
Robert Graf
Max-Planck Institute for Polymer Research
Double-quantum NMR methods: investigating (supra) molecular structure

- Internuclear proximities, chemical shifts and π-shifts
- Measurement of internuclear distances

1H-1H homonuclear

1H-13C/15N heteronuclear
NMR methods: investigating molecular dynamics

Fast local dynamics
- **Rigid**
- **Mobile**

Slow reorientations
- **Jump sites**
- **Jump angle**

Averaging of dipolar couplings

Loss of NMR signal

Exchange NMR experiments

<table>
<thead>
<tr>
<th>Fast</th>
<th>Intermediate</th>
<th>Slow</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-7})</td>
<td>(10^{-6})</td>
<td>(10^{-5})</td>
<td>(10^{-4})</td>
</tr>
</tbody>
</table>

Motional correlation time [seconds]
Merging solid-state and solution-state NMR methods

Solution State
- Pulsed Field Gradients
- Inverse Detection (\(^1\)H)

Solid State
- Fast Magic-Angle Spinning
- Dipolar Decoupling and Recoupling

Goals
- **Resolution Enhancement**
- **Sensitivity Enhancement**
- Measuring Molecular Structure and Conformation/Packing

Techniques
- Solids and Materials at the Solid/Liquid Borderline

1H
- natural abundance
- \(^{15}\)N in L-histidine
Outline of the Talk

- Homonuclear DQ NMR spectroscopy under fast MAS
- Residual dipolar couplings and order parameters in nematic LC
- Multi-Spin Effects in abundant spin systems
 - two spin approximation and its limits
 - double-quantum relay in dipolar systems
 - multi-spin coherences involving more than 2 spins
- Conclusions for homonuclear DQ NMR in dense spin systems

- Heteronuclear MQ NMR spectroscopy and REDOR
- Shape persistent polymers with dendritic sidegroups
- Inverse detection of 15N in natural abundance
- Conclusions
High Resolution Double-Quantum NMR in Solids

Properties of double-quantum coherences:

\[\omega_{DQ} = \sum_i \omega_{SQ,i} \]

\[I_{DQ,ij} = f(D_{ij} \cdot t) \]

\[\frac{dM}{dt} \approx 0 \]

High resolution solid-state NMR spectroscopy: average out dipolar coupling via

- Multi pulse sequence (WAHUHA, MREV-8)
- Magic Angle Spining (MAS)

Problem: Coupling between the spins is needed for double-quantum excitation!

<table>
<thead>
<tr>
<th>excitation</th>
<th>evolution (t_1)</th>
<th>reconversion</th>
<th>detection (t_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_R \approx 0)</td>
<td>(\omega_R > D_{ij})</td>
<td>(\omega_R \approx 0)</td>
<td>(\omega_R > D_{ij})</td>
</tr>
</tbody>
</table>
Dipolar Couplings and Sample Rotation at the Magic Angle

Dipole Dipole Coupling:

\[
\hat{H} \propto \frac{1}{3} \cdot \frac{1}{2} (3 \cos^2 \theta_{ij} - 1) \gamma_i \gamma_j (2 \hat{I}_{z,i} \hat{I}_{z,j} + \hat{I}_{+,i} \hat{I}_{-,j} + \hat{I}_{-,i} \hat{I}_{+,j})
\]

Magic Angle Spinning:

- **Spatial part:** Unchanged
- **Spin part:** \(\rightarrow 0 \)
Excitation of Double-Quantum Coherences under MAS

Direct Excitation

\[D_{ij} > \omega_R \]

\[\tau < 0.5 \cdot \tau_R \]

no synchronization

3 Pulse Sequence
(+ z-filter)

Recoupling

\[D_{ij} < \omega_R \]

\[\tau = n \cdot \tau_R \]

rotor synchronization

- DRAMA
- BABA
- C7

In the regime of fast MAS only recoupling techniques are applicable.
Recoupling Pulse Sequences

Average Hamiltonian of Pulse Sequences:

\[H^0_{av} = \sum_{i<j} \omega_{PF} I_i^+ I_j^+ + \omega_{PF}^* I_i^- I_j^- \]

Labourotory-System Pulse Sequences
examples: DRAMA, Back-to-Back, REDOR...

orientation dependence of DQ excitation efficiency

Rotor-System Pulse Sequences
examples: C_7, POST C_7, MELODRAMA ...

orientation dependence of DQ excitation efficiency
Double Quantum Spectroscopy under fast MAS

The rotor modulation of the recoupled dipolar Hamiltonian due to t_1-increments $\Delta t_1 \neq \tau_R$ leads to MAS sideband pattern in the t_1 dimension, which depend on the recoupling time and the dipolar coupling only.
Local Order in Nematic Liquid Crystals

Double-quantum measurements are in good agreement with 2H experiments.

Structure of a nematic liquid crystal

Chemical structure of nematic model compound.

DQ build-up behaviour
DQ sideband pattern

local order parameter

$S = \langle \frac{1}{2} (3 \cos^2 \theta - 1) \rangle = 0.6$
Dipolar Coupling and Order Parameters

DQ coherence

<table>
<thead>
<tr>
<th></th>
<th>A-C</th>
<th>B-C</th>
<th>D-D</th>
<th>E-E</th>
<th>F-F</th>
<th>G-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{ij,eff.}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>4.8</td>
<td>4.9</td>
<td>5.2</td>
<td>5.2</td>
<td>4.8</td>
<td>3.1</td>
</tr>
<tr>
<td>[kHz]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build-up</td>
<td>4.4</td>
<td>4.3</td>
<td>4.5</td>
<td>5.6</td>
<td>4.3</td>
<td>2.4</td>
</tr>
<tr>
<td>S_{ij}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>0.58</td>
<td>0.59</td>
<td>0.50</td>
<td>0.50</td>
<td>0.46</td>
<td>0.30</td>
</tr>
<tr>
<td>Build-up</td>
<td>0.52</td>
<td>0.53</td>
<td>0.42</td>
<td>0.54</td>
<td>0.40</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Graphs:
- BC DQ coherence
- DQ-Preparation Time [ms]
- DQ Intensity [a. u.]
- Order parameter S
- DQ coherences
- DQ-Preparation Time [ms]
- DQ Intensity [a. u.]
- Order parameter S

Diagrams:
- BC DQ coherence
- DQ-Preparation Time [ms]
- DQ Intensity [a. u.]
- Order parameter S
Multi-Spin Effects in Double-Quantum Build-Up

2-spin approximation describes only the initial behavior.
Multi-spin effects lead to exponential decay of the DQ intensities.
Multi-Spin Effects in DQ Sideband Pattern

1st order sidebands are under estimated by 2-spin approximation
DQ Polarisation Transfer: 1. Order Relay

double-quantum experiment:

| excitation | t_1 | reconversion | t_2 |

1. Order DQ relay

t_1 evolution → reconversion → t_2 detection

Double-quantum polarisation transfer leads to negative signal intensities
DQ Polarisation Transfer: 2. Order Relay

Double-quantum experiment:

- **Excitation** t_1
- **Reconversion**
- **t_2**

2. Order Double-quantum Relay

- **t_1 Evolution**
- **Reconversion**
- **t_2 Detection**

For longer double-quantum recoupling times, coherences get delocalised and can obscure the double-quantum spectrum.
Dipolar couplings lead to more complicated relay behavior than J-coupling.
4 spin 2 quantum coherences

\[H_{4S2Q} = a_{ijkl} I_i^+ I_j^+ I_k^- I_l^- + a_{ijkl}^* I_i^- I_j^- I_k^+ I_l^+ \]

\[(I_A^+ I_C^- I_C^+ I_D^- + I_A^- I_C^+ I_C^- I_D^+) \text{ coherence} \]

Multi-spin DQ coherences can be observed, but are hard to analyse.
Conclusions for 1H DQ NMR Spectroscopy

- High resolution DQ spectra under fast MAS can be obtained using appropriate recoupling sequences.

- DQ build-up behavior and DQ spinning sideband pattern provide quantitative information about dipolar couplings.

- Even though, multi-spin effects are observed, a careful 2-spin analysis provides reasonable dipolar coupling values.

- In favorable cases, multi-spin effects can be analyzed and additional information can be obtained.

- DQ relay intensities due to dipolar couplings are harder to analyze than those due to J-couplings.
How dipolar interactions “explore” space

homonuclear case:
random walk characteristics, delocalized

heteronuclear case:
well-localized probing of the 13C environment

approaching incoherent diffusive processes
Rotational Echo Double Resonance (REDOR)

I (1H) \[\text{CP} \rightarrow \text{DD} \rightarrow \text{DD} \]

S (^{13}C) "detected"

L ($^{15}N, ^{19}F, \ldots$) "passive"

rotor position

\[S_Y \frac{1}{2N \tau_R} S_Y L_Z \rightarrow S_Y \cos(N\Phi) - 2S_X L_Z \sin(N\Phi) \rightarrow S_Y \left[\cos^2(N\Phi) \pm \sin^2(N\Phi) \right] = \begin{cases} S_Y \\ S_Y \cos(2N\Phi) \end{cases} \]
Internuclear distances from REDOR curves

Experiments in Asparagine

<table>
<thead>
<tr>
<th>Table 1. Internuclear Distances in [U-13C,15N]Asparagine</th>
</tr>
</thead>
<tbody>
<tr>
<td>atoms<sup>a</sup></td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>(N')</td>
</tr>
<tr>
<td>C(^\alpha)</td>
</tr>
<tr>
<td>C(^\beta)</td>
</tr>
<tr>
<td>(N^{\delta 2})</td>
</tr>
<tr>
<td>C(^\alpha)</td>
</tr>
<tr>
<td>C(^\beta)</td>
</tr>
</tbody>
</table>
Coherent polarisation transfer

REDOR scheme

Heteronuclear correlation (SQ-SQ) via transferred echo double resonance (TEDOR)

Heteronuclear single-quantum correlation (HSQC) via recoupled polarisation transfer (REPT)
From deuterons to CH_n groups

Selectively placed **deuterons** as probes for molecular dynamics (quadrupole coupling of spin-1 nucleus)

Regular CH_n groups

- use of dipole-dipole coupling between C and H
- no additional synthetic effort
 - no selective placement of probing nucleus
 - no isotopic enrichment
- assignment of dynamics by ^{13}C chemical shifts
- handling of CH, CH$_2$ and CH$_3$ groups
- interferences of multiple C-H couplings
- decoupling from surrounding ^1H
Two alternative concepts for measuring recoupled interactions:
• following the signal intensity as a function of the recoupling time (resulting in build-up or dephasing curves)
• recording rotor-encoded signal (resulting in MAS sideband patterns)
Cylindrical self-assembly of dendritic sidegroups (I)

Materials:
V. Percec

REREDOR
- **OCH$_2$ group**
 - $\tau_{\text{exc}} = 4 \tau_R = 133\mu$s
 - $D_{\text{CH}} = 17.0$ kHz ($S = 81\%$)

- **OCH$_2$ group**
 - $\tau_{\text{exc}} = 4 \tau_R = 133\mu$s
 - $D_{\text{CH}} = 12.0$ kHz ($S = 57\%$)

- **aromatic CH group**
 - $\tau_{\text{exc}} = 4 \tau_R = 133\mu$s
 - $D_{\text{CH}} = 21.0$ kHz ($S \sim 100\%$)

REPT-HDOR
- **aromatic CH group**
 - $\tau_{\text{exc}} = 8 \tau_R = 320\mu$s
 - $D_{\text{CH}} = 6.0$ kHz ($S = 29\%$)
Cylindrical self-assembly of dendritic sidegroups (II)

- **dendritic sidegroup**
- **structure-directing moieties**
- **cylindrical assembly independent of molecule in the center (chain, discs)**
- **polymer chain**
- **stack of aromatic molecules**
Sensitivity enhancement by inverse (1H) detection

33% 15N-enriched

0.35% 15N (natural abundance)

$S/N = 8$

$x\times10$

$S/N = 80$

δ_1, δ_2, ε_1, ε_2
Natural-abundance $^{15}\text{N}-^{1}\text{H}$ correlation NMR

preparation ($^{1}\text{H} \to ^{15}\text{N}$) TEDOR/REPT experiment ($^{15}\text{N} \to ^{1}\text{H}$ transfer) with/without rotor-encoding

<table>
<thead>
<tr>
<th>CP</th>
<th>dephasing</th>
<th>t_1</th>
<th>recoupling</th>
<th>t_1'</th>
<th>recoupling</th>
<th>dephasing</th>
<th>detection</th>
</tr>
</thead>
</table>

^{1}H ^{15}N

RRR pulses DD

rotor encoding

pulsed field gradients (PFGs)

^{15}N-^{1}H chemical-shift correlation ^{15}N-^{1}H dipolar couplings from rotor-encoded MAS sideband patterns
NH···O hydrogen bonds in L-histidine

2D chemical shift correlation:

δ₁-NH ε₂-NH NH₃⁺

2D chemical shift correlation
plus NH coupling information:

δ₁-NH ε₂-NH NH₃⁺

700 MHz ¹H frequency, 30 kHz MAS, ~ 15 mg sample.
N-H bond stretching due to hydrogen bonding

NH dipolar coupling from rotor-encoded spinning sideband pattern:

ϵ_2-NH

δ_1-NH

δ_1-NH

20480 transients in total

ω/ω_R

$r_{NH} = (107 \pm 2) \text{ pm}$

$r_{NH} = (111 \pm 2) \text{ pm}$
Similarities of homo- and heteronuclear are sufficient to pursue the strategies known from 1H DQ NMR.

Rotor encoding can be used to measure heteronuclear dipolar couplings with REDOR based techniques.

The larger spread of chemical shifts of rare low γ nuclei provides site selective information about molecular dynamics.

1H detection of low γ nuclei can increase the sensitivity and NMR measurements in natural abundance become feasible.
NMR on supramolecular systems

Homonuclear double-quantum measurements

✓ Dipolar couplings and order parameters in LC system Michael Neidhöfer
✓ Analysis of 1H DQ relay Robert Graf

Heteronuclear method development in solid-state NMR

✓ 13C site-resolved dynamics of CH$_n$ groups Kay Saalwächter
✓ natural abundance 15N-1H correlation spectroscopy Ingo Schnell
✓ N-H distance measurements

Investigations of complex systems

✓ Dynamics and self-assembly of dendritic sidegroups Almut Rapp