,j=1,i�=j . The general procedure for generating
these quantities is described in section 2.4. Before generating the energies, we use min-
imum contrast estimation to find the parameters of the energy model, μη = −1.99eV,
σ2
η = 0.064eV2, ω = 0.21, and k = 15.
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Fig. 9. 3D graph by microscopic approach (left, cut-out) and a realization of the fitted stochastic
model (right).

Analysis of the distributions of transfer integrals {Jij}�,�i=1,j=1,i�=j for all pairs of

neighboring molecules of the microscopic model shows that log10(J 2
ij) is Gaussian dis-

tributed for molecules whose distance, r, is within a certain fixed interval, with mean
and variance of the Gaussian distribution changing with distance; see Figures 10(a)
and (b). This effectively takes into account the interplay between the anisotropy of a
single DCV4T molecule and the amorphous morphology. After determining the pair-
wise distance dependence from the microscopic model, values are drawn following a
Gaussian distribution with the appropriate parameters. Figure 10(c) shows the overall
frequency of rates after entering site positions, energies, and electronic couplings.

Fig. 10. Left: Comparison of mean values of log10(J 2
ij) for the microscopic and stochastic

models. Center: Comparison of variances of log10(J 2
ij) for the microscopic and stochastic models.

Right: Comparison of relative frequencies of transition rates for the stochastic and microscopic
models.

Both the microscopic model GMol and the random 3D graph model G are con-
structed in order to estimate the charge mobility in amorphous semiconductors. To
check if the fitted random graph model G describes the reference graph GMol ade-
quately, we calculate the charge mobility for both models and compare the obtained
results. Note that the mobility v/|F|, being the quotient of charge velocity v and
strength of the electric field |F|, is a 3D vector. Since the mobility is only nonzero in
the direction of the electric field electric F, we consider ζ = vᵀF/|F|2, the mobility
in the direction of the electric field.
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In Figure 11, we show the mobilities versus field as computed from GMOL (the
microscopic model) and G (the stochastic model). We first ignore the site-energy
disorder; i.e., we put Δηelij = 0 in the expression for the rates in (2.4). In the upper
panel of Figure 11, one can see that the absolute values and a slight decrease with the
increasing field strength (inverted regime) are similar for both models. Taking the
energetic disorder into account (lower panel) reduces the value of mobility by seven
orders of magnitude and is due to large disorder in site-energies. Again, both models
agree almost perfectly. Note that the mobility is rather sensitive to deviations in the
model. If, for instance, the distances between vertices are too large, this will result in
much lower squared electronic coupling elements and, consequently, lower mobilities.
Thus, the presented stochastic model offers a good description of molecular networks
in amorphous semiconductors.

Fig. 11. Average hole mobilities ζ (in direction of the electric field) in dependence of the
electric field for stochastic model (red; averaged over five realizations) and microscopic model (black;
averaged over six different field directions and five injection points).

4.3. Numerical results. One of the primary strengths of our RWRE approach
to the modeling of charge transport properties is that it allows for the fast generation
of different realizations of the stochastic network. It also allows for much larger models
than those generated using molecular simulation. To demonstrate the flexibility of
our RWRE approach, we generated ten realizations of the stochastic DCV4T model in
a bounded region A = [0, ax]× [0, ay]× [0, az], with ax = ay = az ≈ 13.71nm. Each of
these realizations consists of approximately 4000 molecules. We then considered the
effect of increasing system size. We did this by considering systems with five and ten
times greater volume. That is, we generated realizations in the bounded regions A5 =
[0, 51/3ax]× [0, 51/3ay]× [0, 51/3az] and A10 = [0, 101/3ax]× [0, 101/3ay]× [0, 101/3az].

For each of these realizations, we calculated the mobility, ζ, along the x direction,
ζ = vᵀF/|F|2, where F = Fe, F = |F|, and e = (1, 0, 0)ᵀ for a number of different
values of F (Poole–Frenkel dependence).

We used the AMC algorithm to estimate the mobilities for the various sizes of
the observation window. The segmentation of the state space V was carried out with
parameters α = β = .2 and γ = .02. These values were chosen based on the numerical
study done in [5]. In the case of the systems in A and A5, we ran the algorithm for
approximately 2.1× 109 steps. In the case of the system in A10 we ran the simulation
for 6.3× 109 steps. These values were chosen using some pilot runs in order to ensure
that the estimates were sufficiently accurate. We report the average mobilities ζ over
all realizations of each system size in Table 1. We include the standard errors of the
estimates of the average mobilities.

As one can see, the average mobility decreases by several orders of magnitude once
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Table 1

Average mobilities and standard errors (S.E.) for realizations of DCV 4T systems in A, A5,
and A10.

A A5 A10

Force (V/cm). ζ (S.E.) ζ (S.E.) ζ (S.E.)

1× 105 2.1× 10−9 1.0× 10−10 3.8× 10−11

(6.4× 10−10) (4.8× 10−11) (1.6 × 10−11)
2× 105 4.1× 10−8 1.4× 10−10 3.8× 10−11

(1.5 × 10−9) (8.2× 10−11) (1.7 × 10−11)
3× 105 6.4× 10−9 6.2× 10−11 4.8× 10−11

(2.4 × 10−9) (2.0× 10−11) (2.4 × 10−11)
4× 105 9.5× 10−9 9.9× 10−11 6.0× 10−11

(3.4 × 10−9) (4.9× 10−11) (1.5 × 10−11)
5× 105 1.5× 10−8 2.9× 10−10 6.9× 10−11

(5.2 × 10−9) (2.1× 10−10) (2.2 × 10−11)
6× 105 2.5× 10−8 3.2× 10−10 9.3× 10−11

(8.4 × 10−9) (1.8× 10−10) (3.3 × 10−11)
7× 105 3.5× 10−8 5.7× 10−10 1.3× 10−10

(1.3 × 10−8) (3.2× 10−10) (4.6 × 10−11)
8× 105 4.5× 10−8 9.6× 10−10 1.9× 10−10

(1.89× 10−8) (4.8× 10−10) (6.3 × 10−11)
9× 105 5.6× 10−8 1.5× 10−9 1.9× 10−10

(2.5 × 10−8) (6.6× 10−10) (7.2 × 10−11)

the system size is increased; see also Figure 12. This is a typical indication of a finite
size effect observed when simulating drift-diffusion in systems with rough energetic
landscapes (see [14]). The reason for this is that periodic (cyclic) boundary condi-
tions are used to mimic infinitely large systems. Therefore, statistical averages are
performed over limited subsets of distributions available in the periodically replicated
box. This results in, for example, larger average energy of a particle as compared to
an infinitely large system. In other words, the random walker has a higher effective
temperature and therefore drift-diffuses with a higher mobility.

The finite size effects are logarithmic in system size; i.e., the transition between so-
called dispersive and nondispersive transport occurs for � which exponentially grows
with the square of energetic disorder in units of kBT (see [3, 14]). It is therefore
very important to use adequate system sizes in order to make accurate estimates of
nondispersive mobilities. This can be achieved by constructing coarse-grained sto-
chastic models and combining them with the AMC scheme, as presented here.

5. Conclusions. In this paper, we proposed a general toolkit for the study of
the charge transport properties of materials via random walks in random environ-
ments (RWRE). In particular, we presented a flexible stochastic model for disordered
media: a random spatial graph model with directed edge weights, where the edge
weights represented the transition rates of a Markov jump process (MJP) modeling
the motion of the random walker. We described the AMC estimator to efficiently
estimate the random walker’s velocity by Monte Carlo simulations. We proved the
strong consistency of the AMC velocity estimator. Thereafter, we applied the pre-
sented toolbox for a detailed case study describing the motion of holes in a network
of DCV4T molecules. In particular, we analyzed the system-size dependency of the
hole’s velocity and mobility, respectively.
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Fig. 12. Poole–Frenkel plot of the average mobilities for the various system sizes with error
bars showing ±2 S.E.

Appendix.

A. Proof of Theorem 3.1. First, we provide details concerning the proof of
Theorem 3.1. Note that v̂cmc(t) admits the representation

v̂cmc(t) =
1

t

∑
s,s′∈V

Ns,s′(t)ds,s′ ,

where Ns,s′(t) denotes the number of times the MJP M jumps from state s to state
s′ before time t.

That is, for s, s′ ∈ V , Ns,s′(t) = |{n ∈ {0, . . . , Nt − 1} : M̃n = s, M̃n+1 = s′}|.
Lemma A.1. It holds that P (limt→∞ (v̂cmc(t)− vc,1(t)) = 0) = 1.
Proof. First, note that

v̂cmc(t)− vc,1(t) =
∑

s,s′∈V

(
Ns,s′(t)

Ts,s′(t)
− qs′

)
Ts,s′(t)ds,s′

t
.

As Ts,s′(t)/t is bounded from above by 1, it suffices to show

(A.1) P

(
lim
t→∞

Ts,s′(t)

Ns,s′(t)
=

1

qs′

)
= 1.

To prove (A.1) we note that Ts,s′(t) −
∑Ns,s′(t)−1

i=1 σi is contained in the interval
[0, σNs,s′(t)], where the sequence (σi)i≥1 is defined by

σi =sup
t≥0

{∣∣∣{n ∈ {0, . . . , Nt} : M̃n−1 = s, M̃n = s′}
∣∣∣ = i

}
− inf

t≥0

{∣∣∣{n ∈ {0, . . . , Nt} : M̃n−1 = s, M̃n = s′}
∣∣∣ = i

}
.

In other words, σi denotes the waiting time at node s′ when it is visited for the ith
time coming from state s. By the Markovian structure of M , the times (σi)i≥1 form
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independent Exp(qs′) distributed variables so that (A.1) follows from the law of large
numbers.

Finally, the following uniform integrability result implies L1-convergence.
Lemma A.2. The family of random variables {v̂cmc(t)}t≥0 is uniformly integrable.

Proof. We construct a family {v(t)}t≥0 of L1-convergent random variables such
that v̂cmc(t) is a.s. bounded from above by v(t). Put q0 = maxs∈V qs. When condi-

tioning the waiting times {Tn}n≥0 associated with the MJP M on the jump chain M̃ ,
they form a sequence of independent and exponentially distributed variables, where
the parameter of the nth waiting time is given by q

M̃n
. In particular, there exists

a sequence {T (1)
n }n≥0 of (unconditionally) independent and exponentially distributed

random variables such that T
(1)
n ≤ Tn a.s. and such that T

(1)
n is exponentially distrib-

uted with parameter q0. Writing N
(1)
t = sup{n ≥ 0 :

∑n−1
i=0 T

(1)
i < t}, we therefore

obtain v̂cmc(t) ≤ v(t), where v(t) = 1
tN

(1)
t (ax, ay, az)



. Since the random variables

N
(1)
t /t converge to 1/q0 in L1, this completes the proof of Lemma A.2.

B. Proof of Theorem 3.2. In this section, we provide the proofs for the results
given in section 3.3. In the following, for ease of presentation, it is convenient to
assume that M̃0 ∈ V̊ . The reader will have few difficulties in modifying the subsequent
arguments for the general case.

Lemma B.1. The processes M̊ and M̊ c have the same distribution.
Proof. It suffices to show that the conditional distribution of the random variable

M̊ c
n given M̊ c

1 , . . . , M̊
c
n−1 depends only on M̊ c

n−1 and equals the conditional distri-

bution of M̊n given M̊n−1. Since M̊ c
n−1 = M̃fac(n−1) and since M̊ c

1 , . . . , M̊
c
n−1 are

measurable with respect to M̃0, M̃1, . . . , M̃fac(n−1), we can further reduce the problem

to identifying the conditional distribution of M̊ c
n given M̃0, M̃1, . . . , M̃fac(n−1). More

precisely, we show

(B.1) P

(
M̊ c

n = s′ | M̃fac(n−1) = s, M̃fac(n−1)−1, . . . , M̃0

)
= p̊s,s′

for all i ∈ {1, . . . ,L}, s ∈ V̊ ∩Vi, and s′ ∈ V̊ \Vi. The strong Markov property implies
that the left-hand side of (B.1) equals the probability that the MJP M started at s
exits the corresponding superstate σ(s) via s′. But by definition, the latter probability
is just p̊s,s′ .

Next, we compare the asymptotic behavior of v̂cmc(t) and va,1(t).
Lemma B.2. It holds that P (limt→∞ v̂cmc(t)− va,1(t) = 0) = 1.

Proof. Let i ∈ {1, . . . , �̊} be arbitrary. From our assumption (see section 3.2.1)
that there exists s0 ∈ V ′

i such that δ(s, s0) ≤ min(ax, ay, az)/4 we deduce ds,s′ +
ds′,s′′ = ds,s′′ for all s, s

′, s′′ ∈ V ′
i . In particular,

(B.2) dM̊c
j ,M̊

c
j+1

=

fac(j+1)−1∑
n=fac(j)

d
M̃n,M̃n+1
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for all j ∈ {0, . . . , N̊ c
t − 1}, so that summing over j ∈ {0, . . . , N̊ c

t − 1} yields

v̂cmc(t) =
1

t

fac(N̊c
t )−1∑

n=0

d
M̃n,M̃n+1

+
1

t

Nt−1∑
n=fac(N̊c

t )

d
M̃n,M̃n+1

=
1

t

N̊c
t −1∑
n=0

dM̊c
n,M̊

c
n+1

+
1

t
d
M̃fac(N̊c

t )
,M̃Nt

,

where (B.2) has been used in the last equality. From M̃fac(N̊c
t )
, M̃Nt ∈ A we conclude

that |d
M̃fac(N̊c

t )
,M̃Nt

| ≤ ax + ay + az. Thus the assertion follows.

Finally, our last result concerns the comparison of the asymptotic behavior of N̊t

and N̊ c
t .

Lemma B.3. It holds that limt→∞ t−1(N̊t − N̊ c
t ) = 0 a.s.

Proof. This auxiliary result is proven by showing that both N̊t/t and N̊ c
t /t con-

verge a.s. to the same deterministic value 1/b, where

b =
∑
s∈V̊

μs

∑
s′∈V̊

p̊s,s′>0

p̊s,s′ τ̊s,s′ ,

and (μs)s∈V̊ denotes the stationary limit distribution of the Markov chain M̊ c. For

s, s′ ∈ V̊ with p̊s,s′ > 0 and n1, n2 ≥ 0 with n1 ≤ n2 we say that F = {n1, n1 + 1, . . . , n2}
forms an (s, s′)-excursion if M̃n1 = s, M̃n2+1 = s′, and M̃k ∈ σ(s) for all k ∈
{n1, . . . , n2}. The family of all (s, s′)-excursions is denoted by Fs,s′ . Similarly, for

s ∈ V̊ we put Fs =
⋃

s′∈V Fs,s′ . For n ≥ 0 and s, s′ ∈ V we write Fs,s′(n) for the set

of all F ∈ Fs,s satisfying F ⊂ {0, . . . , fac(n) − 1}. Furthermore, for n ≥ 0 and s ∈ V̊

we denote by Ns(n) = |{i ∈ {0, . . . , n} : M̊ c
i = s}| the number of visits in the state

s ∈ V̊ during the first n steps of the Markov chain M̊ c. Then

1 ≥ lim sup
t→∞

1

t

Nt−1∑
n=0

Tn

≥ lim sup
t→∞

N̊ c
t

t

∑
s∈V ′

Ns(N̊
c
t )

N̊ c
t

∑
s′∈V

p̊s,s′>0

|Fs,s′(N̊
c
t )|

Ns(N̊ c
t )

∑
F∈Fs,s′(N̊c

t )

∑
k∈F Tk

|Fs,s′(N̊ c
t )|

,

where in the second inequality we decompose the path of the particle into its (s, s′)-
excursions. Note that this inequality is strict if Mt is not an outer state. Next, we
determine the asymptotic behavior of the fractions appearing in the latter expres-
sion. As M̃ forms a Markov chain, for every s, s′ ∈ V̊ with p̊s,s′ > 0 the sequences

{(M̃k, Tk)}k∈F , F ∈ Fs,s′ are independent and identically distributed (iid). In par-
ticular, the random variables

∑
k∈F Tk, F ∈ Fs,s′ form iid copies of the time to

absorption of the particle started at s and conditioned to be absorbed in s′. Since
N̊ c

t → ∞ a.s. as t → ∞, the law of large numbers yields

P

⎛⎝ lim
t→∞

∑
F∈Fs,s′ (N̊c

t )

∑
k∈F Tk∣∣∣Fs,s′(N̊ c

t )
∣∣∣ = τ̊s,s′

⎞⎠ = 1.
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Similarly, for every s ∈ V̊ the sequences {M̃k}k∈F , F ∈ Fs are iid, and for every
s′ ∈ V , F ∈ Fs the indicator 1F∈Fs,s′ constitutes a Bernoulli random variable with
success probability p̊s,s′ . Therefore, another application of the law of large numbers
shows that

P

⎛⎝ lim
t→∞

∣∣∣Fs,s′(N̊
c
t )
∣∣∣

Ns

(
N̊ c

t

) = p̊cs,s′

⎞⎠ = 1.

Finally, an application of the ergodic theorem for the Markov chain M̊ c (see [19,
Theorem 1.10.2]) yields

P

(
lim
t→∞

Ns(N̊
c
t )

N̊ c
t

= μs

)
= 1.

Hence, we obtain lim supt→∞ N̊ c
t /t ≤ 1/b. Very similar arguments can be used to show

that lim inft→∞ N̊ c
t /t ≥ 1/b a.s., but for the convenience of the reader we provide some

of the details. Indeed, noting

1 ≤ lim inf
t→∞

1

t

Nt∑
n=0

Tn

≤ lim inf
t→∞

N̊ c
t + 1

t

∑
s∈V̊

Ns

(
N̊ c

t + 1
)

N̊ c
t + 1

∑
s′∈V

p̊s,s′>0

∣∣∣Fs,s′(N̊
c
t + 1)

∣∣∣
Ns

(
N̊ c

t + 1
) ∑F∈Fs,s′ (N̊c

t +1)

∑
k∈F Tk∣∣∣Fs,s′(N̊ c

t + 1)
∣∣∣

=
(
lim inf
t→∞ N̊ c

t /t
)
b

completes the proof of P(limt→∞ N̊ c
t /t = b−1) = 1. To show P(limt→∞ N̊t/t = 1/b) =

1 we may proceed similarly. Indeed, with probability 1,

1 ≥ lim sup
t→∞

1

t

N̊t−1∑
j=0

τ̊M̊j ,M̊j+1

≥ lim sup
t→∞

N̊t

t

∑
s∈V̊

Ns

(
N̊t

)
N̊t

∑
s′∈V

p̊s,s′>0

∣∣∣Fs,s′
(
N̊t

)∣∣∣
Ns

(
N̊t

) τ̊s,s′ ,

where in the second inequality we again decompose the path of the particle into its
(s, s′)-excursions. This yields P(lim supt→∞ N̊t/t ≤ 1/b) = 1. Finally,

1 ≤ lim inf
t→∞

1

t

N̊t∑
j=0

τ̊M̊j ,M̊j+1

≤ lim inf
t→∞

N̊t + 1

t

∑
s∈V̊

Ns

(
N̊t + 1

)
N̊t + 1

∑
s′∈V

p̊s,s′>0

∣∣∣Fs,s′
(
N̊t + 1

)∣∣∣
Ns

(
N̊t + 1

) τ̊s,s′ ,

so that P(lim inft→∞ N̊t/t ≥ 1/b) = 1.
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