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Abstract. – Novel static hybrid instabilities in smectic C liquid (SmC) crystal films are de-
scribed. The Frederiks transition, well known for nematic liquid crystals, also takes place
in smectic C layers, but here it is spatially periodic and coupled to undulations of the smectic
layer. The Helfrich–Hurault undulational instability, typical for smectic A liquid crystals, occurs
in SmC liquid crystals too, but the wave vector of the undulation of the layers is oblique
to the applied external field. In addition, this modified Helfrich–Hurault instability not only
involves layer undulations, but also contains deformations of the director field, which are typical
for the Frederiks transition. The coupled deformations depend on all three coordinate axis,
thus characterizing 3–dimensional patterns. There are parameter ranges, where both types
of static instabilities, which differ by the spatial wavenumber, compete with each other near
codimension–2 bifurcations.

Introduction. – Instabilities in liquid crystals have a long history and are very important
in liquid crystal displays, for studying material properties as well as for nonlinear physics
and pattern formation. Due to the additional liquid crystalline degrees of freedom they can
be driven out of equilibrium not only by temperature or pressure gradients, or by imposed
external flow, but also by external electric and magnetic fields. This allows for completely new
instability mechanisms as well as for complex instability scenarios even for the first instabilities.
The additional advantage of using free standing smectic liquid crystal films lies in their superior
visualization properties and to explore new geometries in the experimental setup. For a long
time instabilities in nematics on one hand, and those in smectic A on the other, have been
explored separately. The nematic instabilities comprise the static and technological important
Frederiks transition, a reorientation of the director under the influence of an external field, as
well as the dynamic shear and electroconvective instabilities. In smectics A the undulational
instability has found most interest, although others have also been considered. Of course,
for instance the Bénard, the Marangoni and the Taylor instabilities are already known in
simple liquids but they are modified and enriched by the additional liquid crystalline degrees
of freedom (examples, overviews and references can be found in [1]).
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Here we discuss theoretically the combined or hybridized instabilities of nematic and smectic
types. They can occur in systems that show both kind of crystalline degrees of freedom,
like smectic C or C∗ phases. A smectic C liquid crystal corresponds to a two–dimensional
nematic, if the layers are fixed. Here the standard nematic instabilities, Frederiks transition
and electroconvection, can be expected. In addition, rotating mechanical [2] and electrical
fields [3] give rise to interesting target and spiral wave patterns. In the chiralized version,
smectic C∗, an in–plane polarisation exists rendering the in–plane system ferroelectric–like.
If the twist (the polarization helix) is suppressed or negligible as in very thin films, the
polarisation exists globally and allows for new coupling effects to an external electric field.
This leads to new features in the Frederiks instability (like restabilization or hysteresis effects
[4]), in electroconvection to a subharmonic regime [5] and to target waves in a rotating electric
field [6, 7]. An external electric field can also undulate the layers due to the dielectric anisotropy
(Helfrich–Hurault effect [8]) and both, nematic and smectic–type of instabilities come together.
Due to the complexity of the equations involved to describe such hybridized instabilities this
analysis is mostly numerical [9]. In this work we focus on an approximate analytical description
of static instabilities neglecting electroconvection, which is an appropriate approach for clean
samples (without free charges), for high frequencies of the driving field or for samples with a
large negative electric conductivity anisotropy.

Basic Equations. – In liquid crystals a few continuous symmetries are spontaneously
broken and the related hydrodynamic fields are used as additional macroscopic degrees of
freedom [10]. In the nematic phase the rotational symmetry is spontaneously broken due to
the orientational ordering of the molecules. The preferred mean direction is described by the
director field n̂(r, t), with the constraint n̂2 = 1 and the symmetry n̂ = −n̂. In smectic liquid
crystals there is in addition a spontaneously broken translation symmetry along one direction
leading to a layered structure with a the density modulation along the layer normal k̂(r, t)
(| k̂ |= 1). Within the layers a smectic A phase is like an isotropic liquid and with the ’phase’
variable φ(r, t) the layers are numbered (it is integer in the middle of each layer). The true
equilibrium state consists of flat, equidistant layers, where the layer normal k̂ is parallel to
the z-axis and φflat = z. For small deformations of flat layers it is convenient to introduce a
displacement field (along the layer normal) u(r, t), by φ = z−u. Rotations of the layer normal
δk̂ are then related to transverse gradients of the displacement u in linear order by

δk̂i = −(δij − k̂ik̂j)∇ju . (1)

In the smectic C phase (SmC) the director is tilted with respect to the layer normal

cos ψ = k̂ · n̂ = const. ↔ k̂ · δn̂ − n̂ · δk̂ = 0. (2)

Thereby rotational symmetry within the layers is spontaneously broken and SmC is biaxial.
Thus SmC combines both, a smectic degree of freedom (u) and one that is nematic-like [10],

n3 = p̂ · δn̂ with p̂ =
n̂ × k̂

|n̂ × k̂| (3)

and which describes rotations of the director about the layer normal (thus conserving the tilt
angle ψ). In Fig. 1 the geometry is illustrated. The external electric field, E = p̂E0, is applied
perpendicular to both, the undistorted layer normal and the undistorted director.

Static distortions of the SmC structure subject to an external field are given by the free
energy density [11, 12, 13]

f = −1
2

ε1 (E · n̂)2 − 1
2

ε2 (E · k̂)2 − 1
2

ε3 E2 − ε4 (E · n̂)(E · k̂) +
1
2

Fij (∇in3)(∇jn3)
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+
1
2

B (∇zu)2 +
1
2

Tijkl (∇i∇ju)(∇l∇ku) + Cijk(∇in3)(∇j∇ku) , (4)

where the first four terms describe the dielectric coupling of the field to both, the layer normal
and the director. The next term gives the orientational-elastic (generalized Frank) energy. In
the second line there is the elastic distortion energy due to layer compression as well as layer
bending and the static cross-couplings between director and layer distortions. According to
the triclinic symmetry of smectics C, the material tensors Fij , Tijkl, Cijk contain 4 (F11, F22,
F33, F13), 6 (C1,...,C6), and 9 (T1,...,T9) coefficients, respectively. The explicit form of the
tensors can be found in [13], whereby the Fij are generalized elastic Frank constants [11].

smectic film

micro electrode setup

fixed holders

moveable holders
-director

Fig. 1. – Sketch of the geometry in the undistorted state. The ĉ-director is the projection of n̂ onto
the layers. In the undistorted state n3 = 0.

Stationary states are those that minimize eq. (4) for a given external field E0. The linearized
conditions for the extrema are(

ε1E
2
0 + F11∂

2
y + F22∂

2
x + F33∂

2
z + 2F13∂z∂y

)
n3 = (5)(

ε̃1E
2
0 − C̃1∂z∂y − C2∂

2
y − C̃3∂

2
z − C6∂

2
x

)
∂xu ,

( − ε̃1E
2
0 + C̃1∂y∂z + C2∂

2
y + C̃3∂

2
z + C6∂

2
x

)
∂xn3 =

(
− ε̃2E

2
0∂2

x + B∂2
z − T1∂

4
z (6)

−T2∂
4
y − T3∂

4
x − 6T4∂

2
x∂2

z − 2T6∂
2
y∂2

z − 2T5∂
2
y∂2

x − 4
(
3T7∂

2
x + T9∂

2
y + T8∂

2
z

)
∂z∂y

)
u ,

which will be solved for special cases in the following. We use the abbreviations C̃3 = C3+2C5,
C̃1 = 2(C1 + C4) and the effective dielectric anisotropies ε̃2 = ε2 + 2ε4 cos ψ + ε1 cos2 ψ and
ε̃1 = ε1 cos ψ + ε4.

Boundary conditions. – We consider a smectic film confined between z = ±d/2 either by
two rigid plates or by air (free standing film). Accordingly, n3 and u are fixed (”rigid” boundary
conditions), or their thermodynamic conjugate force is zero (”free” boundary conditions). As
indicated in Fig. 1, the electric field between the two electrodes (at x = ±Lx/2) is along the
x-direction. The electrodes can be in direct contact with the film (rigid b.c.) or separated
by air (free b.c.). In any case, if the director or the layers are deformed periodically, the
wavenumbers are discrete with characteristic step width of π/d and π/Lx for kz and kx,
respectively. However, we will assume rather thin films and large electrode spacing, d ¿ Lx,
such that the minimally possible kxc ∼ L−1

x is small and kx is (almost) continuous on the scale
set by the minimal kzc ∼ d−1. The y-direction is assumed to be infinite, so any distortion
along that direction can show a continuous wave vector ky.
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Frederiks transition. – The anisotropies in the dielectric (and diamagnetic) susceptibilities
lead to an orientation of the nematic director in external fields. In thin cells the competition
between this field–driven orientation and the director orientation induced by container bound-
aries leads to the so–called Frederiks transition, which is well known since the early days of
liquid crystals research [12, 14]. This orientational transition is crucial for the functioning of
modern liquid crystal displays [15]. In order to see how the reduced symmetry of the smectic
C phase (compared to nematics) can influence the Frederiks transition, we will assume, for the
moment, fixed layers (u ≡ 0 with Ci = 0 = ε̃1). In that case eq. (5) reduces to(

F11 ∂2
y + F22 ∂2

x + F33 ∂2
z + 2F13 ∂z ∂y + ε1E0(t)2

)
n3 = 0 . (7)

This equation reflects the reduced symmetry of the SmC phase, requiring that all equations
are invariant under the replacement x → −x, but only under the combined replacement
(y, z) → (−y,−z).

Considering the stability of the ground state n3 = 0 we make the mode ansatz according to
the triclinic symmetry SmC liquid crystals

n3 =
[
n3,c cos(kyy) cos(kzz) + n3,s sin(kyy) sin(kzz)

]
cos(kxx) . (8)

Ansatz (8) leads to the wavenumber dependent expression for the critical electric field

E2
fred ± =

1
ε1

(
F11k

2
y + F22k

2
x + F33k

2
z ± 2F13kykz

)
. (9)

The true threshold is found by minimizing (9) with respect to ky and kx. This leads to the
critical wavenumber kyc = ±kzc F13/F11, where kzc = O(π/d) due to the boundary conditions
at the top and the bottom of the film. For kx the minimum value would be zero, but the
finite electrode spacing requires kxc = π/Lx for fixed boundary conditions. For the geometry
considered (d ¿ Lx) kxc ¿ kzc the threshold field is then given by

E2
fred,c =

1
ε1

π2

d2
z

(
F33 − F 2

13

F11

)
+

1
ε1

π2

L2
x

F22 (10)

where the second contribution is negligible for d/Lx → 0. This (almost) 2-dimensional solution
is due to the reduced symmetry in SmC allowing for a non-zero coefficient F13 unknown in
nematics (with F33F11 −F 2

13 > 0 for thermodynamic reasons). But (8) does not exactly fit the
boundary conditions at the top and the bottom (neither fixed nor free ones), therefore formula
(10) only gives the right order of magnitude of the threshold. In addition the approximation
of fixed layers (all cross–couplings to undulations omitted) is used in this section but essentials
features of Frederiks instability survive cross–coupling as described below.

Undulations. – In the opposite special case the director is kept fixed (i.e. n3 = 0) but the
layers can be distorted. An external field tends to reorient the layer normal according to the
dielectric anisotropy. Since the layers cannot rotate homogeneously, they undulate and create
regions, where the layer normal is rotated. This is the so–called Helfrich–Hurault instability
[8] in SmA, which happens if the electric field is strong enough to overcome the elastic and
orientational–elastic energy involved. Neglecting the coupling with n3 (i.e. Ci = 0 = ε̃1) the
state is determined by eq. (4). Using a simplified two-mode ansatz for u similar as for n3 in
eq. (8), the threshold condition for undulations as it follows from eq. (6) is of the form

E2
und± =

1
k2

x ε̃2

[
Bk2

z + T1k
4
z + T2k

4
y + T3k

4
x + 6T4k

2
xk2

z + 2T6k
2
yk2

z + 2T5k
2
xk2

y

±4
(
3T7k

2
x + T9k

2
y + T8k

2
z

)
kykz

]
. (11)
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Fig. 2. – Neutral curves as function of the wavenumber kx for different solutions: The dashed line
shows Eund−(kx) for eq. (11), the dash-dotted line Efred−(kx) for eq. (9), while the upper and lower
solid lines show Ehyb±2(kx) of eq. (15), respectively. The following parameters have been used:
ky = kz = 0.8, F11 = 1, F22 = 0.4, F33 = 3, F13 = 1, Ci = 0.5, Ti = 1, ε1 = 0.06, ε2 = 1,
ε4 = 0.

− 2

0

2

− 8 − 6 − 4 − 2 0 2 4 6 8

wavenumber k x

w
av

en
um

be
r

k
y

Fig. 3. – The neutral surface Ehyb(kx, ky) according to equation (15) is shown; in particular
Ehyb−2(kx, ky) for ky > 0 and Ehyb−1(kx, ky) for ky < 0 (kz = 0.8), which show three minima
each (inside the circles). The material parameters are as in Fig. 2.

The expression E2
und− corresponds to the lower threshold and has generally four minima

with different (nonzero) values for the wavenumber components kxc and kyc. This four–fold
degeneracy is similar to the oblique–roll instability in electroconvection in nematics [16, 1],
although in the latter system the different spatial patterns are due to a spontaneous symmetry
breaking at the threshold, while in the present system they are due to the SmC symmetry. The
corresponding patterns are the two independent real modes cos(kxc1,2x+kyc1,2y+φ1,2) cos(kzz),
which depend on all three spatial dimensions. A graphical representation of E2

und−(kx) is shown
by the dashed line in Fig. (2).

Hybrid Instabilities. – In the two preceding sections we have discussed the two instability
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mechanisms individually by setting the cross–coupling terms in the free energy expression to
zero. Lifting these artificial constraints the two degrees of freedom are coupled and the appro-
priate instabilities get hybridized. That means in smectic C liquid crystals the undulational
instability is no longer a matter of layer deformations only, but is also accompanied by director
reorientations and, vice versa, the Frederiks instability involves layer deformations, too.

In order to get realistic threshold conditions one may expand the two fields u and n3 into
a set of functions that match the boundary conditions. The threshold condition that arises
after an appropriate truncation of such an expansion usually is too high in dimension as to be
treated analytically, but standard methods are available. These numerical results (including
dynamic aspects) [9] will be reported elsewhere. However, it turns out that a much simpler
ansatz of two modes for each variable, cf. eq.(8), already covers the main features of the
SmC symmetry including the cross–coupling and the main results qualitatively, although the
boundary conditions are again not taken into account exactly. Inserting such a 2x2-mode
ansatz into eqs. (5,6) results in four homogeneous coupled equations and therefore in the
implicit threshold condition for E2

0

∆(f)
+ ∆(f)

− ∆(u)
+ ∆(u)

− + S2
+S2

− − S2
+∆(f)

− ∆(u)
− − S2

−∆(f)
+ ∆(u)

+ = 0 (12)

with

∆(f)
± = ε1(E2

0 − E2
fred±) , ∆(u)

± = ε̃2k
2
x(E2

0 − E2
und±) , and S± = kxε̃1(E2

0 + Ĉ±) , (13)

where E2
fred± and E2

und± are given by eq. (9) and (11), respectively, and where

Ĉ± = C2k
2
y + C̃3k

2
z + C6k

2
x ± C̃1kykz . (14)

Eq. (12) has the solutions S2
± = ∆(f)

± ∆(u)
± which can be solved for the threshold fields of the

hybrid instabilities (ε̄2 ≡ ε1ε̃2 − ε̃21 = ε1ε2 − ε24)

E2
hyb±1,2 =

1
2ε̄2

[
G1,2 ± (G2

1,2 − 4ε̄2H1,2)1/2
]

(15)

with

G1,2 = ε1ε̃2
(
E2

fred± + E2
und±

)
+ 2ε̃1Ĉ± and H1,2 = ε1ε̃2E

2
fred±E2

und± − ε̃21Ĉ
2
± , (16)

where the subscripts {1,2} refer to the {upper, lower} signs in the subscripts of E2
fred, E2

und

and Ĉ. Due to the coupling the thresholds for undulations (dashed line in Fig. 2) and for
director distortions (dash–dotted line in Fig. 2) are replaced by the threshold of the hybrid
instabilities (solid lines in Fig. 2 for Ehyb±2). The threshold for the lowest branch Ehyb−2 (for
ky > 0) and Ehyb−1 (for ky < 0) is shown as a function of the wavenumbers kx and ky in Fig. 3.
According to this hybridization there is now a certain parameter range where six minima of
Ehyb−1,2 are degenerated and have the same value as indicated in Fig. 3. Hence, there may
be a competition between the three related modes ∝ Aund1,2 cos(kxc1,2 + kyc1,2y + φund1,2) or
∝ Bfred cos(kyc3y+φfred). However, only their nonlinear interaction beyond threshold decides
about a competition or a possible coexistence, whereby in the latter case interesting patterns
may occur beyond threshold. The branch Ehyb+1 is not displayed, which leads always, similar
as Ehyb+2, to higher thresholds than the lowest ones shown in Fig.3.

Conclusion. – We have discussed theoretically the hybridization of the electrical field
driven Frederiks and undulation instabilities in smectic C liquid crystal films. Both types of
instabilities mix director reorientation and layer undulations. Nevertheless essential features of
each instability survive the hybridization as indicated in Fig. 2. In SmC both instabilities now
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occur simultaneously accompanied by a competition between each other near codimension–2
points, which may give rise to interesting patterns beyond threshold. The patterns obtained
by linear stability analysis are 3–dimensional reflecting the low symmetry of SmC phases. Our
analytical treatment with a simplified 4–mode ansatz covers the SmC symmetry and leads to a
qualitatively correct picture when compared to a multi–mode approach (with correct boundary
conditions) that has to be solved numerically [9]. The advantage of this truncated ansatz is
that it allows to write down analytically the qualitatively correct threshold, which is of great
value for further exploration of the huge parameter space.

We have omitted the possibility of layer buckling, where the film as a whole is bent
transversely (in contrast to undulations, where the first and last, or the middle, layer is kept
flat). This is justified for fixed boundaries at the top and bottom (which sometimes is realized
in systems having a more complicated structure than SmC in the first and last layers). For
truly free standing films, this instability type can also take part in the hybridization [9], but
for a large parameter range it does not change the general picture described here. We have
also refrained, for lack of space, from discussing electro-hydrodynamic instabilities within the
layers. They also show 3-dimensional flow and director patterns [9], but are relevant only for
dirty systems (carrying charges) with positive (or only moderate negative) electric conductivity
anisotropy.
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