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Introduction
Polymer: a long molecule consisting of many similar or identical
monomers linked together
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Introduction
Polymer: a long molecule consisting of many similar or identical
monomers linked together

Characteristics of a linear polymer chain in dilute solution:

Coil-globule transition at Θ-point
ν = 1/2, Flory exponent

R   ~ NN
1/d

repulsion, entropy attraction

Τ > Θ Τ < Θ

R   ~ NN
ν , ν > 1/2

(poor solvent)(good solvent)
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Introduction
Polymer: a long molecule consisting of many similar or identical
monomers linked together

Characteristics of a linear polymer chain in dilute solution:

In the thermodynamic limit

Partition sum:

Radius of gyration: Rg ∼ Nν (chain length N → ∞)

µ∞(T ): critical fugacity, γ: entropic exponent, s = (d − 1)/d

in d dimension, b > 1, ν: Flory exponent

(good solvent)Τ > Θ (poor solvent)Τ < Θ
repulsion, entropy attraction

Z ∼
{

µ∞(T )−NNγ−1 at T > TΘ

µ∞(T )−NbNs

Nγ−1 at T < TΘ
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Algorithm: Pruned-Enriched Rosenbluth Method

partition sum, scaling behavior, phase transition, ...

P. Grassberger, Phys. Rev. E 56, 3682 (1997)

Polymer simulations with PERM I – p. 3



Algorithm: Pruned-Enriched Rosenbluth Method

Applications of PERM:

partition sum, scaling behavior, phase transition, ...

P. Grassberger, Phys. Rev. E 56, 3682 (1997)

R ~ NN
1/dν > 1/2R ~N

νN  ,(good solvent,                      ) 
Τ > Θ Τ < Θ

(poor solvent,              )   

AttractionEntropy

D = 40,   l   = 6,    N   = 5000p b

D

R

−F

F
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Statistical thermodynamics
Partition sum for a canonical ensemble in thermal equilibrium

β = 1/kBT , T : temperature (fixed)

E(α): the corresponding energy for the αth configuration

Q(α)/Z: the Gibbs-Boltzmann distribution

Q(α): the Boltzmann weight

How to estimate the partition sum Z(β) precisely?

Z(β) =
∑

α

Q(α) =
∑

α

exp(−βE(α))
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Statistical thermodynamics
Partition sum for a canonical ensemble in thermal equilibrium

If M configurations are independently chosen according to a
randomly chosen probability p(α) (a bias),

with modified weights W (α) = Q(α)/p(α)

Z(β) =
∑

α

Q(α) =
∑

α

exp(−βE(α))

Z(β) = lim
M→∞

Ẑ

[

=
1

M

M
∑

α=1

Q(α)/p(α) =
1

M

M
∑

α=1

W (α)

]
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Statistical thermodynamics
Partition sum for a canonical ensemble in thermal equilibrium

If M configurations are independently chosen according to a
randomly chosen probability p(α) (a bias),

with modified weights W (α) = Q(α)/p(α)

Z(β) =
∑

α

Q(α) =
∑

α

exp(−βE(α))

Z(β) = lim
M→∞

Ẑ

[

=
1

M

M
∑

α=1

Q(α)/p(α) =
1

M

M
∑

α=1

W (α)

]

Using p(α) ∝ exp(−βE(α)) [Gibbs sampling]

⇒ W (α) = const “importance sampling”

⇒ each contribution to ẐM has the same weight
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Statistical thermodynamics
Partition sum for a canonical ensemble in thermal equilibrium

If M configurations are independently chosen according to a
randomly chosen probability p(α) (a bias),

with modified weights W (α) = Q(α)/p(α)

For any observable A:

Z(β) =
∑

α

Q(α) =
∑

α

exp(−βE(α))

Z(β) = lim
M→∞

Ẑ

[

=
1

M

M
∑

α=1

Q(α)/p(α) =
1

M

M
∑

α=1

W (α)

]

〈A〉 = lim
M→∞

〈A〉M = lim
M→∞

∑M
α=1 A(α)W (α)
∑M

α=1 W (α)
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Coarse-grained model
A linear polymer chain of (N +1) monomers in an implicit solvent
“=” an interacting self-avoiding walk (ISAW) of N steps on a simple
(hyper-) cubic lattice of dimensions d

Monomers are supposed to sit
on lattice sites, connected by
bonds of length one (| ~ℓb |= 1)

Multiple visits to the same site are
not allowed (excluded volume effect)

Attractive interactions (energies ǫ < 0)
between non-bonded monomers occupying
neighboring lattice sites are considered

non−bonded
nearest−neighbor pair
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Coarse-grained model
A linear polymer chain of (N +1) monomers in an implicit solvent
“=” an interacting self-avoiding walk (ISAW) of N steps on a simple
(hyper-) cubic lattice of dimensions d

Partition sum:

with q = exp(−βǫ), β = 1/kBT

q: the Boltzmann factor, ǫ < 0

T : temperature (solvent quality)
m: total number of non-bonded nearest neighbor pairs

As T → ∞, q = 1 ⇒ SAW (good solvent)

non−bonded
nearest−neighbor pair

ZN(q) =
∑

walks

qm
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Algorithm: PERM
Pruned-Enriched Rosenbluth Method

Chain growth algorithm with Rosenbluth-like bias

Resampling (“population control”)

Depth-first implementation

Rosenbluth-Rosenbluth method, J. Chem. Phys. 23, 356 (1959)

Enrichment algorithm, J. Chem. Phys. 30, 637 (1957); 30, 634 (1959)
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Algorithm: PERM
Pruned-Enriched Rosenbluth Method

Chain growth algorithm with Rosenbluth-like bias

Resampling (“population control”)

Depth-first implementation

Rosenbluth-Rosenbluth method, J. Chem. Phys. 23, 356 (1959)

Enrichment algorithm, J. Chem. Phys. 30, 637 (1957); 30, 634 (1959)
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method

Initial configuration

Polymer simulations with PERM I – p. 7



Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method

end flip
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method

corner flip
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method

pivot rotation
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method Chain growth algorithm

Step 0
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method Chain growth algorithm

Step 1
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method Chain growth algorithm

Step 2
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method Chain growth algorithm

Step 3
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method Chain growth algorithm

Step 10
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Chain growth algorithm:

Polymer chains of length N are built like random walks by
adding one monomer at each step

Self-avoiding walks (SAW) in d = 2

Conventional Monte Carlo method Chain growth algorithm

Step 11
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Rosenbluth-like bias for self-avoidance:
a wide range of probability distributions (pn) can be used for
choosing the way to go at each step n

Polymer simulations with PERM I – p. 8



Rosenbluth-like bias for self-avoidance:
a wide range of probability distributions (pn) can be used for
choosing the way to go at each step n

Rosenbluth bias: the selection probability pn = 1/nfree

(each nearest-neighbor free sites is chosen at equal probability)

nfree: # of free nearest-neighbor sites

WN = WN−1wN =
N
∏

n=0

wn =
N
∏

n=0

1

pn

=
N
∏

n=0

nfree

occupied by monomers
nW

Step 0: Step 1: Step 2: Step 3: Step 4:

W  = 1 1 0 W  = 1x4 2W  = 1x4x3 3W  = 1x4x3x3 4W  = 1x4x3x3x2

Each configuration carries its own weight nearest neighbor free sites

e.g. 2D SAW
(q=1)
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⇒ Estimate the partition sum directly at the step n

Wn(α): total weight for the αth configuration at the step n

Mn: total number of configurations

Zn ≈ Ẑn =
1

Mn

Mn
∑

α=1

Wn(α)

Polymer simulations with PERM I – p. 9



⇒ Estimate the partition sum directly at the step n

Wn(α): total weight for the αth configuration at the step n

Mn: total number of configurations

The estimate for any physical observable A:

Zn ≈ Ẑn =
1

Mn

Mn
∑

α=1

Wn(α)

〈A〉n =

∑Mn

α=1 A(α)Wn(α)
∑Mn

α=1 Wn(α)

Wn =

n
∏

i=1

wi , wi =

n
∏

i=1

qmn/pn (ISAW)
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Population control: Two thresholds W +
n and W −

n

(overcome attrition nfree = 0, reduce the fluctuation of weight Wn)

In the original Rosenbluth-Rosenbluth method

e.g. SAW "simple sampling"

WN =
N
∏

0

nfree

If nfree = 0 (“attrition”) → the walk is killed

If N ≫ 1 → huge fluctuations of the full weight
(The total weight is dominated by a single configuration)

Polymer simulations with PERM I – p. 10



Population control: Two thresholds W +
n and W −

n

(overcome attrition nfree = 0, reduce the fluctuation of weight Wn)

W +
n = C+Ẑn and W −

n = C−Ẑn, C+/C− ∼ O(10)

nW  −> W  /k
k

Cloning !

Step n Step n+1 r: random number

If  W   > W

nIf  W   < Wn
−

r < 1/2 Pruning !

n n
+

n

r >= 1/2 n nW  −> W x 2
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Population control: Two thresholds W +
n and W −

n

(overcome attrition nfree = 0, reduce the fluctuation of weight Wn)

3
+

3If  W   > W

(2 copies)

Cloning!

Step 3
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Population control: Two thresholds W +
n and W −

n

(overcome attrition nfree = 0, reduce the fluctuation of weight Wn)

3
−

Pruning!

( r < 1/2 )

Growing
( r >= 1/2 )

3If  W   < W

Step 3

Polymer simulations with PERM I – p. 10



Depth-first implementation:

Last-in first-out stack

Only a single configuration is stored during the run

Configurations generated within a tour are correlated

Different tours are uncorrelated

path 5 path 4 path 3path 2 path 1 path 6 

W   > 3 W
W   > 2 W +

66

W   < W , r < 1/288
−

W   < W , r >= 1/21010
−

n=N

(0<r<1, random number)

n=0

1 tour

+
33

Polymer simulations with PERM I – p. 11



Reliability of DATA:

Compare the distribution P (ln W ) of logarithms of tour
weights W with the weighted distribution WP (ln W )

0

2000

4000

6000

8000

10000

12000

-12 -10 -8 -6 -4 -2 0 2
ln W

P(ln W)
W P(ln W)

reliable !

0

200

400

600

800

1000

1200

1400

-20 -15 -10 -5 0 5
ln W

P(ln W) W P(ln W)

unreliable !
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Self-avoiding walks ind = 3
In the thermodynamic limit, N → ∞

Partition sum: ZN ∼ µ−N
∞

Nγ−1

Critical fugacity µ∞:
µ∞ = 0.213491(4)

(exact enumerations)
MacDonald et al. J. Phys. A33, 5973 (2000)

µ∞ = 0.2134910(3)

(Monte Carlo simulations)
Grassberger et al., J. Phys. A 30, 7039 (1997)

Entropic exponent γ:
γ = 1.1575(6) (Monte Carlo simulations)
Caracciolo et al., Phys. Rev. E 57, R1215 (1998)

 0.15
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 0.19

 0.2

 10  100  1000  10000

ln
 Z

N
 -

 (
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1)
 ln

 N
 +

 N
 ln

 a

N

a=µ∞+0.00000008
a=µ∞=0.21349094
a=µ∞- 0.00000008
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Self-avoiding walks ind = 3
In the thermodynamic limit, N → ∞

Partition sum: ZN ∼ µ−N
∞

Nγ−1

Mean square end-to-end distance:
R2

N = 〈(
∑N

j=1 ~aj)
2〉 ∼ N2ν

ν = 0.58765(20)

(Monte Carlo simulations)
Hsu & Grassberger

J. Chem. Phys. 120, 2034 (2004)

Macromolecules 37, 4658 (2004)
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Θ-polymers
Model: Interacting self-avoiding walk (ISAW)

Partition sum:

R   ~ NN
1/d

repulsion, entropy attraction

Τ > Θ Τ < Θ

R   ~ NN
ν , ν > 1/2

(poor solvent)(good solvent)

ZN(q) =
∑

walks

qm , q = e−βǫ

non−bonded
nearest−neighbor pair

Coil-globule transition at Θ-point
ν = 1/2, Flory exponent
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Θ-polymers
Model: Interacting self-avoiding walk (ISAW)

Rescaled mean square end-to-end distance R2
N/N

R2
N/N = const ×

(

1 − 37

363 ln N

)

 1

 2

 3

 10  100  1000  10000  100000

R
2 N

 / 
N

N

q = 1.300  
q = 1.305  
q = 1.3087
q = 1.310  
q = 1.315  

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1

R
2 N

 / 
N

1 / ln N

q = 1.300  
q = 1.305  
q = 1.3087
q = 1.310  
q = 1.315  

Theoretical prediction (field theory)
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Stretching collapsed polymers
under poor solvent conditions

Model: Biased interacting self-avoiding walk (BISAW)

Partition sum:

~F = F x̂: stretching force

x: end-to-to end distance in the stretching direction

m: # of non-bonded nearest-neighbor (NN) pairs

−F

F

−F

F

nearest−neighbor pair
non−bonded

ZN(q, b) =
∑

walks

qmbx , (q = e−βǫ, b = eβaF , a = 1)
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Algorithm: PERM

Poor solvent condition: choosing q = 1.5,
(q > qΘ, qΘ = exp(−β/kBTΘ) ≈ 1.3087(3))

Biased samplings: each step of a walk is guided to the
stretching direction with higher probability, i.e.,

The corresponding weight factor at the nth step is

mn: # of non-bonded NN pairs of the (n + 1)th monomer
∆xi: displacement ((~rn+1 − ~rn) · x̂), ∆xi = 0, 1, or −1

Two thresholds: W +
n = 3Ẑn and W −

n = Ẑn/3

p+x̂ : p−x̂ : p±ŷ or ±ẑ =
√

b :
√

1/b : 1

win =
qmnb∆xi

pi

Polymer simulations with PERM I – p. 16



Average displacement〈x〉
Transition point bc = exp(βaFc)

(b < bc) collapsed phase ⇔ stretched phase (b > bc)

1.60 < bc < 1.65 finite-size effects?
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Average displacement〈x〉
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Average displacement〈x〉
Transition point bc = exp(βaFc)
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Average displacement〈x〉
Transition point bc = exp(βaFc)
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Average displacement〈x〉
Transition point bc = exp(βaFc)

(b < bc) collapsed phase ⇔ stretched phase (b > bc)

1.60 < bc < 1.65 finite-size effects?
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First-order phase transition
Histogram of x: Pq,b(m, x) =

∑

walks qm′

bx′

δm,m′δx,x′

Reweighting histograms:
Pq′,b′(m, x) = Pq,b(m, x)(q′/q)m(b′/b)x
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Polymers in confining geometries

D

D

D

A slit of width D:

Two parallel hard walls separated by a distance D:

A tube of diameter D:

d = 2 → d = 1

d = 3 → d = 2

d = 3 → d = 1
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K-step Markovian anticipation
The (k+1)th step of walk is biased by the history of the previous k steps

A walk on a d-dimensional hypercubic lattice

All possible moving directions at each step i:
si = 0, . . . , 2d − 1

A sequence of (k + 1) steps:
(all possible configurations)

S = (s−k, . . . , s−1, s0) = (s, s0)

s: configurations of the previous k steps
s0: configurations of the k + 1th step

4

3

2
1

0

5

1

2 0

3

d = 2 d = 3
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The bias in k-step Markovian anticipation for the next step

Hm(s, s0): sum of all contributions to Ẑn+m of
configurations that had the same sequence S = (s, s0)

during the steps n − k, n − k + 1, . . ., and n

Hm(s, s0)/H0(s, s): measuring how successful
configurations ending with S were in contributing to the
partition sum m step later

Accumulating histograms at step n and at step n + m

(e.g. n > 300, m = 100)

P (s0 | s) =
Hm(s, s0)/H0(s, s0)

∑2d−1
s′
0=0 Hm(s, s′

0)/H0(s, s′
0)
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The bias in k-step Markovian anticipation for the next step

P (s0 | s) =
Hm(s, s0)/H0(s, s0)

∑2d−1
s′
0=0 Hm(s, s′

0)/H0(s, s′
0)

0

1

2

3

S = 8s + s  x 40

0s  = 0, 1, 2, 3

+ 0 x 4  + 1 x 4  + 1 x 45 6 7

k = 8 

s = 1 + 0 x 4 + 1 x 4  + 0 x 4  + 3 x 4
2 3 4

“Two-dimensional self-avoiding walks on a cylinder”

Frauenkron, Causo, & Grassberger, Phys. Rev. E 59, R16, (1999)
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Polymers confined in a tube
The confinement/escape problem of polymer chains confined
in a finite cylindrical tube

Polymer translocation through pores in a membrane

DNA confined in artificial nanochannels

Hsu, Binder, Klushin, & Skvortsov

Phys. Rev. E 76, 021108 (2007); 78, 041803 (2008)

Macromolecules 41, 5890 (2008)

Aksimentiev et al, Biophysical Jouranl 88, 3745 (2005)

Polymer simulations with PERM I – p. 22



Fully confined polymer chains
Polymer chains of size N in an imprisoned state

Total number of monomers: N = gnb

End-to-end distance: Rimp = nb(2rb) = nbD || tube

within a blob, D = agν = 2rb , ν = 0.588 (3DSAW)

⇒ Rimp/a = N(D/a)1−1/ν

Free energy: Fimp = nb[kBT ] = N(D/a)−1/ν

D

rb

g monomers

bn   "blobs"
Blob picture:
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Simulations
Model: Self-avoiding random walks on a simple cubic lattice

Monomers are forbidden to sit on
{1 ≤ x ≤ L, y2 +z2 = D2/4} and {x = 0, y2 +z2 = D2/4}

Algorithm: PERM with k-step Markovian anticipation

weak confinement regime ↔ strong confinement regime

L

D x

D

y

z

1 ≪ RF ≪ D 1 ≪ D ≪ RF

RF ∼ Nν: Flory radius, ν ≈ 0.588
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Rimp and Fimp

In the strong confinement regime:
nb = N(D/a)−1/ν: # of blobs, Nmax = 44000

End-to-end distance: Rimp = AimpDnb, Aimp = 0.92± 0.03
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Aimp
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D = 33
D = 49
D = 65
D = 97
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 0.01  0.1  1  10  100  1000

nb = N(D/a)-1/ν

Aimp

slope = ν -1
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D = 33
D = 49
D = 65
D = 97
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 1

 1.1
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 0  8  16  24  32  40
n  Db

Rimp

3DSAW
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Rimp and Fimp

In the strong confinement regime:
nb = N(D/a)−1/ν: # of blobs, Nmax = 44000

End-to-end distance: Rimp = AimpDnb, Aimp = 0.92± 0.03

Free energy: Fimp = Bimpnb, Bimp = 5.33 ± 0.08
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slope = -1
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 0.01  0.1  1  10  100  1000
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 0  8  16  24  32  40
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Escape transition
Polymer chains of N monomers with one end grafted to the
inner wall of a finite cylindrical nanotube

First-Order Phase Transition !

* N

*

N

D

D

imprisoned state

escaped states

D < D

L < L

L

L

L

D N

N > N*
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Theoretical predictions
Landau theory approach

Partition sum: Z = exp(−F ) =
∫

ds exp(−Φ(s))

F : free energy, Φ(s): Landau free energy function

L/N > (L/N)tr

L/N = (L/N)tr

L/N < (L/N)tr

imprisoned
escaped

Φ(s)
N

s

s: order parameter

s =







R/Nimp, imprisoned

L/Nimp, escaped
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End-to-end distanceR||
Algorithm: PERM with k-step Markovian anticipation

Poor samplings of configurations in the escaped state !

New strategy:

 0.4

 0.6

 0.8

 1

 1.2

 5.5  6  6.5  7  7.5  8  8.5  9  9.5

R
|| 

/ L

N / L

L =   200
L =   400
L =   800
L = 1600

1

D = 21 point
trainsition

L

D F
L

D
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Biased & unbiased SAWs
Partition sum: Zb(N, L, D) =

∑

walks b∆x

(= 1
Mb

∑

Wb(N, L, D))

b = exp(βaF ): stretching factor, β = 1/kBT , β = a = 1
~F : stretching force, ∆x = (xN+1 − x1) || ~F

Each BSAW of N steps contributes a weight

L

D F

b =







≥ 1 , 0 < x ≤ L , y2 + z2 ≤ D2/4

1 , otherwise

W (N, L, D) =







Wb(N, L, D)/bxN+1−x1 , imprisoned

Wb(N, L, D)/bL , escaped
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For any observable O:

Partition sum:

〈O〉 =

∑

k

∑

config∈Cbk
O(Cbk

)W (k)(N, L, D)
∑

k

∑

config∈CbK
W (K)(N, L, D)

Z(N, L, D) =
1

M

∑

k

∑

config∈Cbk

W (k)(N, L, D)

W (k)(N, L, D) =







Wbk
(N, L, D)/b

xN+1−x1

k , xN ≤ L

Wbk
(N, L, D)/bL

k , xN > L

bk = exp(βaFk): stretching factor
L

D F
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End-to-end distanceR||
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⇒
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Performance of algorithms
P (N, L, D, s) near the transition point imprisoned ↔ escaped

Partition sum (in the Landau theory approach):

Z(N, L, D) =
∑

s

H(N, L, D, s)

with

H(N, L, D, s) =
1

M

∑

k

∑

configs.∈Cbk

W k(N, L, D, s′)δs,s′

⇒ the distribution of the order parameter s

P (N, L, D, s) ∝ H(N, L, D, s) and
∑

s P (N, L, D, s) = 1
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Performance of algorithms
P (N, L, D, s) near the transition point imprisoned ↔ escaped
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Free energyF (N, L, D)

Scaling:

Transition point:
Fimp = Fesc ⇒

(

L
N

)

tr
∼ 1.26(4)D1−1/ν

F (N, L, D) =







Fimp = 5.33(8)ND−1/ν , imprisoned state

Fesc = 4.23(6)L/D , escaped state

 0

 80

 160

 240

 320

 0  20  40  60  80  100

ND-1/ν

D =  21
D =  25
D =  29

imprisoned states

escaped states

L = 800

L = 1600F(N,L,D)
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 0  50  100  150  200

L/D

L = 1600
L =   800
L =   400
L =   200
4.23L/D

escF
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Φ(N, L = 1600, D = 17, s)

Landau free energy: Φ(N, L, D, s) = − ln
(

P(N,L,D,s)

Z1(N)

)

Z1(N): Partition sum of a grafted random coil

 0.037

 0.043

 0.049

 0.1  0.2  0.3  0.4

Φ
(N

,L
,D

,s
)/

N

s

N/L = 5.5

N/L = 5.7

N/L = 5.9

MC data
Φimp(s)
Φesc(s)

imprisoned 
escaped

(N,L,D,s)Φ
N
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Two equivalent problems
Dragging polymer chains into a tube

Polymer chains escape from a tube

D

x

− F

( F )

L

D

x "=" L
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Metastable regions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

D = 17
D = 21
D = 25
D = 29

Nimp

N

x / x*

imprisoned states

prediction

flower states

 0.04

 0.044

 0.048

 0.052

 0  0.1  0.2  0.3  0.4

(s)Φ
N

s

imprisoned sinter

U/N

flower
Fimp

N

 x >x*

For x > x∗: x = (L/N) , x∗ = (L/N)tr, nb = N(D/a)−1/ν

Imprisoned states (stable), flower states (metastable)
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Metastable regions
For x > x∗: x = (L/N) , x∗ = (L/N)tr, nb = N(D/a)−1/ν

Imprisoned states (stable), flower states (metastable)

Barrier height U & spinodal points xsp:
U
nb

– x
x∗ , independent of N and D =⇒ Umax = 0.38nbkBT
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(N
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,D
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N
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 ∆
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x = x*

x = x

x = x

sp
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(1)

(2)

states
flower

states
imprioned
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Lifetime of a metastable state

D

x

− F

( F )

Lifetime: τms = τ0 exp(U/kBT ), U = 0.38nbkBT

τ0: characteristic relaxation time, U : barrier height

Polymer simulations with PERM I – p. 37



Lifetime of a metastable state

D

x

− F

( F )

Lifetime: τms = τ0 exp(U/kBT ), U = 0.38nbkBT

τ0: characteristic relaxation time, U : barrier height

Contour length L = 16µm, persistence length a = 50nm, tube
diameter D = 150nm, characteristic relaxation time τ0 ∼ 1 sec

(”Statics and Dynamics of Single DNA Molecules Confined in Nanochannels", Reisner et al.,

Phys. Rev. Lett. 94, 196101 (2005).)
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Lifetime of a metastable state

D

x

− F

( F )

Lifetime: τms = τ0 exp(U/kBT ), U = 0.38nbkBT

τ0: characteristic relaxation time, U : barrier height

Contour length L = 16µm, persistence length a = 50nm, tube
diameter D = 150nm, characteristic relaxation time τ0 ∼ 1 sec

(”Statics and Dynamics of Single DNA Molecules Confined in Nanochannels", Reisner et al.,

Phys. Rev. Lett. 94, 196101 (2005).)

⇒ nb = (L/a)(D/a)−1/ν ≈ 50, τms ∼ 108 sec ∼ 6 years
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Lifetime of a metastable state

D

x

− F

( F )

Lifetime: τms = τ0 exp(U/kBT ), U = 0.38nbkBT

τ0: characteristic relaxation time, U : barrier height

Contour length L = 16µm, persistence length a = 50nm, tube
diameter D = 150nm, characteristic relaxation time τ0 ∼ 1 sec

(”Statics and Dynamics of Single DNA Molecules Confined in Nanochannels", Reisner et al.,

Phys. Rev. Lett. 94, 196101 (2005).)

⇒ nb = (L/a)(D/a)−1/ν ≈ 50, τms ∼ 108 sec ∼ 6 years

D = 300nm ⇒ nb = 15, τms ∼ 5 mins.
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Summary
Polymer simulations with PERM

Linear polymer chains in dilute solution under various solvent
conditions

Conformational change of stretched collapsed linear polymer
chains under a poor solvent condition

Single polymer chains fully/partially confined in a tube

. . .

For low energy dense systems:

New PERM, Hsu, Mehra, Nadler & Grassberger, J. Chem. Phys. 118, 444 (2003);

Phys. Rev. E 68, 021113 (2003).

“Multicanonical” PERM, Bachmann & Janke, Phys. Rev. Lett. 91, 208105 (2003)

“Flat” PERM, Prellberg & Krawczyk, Phys. Rev. Lett. 92, 120602 (2004)

(good solvent)Τ > Θ (poor solvent)Τ < Θ
repulsion, entropy attraction

−F

F

L

D
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