Confined Polymers in a Strip
 Hsiao-Ping Hsu and Peter Grassberger
 John-von-Neumann Institute for Computing, Forschungszentrum Jülich, Germany

Model

Single polymers confined inside a strip in 2D $=$ Self-avoiding random walks (SAW) on a square lattice between two parallel hard walls with width D

Algorithm: PERM

- PERM $=$ Pruned-enriched Rosenbluth method (P. Grassberger, Phys. Rev. E56, (1997) 3682.)
- Chain growth algorithm: polymer chains are built like random walks by adding one monomer at each step
- Depth-first implementation
- Rosenbluth like bias for self-avoidance with k-step Markovian anticipation \Rightarrow weighted sample
- Partition sum estimate: $\hat{Z}_{n}=M_{n}^{-1} \sum_{\alpha=1}^{M_{n}} W_{n}(\alpha)$ $W_{n}=\prod_{n^{\prime} \leq n} w_{i_{n^{\prime}}}$ is the total weight of a chain of length n and $w_{i}=1 / p_{i}$ is the weight factor
- Population control: compare the current weight W_{n} with the thresholds W_{n}^{+}and W_{n}^{-} IF $W_{n}>W_{n}^{+}$clone!
IF $W_{n}<W_{n}^{-}$prune! (with 50\% probability)

k-step Markovian anticipation

- An additional bias based on the statistics of sequences of $k+1$ successsive steps.
- A sequence of $k+1$ steps:
$\mathbf{S}=\left(s_{-k}, \ldots s_{0}\right)=\left(\mathbf{s}, s_{0}\right), s=0, \ldots 2 d-1$
(d-dimensional hypercubic lattice)
- Ideal bias in k-step Markovian anticipation $p\left(s_{0} \mid \mathbf{s}\right)=P_{N, m}\left(\mathbf{s}, s_{0}\right) / \sum_{s_{0}^{\prime}=0}^{2 d-1} P_{N, m}\left(\mathbf{s}, s_{0}^{\prime}\right)$ with $N \gg m \gg 1$ and $P_{N m}\left(\mathbf{s}, s_{0}^{\prime}\right)$ is the statistical weight of all N-step chains in an unbiased sample that had followed the sequence S during steps $N-m-k, \ldots, N-m$

Results

- Finite $D: Z_{N} \approx\left(\mu_{D}\right)^{-N}$
- Scaling law of fugacity μ : $\left(\mu_{D}-\mu_{\infty}\right) \sim a D^{-1 / \nu}$,
$\mu_{\infty} \approx 0.37905228$ and $a \approx 0.737$
- Relationship between density $\rho(y)$ (normalized to $\sum_{y} \rho(y)=1$) and force $f=\frac{k_{B} T}{N} \frac{\partial \ln Z_{N}}{\partial D}$ (per monomer)

$$
\lim _{y \rightarrow 0} k \rho(y) / y^{1 / \nu}=B f / k_{B} T=\frac{4}{3} B \frac{a}{\mu_{\infty}} D^{-1-1 / \nu}
$$

Here $k=R_{x}^{1 / \nu} / N \approx 0.5299$ (SAW on square lattice) and B is a universal number, $B=2$ (ideal chains) and $B \approx 2\left(1-b_{1} \epsilon\right)$ (chains with excluded volume, $\left.\epsilon=4-d, b_{1}=0.075\right)$ (E. Eisenriegler, Phys. Rev. E 55, (1996) 3116)

- Simulations: $B \approx 2.12(1)$

- As $N \rightarrow \infty$, curve of $\langle x\rangle / N$ becomes horizontal
. Scaling law of $\langle x\rangle / N:<x>/ N \sim D^{-1 / 3}$
- Scaling law of \# of wall contacts / unit length: $\rho_{b} \sim D^{-2}$

- Probability density that chain end is at the distance y from wall:
$D \rho_{\text {end }} \propto \sqrt{y / D(1-y / D)}$ near the wall

