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ABSTRACT: Charge carrier dynamics in an organic semiconductor can often be described in terms of charge hopping between
localized states. The hopping rates depend on electronic coupling elements, reorganization energies, and driving forces, which vary
as a function of position and orientation of the molecules. The exact evaluation of these contributions in a molecular assembly is
computationally prohibitive. Various, often semiempirical, approximations are employed instead. In this work, we review some of
these approaches and introduce a software toolkit which implements them. The purpose of the toolkit is to simplify the workflow for
charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and
eventually allow in silico prescreening of organic semiconductors for specific applications. All implemented methods are illustrated
by studying charge transport in amorphous films of tris-(8-hydroxyquinoline)aluminum, a common organic semiconductor.

I. INTRODUCTION

The progress currently observed in the field of organic
electronics is a result of a combined effort of several commu-
nities. Synthetic chemists have identified classes of promising
compounds, ranging from small conjugated molecules to self-
assembling oligomers and conjugated polymers, and developed
new synthetic routes, improving both stability and processability of
the materials.1�7 At the same time, material processing, such as
doping, annealing, use of a secondary solvent, and composition
tuning, has been adjusted to the demands of the field.8�13 In parallel,
increased device efficiencies could be achieved, e.g., by optimizing
light in- and out-coupling and introducing tandem concepts.14,15

Compound design requires an in-depth understanding of
elementary processes occurring in organic semiconductors.16

In particular, linking the chemical structure to charge dynamics
is a nontrivial task, since several factors can influence charge
carrier mobility: the molecular electronic structure, the relative
positions and orientations of neighboring molecules, and spatial
inhomogeneities in the morphology, which determine charge
carrier pathways on a macroscopic scale.17

Furthermore, the choice of the model Hamiltonian depends
on the specific situation.18 For perfectly ordered defect-free
crystals at low temperatures, the Drude model based on band
theory19 or its extensions, which account for local electron�
phonon coupling,20�22 are often used. At ambient conditions,
however, the thermal fluctuations of the transfer integral, i.e., the
nonlocal electron�phonon coupling, are on the same order of
magnitude as its average value, and charge transport should be

treated as diffusion limited by thermal disorder. This can be
achieved using semiclassical dynamics based on a Hamiltonian
with interacting electronic and nuclear degrees of freedom.23�25

If nuclear dynamics are much slower than the dynamics of charge
carriers and electronic coupling is weak, charge transport can
be described by a Hamiltonian with static disorder, based on simple
assumptions on the electronic density of states and on the hopping
rates between localized states.

The latter approach is by now routinely used to study charge
transport in amorphous and partially disordered small-molecule-
based organic semiconductors.26�40 Its key ingredients are material
morphology and intermolecular charge transfer (hopping) rates.41

The rates not only depend on themolecular electronic structure but
are also sensitive to the mutual positions and orientations of
molecules. Hence, in order to evaluate the rates, the material
morphology must be known at an atomistic resolution. This can
be achieved by performing molecular dynamics simulations and
thus relies on force-field development for new compounds. If the
required time and length scales exceed the range available to
atomistic molecular dynamics, coarse-graining techniques can be
used.42 These techniques need to be capable of back-mapping the
coarse-grained representation to an atomistic resolution.

Charge transfer rates can be postulated on the basis of intuitive
physical considerations, as is done in the Gaussian disorder
models.43�46 Alternatively, charge transfer theories can be used
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to evaluate rates from quantum chemical calculations.28,47�51 In
spite of being significantly more computationally demanding, the
latter approach allows one to link the chemical and electronic
structure, as well as the morphology, to charge dynamics.

The high temperature limit of classical charge transfer
theory52,53 is often used as a trade-off between theoretical rigor
and computational complexity. It captures key parameters which
influence charge transport while at the same time providing an
analytical expression for the rate. Within this limit, the transfer
rate for a charge to hop from a site i to a site j reads:

ωij ¼ 2π
p

J2ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλijkBT

p exp �ðΔEij � λijÞ2
4λijkBT

" #
ð1Þ

where T is the temperature, λij = λij
int + λij

out is the reorganization
energy, which is a sum of intra- and intermolecular (outer-
sphere) contributions, ΔEij is the site-energy difference, or
driving force, and Jij is the electronic coupling element, or transfer
integral.54 A more general, quantum-classical expression for a
bimolecular multichannel rate is derived in the Supporting
Information.

All of the ingredients entering eq 1 can be calculated using
electronic structure techniques, classical simulation methods, or
their combination. With the rates at hand, one can study charge
transport by solving the differential (master) equation, e.g., by
using the kinetic Monte Carlo method, which is capable of
simulating charge dynamics of non-steady-state systems.

Altogether, the task of charge transport characterization is
rather tedious and time-consuming to perform, even for a single
compound. The main aim of this work is to introduce a software
package which implements a set of techniques for charge
transport simulations as well as provides a flexible modular
platform for their further development.

The paper is organized as follows. In section II, we describe the
workflow and the basic ideas behind each method. As an
illustration, we study charge transport in the bulk of amorphous
tris-(8-hydroxyquinoline)aluminum (Alq3). Section III deals
with the analysis and visualization of charge dynamics. A brief
summary of implementation is given in section IV.

II. METHODS

A workflow of charge transport simulations is depicted in
Figure 1. The first step is the simulation of an atomistic
morphology (section II.A), which is then partitioned into hopping
sites (section II.B). The coordinates of the hopping sites are used
to construct a list of pairs of molecules (neighbor list). For each
pair, an electronic coupling element (section II.C), a reorga-
nization energy (section II.D), a driving force (section II.E),
and eventually the hopping rate are evaluated. The neighbor
list and hopping rates define a directed graph. The correspond-
ing master equation is solved using the kinetic Monte Carlo
method (section II.G), which allows one to explicitly monitor
the charge dynamics in the system as well as calculate time
or ensemble averages of occupation probabilities, charge
fluxes, correlation functions, and field-dependent mobilities
(section III).
II.A.MaterialMorphology.There is no generic recipe on how

to predict a large-scale atomistically resolved morphology of
an organic semiconductor. The required methods are system-
specific: for ultrapure crystals, for example, density-functional meth-
ods can be used provided the crystal structure is known from
experimental results. For partially disordered organic semicon-
ductors, however, system sizes much larger than a unit cell are
required. Classical molecular dynamics or Monte Carlo techni-
ques are then the methods of choice.

Figure 1. Workflow for microscopic simulations of charge transport. Ground state geometries, partial charges, and a refined force field are used to
simulate atomistically resolved morphologies (section II.A). After partitioning into conjugated segments and rigid fragments (section II.B), a list of pairs
of molecules (neighbor list) is constructed. Transfer integrals (section II.C), reorganization (section II.D) and site energies (section II.E), and eventually
hopping rates are calculated for all pairs from this list. A directed graph is then generated, and the corresponding master equation is solved using the
kinetic Monte Carlo method (section II.G).
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In molecular dynamics, atoms are represented by point masses
which interact via empirical potentials prescribed by a force field.
Force fields are parametrized for a limited set of compounds, and
their refinement is often required for new molecules. In parti-
cular, special attention shall be paid to torsion potentials between
successive repeat units of conjugated polymers or between func-
tional groups and the π-conjugated system. First-principles meth-
ods can be used to characterize the missing terms of the potential
energy function. The parametrization must take into account
existing force-field contributions, e.g., due to nonbonded interac-
tions. If q is the degree of freedomof interest, constrained geometry
optimizationsmust be performed using both first principles and the
force-field levels, yielding the total energies Ufp(q) and Uff(q),
respectively. Then, the missing force-field terms are fitted to their
difference,Ufp(q)�Uff(q), using a prescribed functional form. For
several identical or coupled degrees of freedom, amultidimensional
fit can be used. Note that force-field validation is as important as its
refinement. For instance, X-ray scattering and solid-state NMR
provide information about averaged molecular arrangements to
which simulation results can be compared.
As an example, the refinement of the OPLS force field for Alq3

is described in the Supporting Information. In total, 16 bonded
interactions were parametrized. To validate the force field, the
glass transition temperature and bulk density of amorphous Alq3
were compared to the experimental values. An amorphous
morphology of Alq3 was then obtained by quenching the system
after equilibrating it above the glass transition temperature.
Self-assembling materials, such as soluble oligomers, discotic

liquid crystals, block copolymers, partially crystalline polymers,
etc., are the most complicated to study. The morphology of such
systems often has several characteristic length scales and can be
kinetically arrested in a thermodynamically nonequilibrium state.
For such systems, the time and length scales of atomistic
simulations might be insufficient to equilibrate or sample desired
morphologies. In this case, systematic coarse-graining can be
used to enhance sampling.42 Note that the coarse-grained
representation must reflect the structure of the atomistic system
and allow for back-mapping to the atomistic resolution.
II.B. Conjugated Segments and Rigid Fragments. With

the morphology at hand, the next step is the construction of
the effective electronic Hamiltonian of the system. In a static
disorder approximation, this is equivalent to partitioning the
system into hopping sites, or conjugated segments, and calculat-
ing charge transfer rates between them. Physically intuitive
arguments can be used for the partitioning, which reflects the
localization of the wave function of a charge. For most organic
semiconductors, the molecular architecture includes relatively
rigid, planar π-conjugated systems, which we will refer to as rigid
fragments. A conjugated segment can contain one or more such
rigid fragments, which are linked by bonded degrees of freedom.
The dynamics of these degrees of freedom evolves on time scales
much slower than the frequency of the internal promoting mode.
In some cases, e.g., glasses, it can be “frozen” due to nonbonded
interactions with the surrounding molecules.
To illustrate the concept of conjugated segments and rigid

fragments, three representative molecular architectures are
shown in Figure 2. The first one is a typical discotic liquid
crystal, hexabenzocoronene. It consists of a conjugated core to
which side chains are attached to aid self-assembly and solution
processing. In this case, the orbitals localized on side chains do
not participate in charge transport, and the π-conjugated system
is both a rigid fragment and a conjugated segment.

In Alq3, a metal-coordinated compound, a charge carrier is
delocalized over all three ligands. Hence, the whole molecule is
one conjugated segment. Individual ligands are relatively rigid,
while energies on the order of kBT are sufficient to reorient them
with respect to each other. Thus, the Al atom and the three
ligands are rigid fragments.
In the case of a conjugated polymer, one molecule can consist

of several conjugated segments, while each backbone repeat unit
is a rigid fragment. Since the conjugation along the backbone can
be broken due to large out-of-plane twists between two repeat
units, an empirical criterion, based on the dihedral angle, can be
used to partition the backbone on conjugated segments.36

However, such intuitive partitioning is, to some extent, arbitrary
and shall be validated by other methods.55�57

After partitioning, an additional step is often required to
remove bond length fluctuations introduced by molecular dy-
namics simulations, since they are already integrated out in the
derivation of the rate expression. This is achieved by substituting
respective molecular fragments with rigid, planar π systems
optimized using first-principles methods. Centers of mass and
gyration tensors are used to align rigid fragments, though a
custom definition of local axes is also possible. Such a procedure
also minimizes discrepancies between the force-field and first-
principles-based ground state geometries of conjugated seg-
ments, which might be important for calculations of electronic
couplings, reorganization energies, and intramolecular driving
forces.
Finally, a list of neighboring conjugated segments is con-

structed. Two segments are added to this list if the distance
between centers of mass of any of their rigid fragments is below
a certain cutoff. This allows neighbors to be selected on a
criterion of minimum distance of approach rather than center of
mass distance, which is useful for molecules with anisotropic
shapes.

Figure 2. The concept of conjugated segments and rigid fragments.
Dashed lines indicate conjugated segments, while colors denote rigid
fragments. (a) Hexabenzocoronene: the π-conjugated system is both a
rigid fragment and a conjugated segment. (b) Alq3: the Al atom and each
ligand are rigid fragments, while the whole molecule is a conjugated
segment. (c) Polythiophene: each repeat unit is a rigid fragment. A
conjugated segment consists of one or more rigid fragments. One
molecule can have several conjugated segments.
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II.C. Transfer Integrals. The electronic transfer integral Jij
entering the Marcus rates in eq 1 is defined as

Jij ¼ ÆϕijĤjϕjæ ð2Þ

where ϕi and ϕj are diabatic wave functions, localized on
molecules i and j, respectively, participating in the charge
transfer, and Ĥ is the Hamiltonian of the formed dimer. Within
the frozen-core approximation, the usual choice for the diabatic
wave functions ϕi is the highest occupied molecular orbital
(HOMO) in the case of hole transfer and the lowest unoccupied
molecular orbital (LUMO) in the case of electron transfer, while
Ĥ is an effective single particle Hamiltonian, e.g., a Fock or
Kohn�Sham operator of the dimer. As such, Jij is a measure of
the strength of the electronic coupling of the frontier orbitals of
monomers mediated by the dimer interactions. Intrinsically, the
transfer integral is very sensitive to the molecular arrangement,
i.e., the distance and the mutual orientation of the molecules
participating in charge transport. Since this arrangement can also be
significantly influenced by static and/or dynamic disorder,24,31,34,35,53

it is essential to calculate Jij explicitly for each hopping pair within
a realistic morphology. Considering that the number of dimers
for which eq 2 has to be evaluated is proportional to the number
of molecules times their coordination number, computationally
efficient and at the same time quantitatively reliable schemes are
required.
In general, information about three objects is needed: the two

monomer wave functions ϕi and ϕj and the dimer interaction
Hamiltonian Ĥ. An approximate method based on Zerner’s
independent neglect of differential overlap (ZINDO) has been
described in ref 51. This semiempirical method is substantially
faster than first-principles approaches, since it avoids the self-
consistent calculations on each individual monomer and dimer.
This allows one to construct the matrix elements of the ZINDO
Hamiltonian of the dimer from the weighted overlap of molec-
ular orbitals of the two monomers. Together with the introduc-
tion of rigid segments, only a single self-consistent calculation on
one isolated conjugated segment is required. All relevant molecular
overlaps can then be constructed from the obtained molecular
orbitals. This molecular orbital overlap (MOO) method has been

applied successfully to study charge transport, for instance, in
discotic liquid crystals,31,37,38 polymers,36 or partially disordered
organic crystals.33�35

While the use of the semiempirical ZINDO method provides
an efficient on-the-fly technique to determine electronic coupling
elements, it is not generally applicable to all systems. For instance,
its predictive capacity with regards to atomic composition and
localization behavior of orbitals within more complex structures is
reduced. Moreover, transition or semimetals are often not even
parametrized. In this case, ab initio based approaches, e.g., density-
functional theory, can remedy the situation.50,58�62 Within the
dimer projection method described in detail in ref 50, explicit
quantum-chemical calculations are required for every molecule
and every hopping pair in the morphology. As a consequence, this
procedure is significantly more computationally demanding. The
code currently contains scripts which support an evaluation of
transfer integrals from quantum-chemical calculations performed
with the GAUSSIAN and TURBOMOLE packages.
As an example, distributions of transfer integrals calculated

using ZINDO and DFT (with the gradient-corrected B�P
functional63,64 and a TZVP basis set65) methods are shown in
Figure 3. While both distributions are similar, ZINDO integrals
are, on average, smaller than DFT ones.
II.D. Reorganization Energy. The reorganization energy λij

takes into account the change in nuclear (and dielectric) degrees
of freedom as the charge moves from donor i to acceptor j. It has
two contributions: intramolecular, λij

int, which is due to a reorga-
nization of nuclear coordinates of the two molecules forming the
charge transfer complex, and intermolecular (outersphere), λij

out,
which is due to the relaxation of the environment. In what
follows, we discuss how these contributions can be calculated.
II.D.1. Intramolecular Reorganization Energy. If intramole-

cular vibrational modes of the two molecules are treated classi-
cally, the rearrangement of their nuclear coordinates after charge
transfer results in the dissipation of the internal reorganization
energy, λij

int. It can be computed from four points on the potential
energy surfaces (PES) of both molecules in neutral and charged
states, as indicated in Figure 4. Adding the contributions due to
discharging of molecule i and charging of molecule j yields49

λintij ¼ λcni þ λncj ¼ UnC
i �UnN

i þ UcN
j �UcC

j ð3Þ
Here, Ui

nC is the internal energy of the neutral molecule i in the
geometry of its charged state (small n denotes the state
and capital C the geometry). Similarly, Uj

cN is the energy of
the charged molecule j in the geometry of its neutral state.66

Figure 3. Distributions and correlation of transfer integrals calculated
using ZINDO and DFT methods.

Figure 4. Potential energy surfaces of (a) donor and (b) acceptor in
charged and neutral states. After the change of the charge state, both
molecules relax their nuclear coordinates. If all vibrational modes are
treated classically, the total internal reorganization energy and the
internal energy difference of the electron transfer reaction are λij

int =
λi
cn + λj

nc and ΔEij
int = ΔUi � ΔUj, respectively.
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Note that the PESs of the donor and acceptor are not identical for
chemically different compounds or for conformers of the same
molecule. In this case,λi

cn 6¼ λj
cn andλi

nc 6¼ λj
nc. Thus,λij

int is a property
of the charge transfer complex and not of a single molecule.
In Alq3, the three ligands can easily change their mutual

orientations. Molecular conformations are then “frozen” due to
nonbonded interactions in an amorphous glass. The internal
energies entering eq 3 were calculated after optimizing molecular
geometries of all 512molecules in charged and neutral states with
the soft degrees of freedom constrained to their average values
(see the Supporting Information for details). The distribution of
λij
int for holes, which is shown in the Supporting Information,

is sharply peaked with a maximum at 0.21 eV and variance of
0.03 eV. Computing λij

int from the PES of two unconstrained
molecules leads to a similar value of 0.23 eV. Since Alq3 has high
energetic disorder arising from its large dipole moment, this
small variance in reorganization energy does not affect charge
carrier mobility or Poole�Frenkel behavior.
II.D.2. Outersphere Reorganization Energy.During the charge

transfer reaction, also the molecules outside the charge transfer
complex reorient and polarize in order to adjust for changes in electric
potential, resulting in the outersphere contribution to the reorganiza-
tion energy. λij

out is particularly important if charge transfer occurs in a
polarizable environment. Assuming that charge transfer is much
slower than electronic polarization but much faster than nuclear
rearrangement of the environment, λij

out can be calculated from the
electric displacement fields created by the charge transfer complex:67

λoutij ¼ cp
2ε0

Z
V out

dV ½DIðrÞ �DFðrÞ�2 ð4Þ

where ε0 is the permittivity of free space, DI,F(r) are the electric
displacement fields created by the charge transfer complex in the
initial (charge on molecule i) and final (charge transferred to
molecule j) states,Vout is the volume outside the complex, and cp =
1/εopt � 1/εs is the Pekar factor, which is determined by the low
(εs) and high (εopt) frequency dielectric permittivities.
Equation 4 can be simplified by assuming spherically sym-

metric charge distributions on molecules i and j with total charge
e. Integration over the volume Vout outside of the two spheres of
radii Ri and Rj centered on molecules i and j leads to the classical
Marcus expression for the outersphere reorganization energy:

λoutij ¼ cpe2

4πε0

1
2Ri

þ 1
2Rj

� 1
rij

 !
ð5Þ

where rij is the molecular separation. While eq 5 captures the
main physics, e.g., predicts smaller outersphere reorganization
energies (higher rates) for molecules at smaller separations, it
often cannot provide quantitative estimates, since charge dis-
tributions are rarely spherically symmetric.
Alternatively, the displacement fields can be constructed using

the atomic partial charges. The difference of the displacement
fields at the position of an atom bk outside the charge transfer
complex (molecule k 6¼ i, j) can be expressed as

DIðrbkÞ �DFðrbkÞ ¼ ∑
ai

qcai � qnai
4π

ðrbk � raiÞ
jrbk � rai j3

þ ∑
aj

qnaj � qcaj
4π

ðrbk � rajÞ
jrbk � raj j3

ð6Þ

where qai
n (qai

c ) is the partial charge of atom a of the neutral
(charged) molecule i in a vacuum. The partial charges of neutral
and charged molecules are obtained by fitting their values to
reproduce the electrostatic potential of a single molecule
(charged or neutral) in a vacuum. Assuming a uniform density
of atoms, the integration in eq 4 can be rewritten as a density-
weighted sum over all atoms excluding those of the charge
transfer complex.
Using eq 6, λij

out/cp was calculated for all pairs from the
neighbor list of a system of 512 Alq3 molecules. The neighbor
list was constructed using a cutoff of 0.8 nm for the centers of
mass of the three Alq3 ligands, which results in an average of 12
neighbors in the first coordination shell. The electrostatic
potential of a single molecule in a vacuum was calculated using
the B3LYP functional and a 6-311G(d,p) basis set. The
CHELPG method68 was used to obtain atomic partial charges.
The resulting distribution of λij

out/cp is shown in Figure 5,
together with a fit to eq 5. The fit yields RAlq3 = 0.57 nm and
predicts negative λij

out for separations smaller than this radius,
which is unphysical.
The remaining unknown needed to calculate λij

out is the Pekar
factor, cp. In polar solvents εs. εopt∼ 1, and cp is on the order of 1.
In most organic semiconductors, however, molecular orientations
are fixed, and therefore the low frequency dielectric permittivity is
on the same order of magnitude as εopt. Hence, cp is small, and its
value is very sensitive to differences in the permittivities.
For Alq3, εs = 3.0 ( 0.3 is the experimentally measured

dielectric constant at low frequencies,69 while at optical frequen-
cies below electronic absorption, εopt = 2.9 ( 0.1.70 Thus, cp =
0.01 ( 0.04, yielding outersphere reorganization energies of
λij
out < 0.08 eV, which are small compared to λij

int. Similar results
have been reported for other organic semiconductors and dif-
ferent methods for computing λij

out.71�73

II.E. Site Energy Difference. A charge transfer reaction
between molecules i and j is driven by the site energy difference,
ΔEij = Ei� Ej. Since the transfer rate,ωij, depends exponentially
on ΔEij (see eq 1), it is important to compute its distribution as
accurately as possible. The total site energy difference has contribu-
tions due to an externally applied electric field, electrostatic

Figure 5. Outersphere reorganization energy divided by the Pekar
factor as a function of the distance between two molecules and its fit
to eq 5.
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interactions, polarization effects, and internal energy differences. In
what follows, we discuss how to estimate these contributions by
making use of first-principles calculations and polarizable force
fields.
II.E.1. Externally Applied Electric Field.The contribution to the

total site energy difference due to an external electric field F is
given byΔEij

ext = q(F 3 rij), where q =(e is the charge and rij = ri� rj
is a vector connecting molecules i and j. For typical distances
between small molecules, which are on the order of 1 nm, and
moderate fields of F < 108 V/m, this term is always smaller than
0.1 eV.
II.E.2. Electrostatic Energy. Variations of the local electric field

can result in large electrostatic contributions to the energetic
disorder.74 When the atomic partial charges of charged and
neutral molecules are used, as introduced in section II.D.2, ΔEij

el

can be computed from the site energies31

Eeli ¼ 1
4πε0

∑
ai
∑
k 6¼i
bk

ðqcai � qnaiÞqnbk
εsraibk

ð7Þ

where rai bk = |rai � rbk| is the distance between atoms ai and bk
and εs is the static relative dielectric constant. The first sum
extends over all atoms of molecule i, for which the site energy is
calculated. The second sum reflects interactions with all atoms of
neutral molecules k 6¼ i. By using eq 7, one assumes that the
influence of conformational changes on partial charges and
changes of the molecular geometry upon charging are small.
In order to minimize finite size effects, we do not use a

spherical cutoff but apply the nearest image convention, that is,
sum over all neutral molecules in the box after centering the box
around the charged molecule. For Alq3, with long-range inter-
actions due to its large dipole moment, this procedure converges
already for a few hundred molecules.
The resulting distribution of the site energy differences with-

out screening (εs = 1), shown in Figure 6, is Gaussian, with
variance ofσ = 0.30 eV. Note thatΔEij

el is constructed on the basis
of the neighbor list as described in section II.D.2.

II.E.3. Polarization Effects.The influence of polarization effects
on the Coulomb interactions can be taken into account by using a
relative dielectric constant in eq 7. Bulk values of εs = 2�5 for
typical organic semiconductors uniformly scale all site energies
but are not capable of describing polarization effects on a
microscopic level. The contribution to Ei

el from the first coordi-
nation shell is then underestimated due to overscreening, and
as a result, the site-energy differences become artificially small.
Alternatively, one can introduce a phenomenological distance-
dependent screening function ε(rai bk) in eq 730

εðrÞ ¼ εs � ðεs � 1Þ 1 þ sr þ 1
2
s2r2

� �
e�sr ð8Þ

where the parameter s is the inverse screening length. For a
monovalent ion in water, for example, εs = 80 and s = 3 nm�1.75

This screening function ensures that neighboring atoms interact
via an unscreened Coulomb potential (ε ∼ 1), while the
electrostatic interaction between atoms at large separations is
screened as in the bulk.
While phenomenological distance-dependent screening is

computationally efficient, it cannot be used for inhomogeneous
systems or systems with anisotropic molecular polarizabilities.
Moreover, εs and s are not known for newly synthesized
compounds. A more general approach relies on self-consistent
methods to obtain polarization fields.76 Here, we use a polariz-
able force field based on the Thole model77 as implemented in
the TINKER package.78

The polarization contribution is refined iteratively. After
evaluating the electric field at atom a in molecule i, Fai

(0), created
by all atomic partial charges (εs = 1, nearest image convention),
the induced dipole moments, μai

(0), are computed. During this first
step, intramolecular interactions areexcluded. Induceddipolemoments
are then iteratively refined as μai

(k+1) = ωFai
(k)αai +(1�ω)μai

(k), where
αai is the isotropic atomic polarizability and ω = 0.5 is a damping
constant for successive over-relaxation. The new electric fields
are computed using the induced dipole moments, which now
interact with each other also within molecules, allowing for
anisotropic molecular polarizabilities. The procedure is repeated
until ∑ai |μai

(k+1) � μai
(k)| < 10�6 Debye.

Such self-consistent calculations can, however, become compu-
tationally prohibitive for large systems. For homogeneous systems
and isotropic molecular polarizabilties, one can perform self-con-
sistent calculations for small systems, parametrize eq 8 accordingly,
and use ε(r) to study larger systems. To this end, the bulk dielectric
constant is obtained from the Clausius�Mosotti relation79

εs ¼ 1 þ 12παN=V
3� 4παN=V

ð9Þ

where α is the molecular polarizability volume and N/V is the
number density. Using this value of εs, the parameter s is then fitted
to reproduce the distribution of site-energy differences for mol-
ecules from the neighbor list.
For a neutral Alq3 molecule, the Thole model (using atomic

polarizabilities αH,C,N,O,Al = 0.696, 1.75, 1.073, 0.837, 5.5 Å3,
respectively, and a damping factor of a = 0.39 for interactions
with induced moments78) gives a practically isotropic polariz-
ability volume tensor with α = 54.9 Å3. This agrees with DFT
calculations (B3LYP functional and 6-311G(d,p) basis set),
yielding α = 55.2 Å3.80 Using N = 512 molecules in a cubic
box of length L = 67.8 Å, we obtain εs = 2.84, which reproduces
the experimental value of 3.0 ( 0.3.69

Figure 6. Distributions of site energy differences without (blue) and
with (red) polarization effects for pairs from the neighbor list. Solid lines
are fits to Gaussian distributions. The dashed line corresponds to a
parametrized distance-dependent ε(r) according to eq 8.
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The corresponding distributions of site energy differences, shown
in Figure 6, are practically Gaussian. For the Thole model, the
variance of 0.21 eV is obviously larger than the 0.10 eVobtained using
bulk screening with εs = 3.0 (not shown) and is smaller than 0.30 eV
for εs = 1.Afit to eq 8 gives s=1.3 nm

�1, which is significantly smaller
than the inverse screening length of water, 3 nm�1.
II.E.4. Internal Energy Difference. The contribution to the site

energy difference due to different internal energies (see Figure 4)
can be written as

ΔEintij ¼ ΔUi �ΔUj ¼ ðUcC
i �UnN

i Þ � ðUcC
j �UnN

j Þ
ð10Þ

where Ui
cC(nN) is the total energy of molecule i in the charged

(neutral) state and geometry. ΔUi corresponds to the adiabatic
ionization potential (or electron affinity) of molecule i, as shown
in Figure 4. For one-component systems and negligible con-
formational changes ΔEij

int = 0, while it is significant for
donor�acceptor systems.
In Alq3, significant conformational changes (see section II.

D.1) lead to a Gaussian distribution ofΔEij
int with a small variance

of σint = 0.01 eV. The internal energy disorder is small compared
to the electrostatic (including polarization) energetic disorder
and hence does not affect the charge carrier mobility.
II.F. Spatial Correlations of Energetic Disorder.Long-range,

e.g., electrostatic and polarization, interactions often result in
spatially correlated disorder,81 which affects the onset of the
mobility-field (Poole�Frenkel) dependence.30,82,83

To quantify the degree of correlation, one can calculate the
spatial correlation function of Ei and Ej at a distance rij

CðrijÞ ¼ ÆðEi � ÆEæÞðEj � ÆEæÞæ
ÆðEi � ÆEæÞ2æ ð11Þ

where ÆEæ is the average site energy. C(rij) is 0 if Ei and Ej are
uncorrelated and 1 if they are fully correlated. For a system of
randomly oriented point dipoles, the correlation function decays
as 1/r at large distances.84

For systems with spatial correlations, variations in site energy
differences, ΔEij, of pairs of molecules from the neighbor list are
smaller than variations in site energies, Ei, of all individual
molecules. Since only neighbor list pairs affect transport, the
distribution ofΔEij rather than that of individual site energies, Ei,
should be used to characterize energetic disorder.
For Alq3, the spatial correlation function of the electrostatic

contribution to site energies, which is calculated for 512 mol-
ecules, is shown in Figure 7. It qualitatively reveals strong
correlations due to the large dipole moment of the meridional
isomer of Alq3 of approximately 4 Debye. Quantitatively, this
result is not converged with respect to the system size, and bigger
systems will exhibit even longer-ranged correlations. The inset of
Figure 7 shows that distributions ofΔEij for all and neighbor-list-
only pairs are clearly different. Note that respective distributions
of internal site energies are identical, indicating that this type of
disorder is spatially uncorrelated.
II.G. Solving the Master Equation. Having determined the

list of conjugated segments (hopping sites) and charge transfer
rates between them, the next task is to solve the master equation,
which describes the time evolution of the system

∂Pα
∂t

¼ ∑
β

PβΩβα � ∑
β

PαΩαβ ð12Þ

where Pα is the probability of the system to be in a state α at time
t andΩαβ is the transition rate from state α to state β. A state α is
specified by a set of site occupations, {αi}, whereαi = 1 (0) for an
occupied (unoccupied) site i, and the matrix Ω̂ can be con-
structed from rates ωij.
In particular, for a system with only one charge carrier, each

state is uniquely characterized by the index i of the site the carrier
occupies. In other words, only states of type i � {0, ..., 0, αi = 1,
0, ..., 0} are possible, and the corresponding probabilities Pi and
the transition rates Ωij are identical to site occupation probabil-
ities pi and the transfer rates ωij, respectively. Equation 12 can
then be rewritten as

∂pi
∂t

¼ ∑
j
pjωji � ∑

j
piωij ð13Þ

and can be solved using linear algebra. While being efficient for
stationary, low charge carrier density cases (one charge carrier
per simulation box), this approach can become unstable for
systems with high energetic disorder, where rates vary by several
orders of magnitude.
In more general cases, such as multiple charge carriers,

expressing the state picture (eq 12) in terms of site occupations
is required because of an extremely large total number of states.
For multiple charge carriers, the master equation can still be
rewritten in terms of occupation probabilities (see the Support-
ing Information) by assuming only site-blocking charge�charge
interactions and by using a mean-field approximation.85 The
analogue of eq 13 becomes, however, nonlinear and requires
special solvers. If, in addition, several different types of carriers,
such as holes, electrons, and excitons, are present in the system
and their creation/annihilation processes take place, it is practi-
cally impossible to link state and site occupation probabilities and
the corresponding rates.
Instead, the solution of eq 12 can be obtained by using kinetic

Monte Carlo (KMC) methods. KMC explicitly simulates the

Figure 7. Electrostatic site energy correlation function (eq 11) calcu-
lated for pairs from the neighbor list without (blue) and with polariza-
tion effects from the Thole model (red) as well as using a parametrized
distance-dependent ε(r) according to eq 8 (dashed line). Inset: Gaussian
fits to electrostatic site energy distributions for all pairs (σ = 0.30 eV) and
for pairs from the neighbor list (σ = 0.21 eV).
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dynamics of charge carriers by constructing a Markov chain in
state space and can find both stationary and transient solutions of
the master equation. The main advantage of KMC is that only
states with a direct link to the current state need to be considered
at each step. Since these can be constructed solely from current
site occupations, extensions to multiple charge carriers (without
the mean-field approximation), site-occupation dependent rates
(needed for the explicit treatment of Coulomb interactions),
and different types of interacting particles and processes are
straightforward.
To optimize memory usage and efficiency, a combination of

the variable step size method86 and the first reaction method is
implemented as described in the Supporting Information.
II.H. Extrapolation toNondispersiveMobilities.Predictions

of charge-carrier mobilities in partially disordered semiconductors
rely on charge transport simulations in systems which are only
several nanometers thick. As a result, simulated charge transport
might be dispersive for materials with large energetic disorder,87,88

and simulated mobilities are system-size-dependent. In time-of-
flight (TOF) experiments, however, a typical sample thickness is in
themicrometer range, and transport is often nondispersive. In order
to link the simulation and experiment, one needs to extract the
nondispersive mobility from simulations of small systems, where
charge transport is dispersive at room temperature.
Such extrapolation is possible if the temperature dependence

of the nondispersive mobility is known in a wide temperature
range. For example, one can use analytical results derived for one-
dimensional models.82,89,90 The mobility-temperature depen-
dence can then be parametrized by simulating charge transport
at elevated temperatures, for which transport is nondispersive
even for small system sizes. This dependence can then be used to
extrapolate to the nondispersive mobility at room temperature.32

For Alq3, the charge carrier mobility of a periodic system of 512
molecules was shown to bemore than 3 orders of magnitude higher
than the nondispersive mobility of an infinitely large system.32

Furthermore, it was shown that the transition between the dis-
persive and nondispersive transport has a logarithmic dependence
on the number of hopping sitesN.Hence, a brute-force increase of
the system size cannot resolve the problem for compounds with
large energetic disorder σ, since N increases exponentially with σ2.

III. MACROSCOPIC OBSERVABLES

Spatial distributions of charge and current densities can
provide better insight into themicroscopicmechanisms of charge
transport. If O is an observable which has the value Oα in a state
α, its ensemble average at time t is a sum over all states weighted
by the probability Pα to be in a state α at time t

ÆOæ ¼ ∑
α
OαPα ð14Þ

IfO does not explicitly depend on time, the time evolution of ÆOæ
can be calculated as

dÆOæ
dt

¼ ∑
α , β

½PβΩβα � PαΩαβ�Oα

¼ ∑
α , β

PβΩβα½Oα �Oβ�
ð15Þ

If averages are obtained from KMC trajectories, Pα = sα/s, where
sα is the number ofMarkov chains ending in the state α after time
t, and s is the total number of chains.

Alternatively, one can calculate time averages by analyzing a
single Markov chain. If the total occupation time of the state α is
τα, then

O̅ ¼ 1
τ∑α

Oατα ð16Þ

where τ = ∑α τα is the total time used for time averaging.
For ergodic systems and sufficient sampling times, ensemble

and time averages should give identical results. In many cases,
the averaging procedure reflects a specific experimental tech-
nique. For example, an ensemble average over several KMC
trajectories with different starting conditions corresponds to aver-
aging over injected charge carriers in a time-of-flight experiment. In
what follows, we focus on the single charge carrier (low concentration
of charges) case.
III.A. Charge Density. For a specific type of particles, the

microscopic charge density of a site i is proportional to the
occupation probability of the site, pi

Fi ¼ epi=Vi ð17Þ
where, for an irregular lattice, the effective volume Vi can be
obtained from a Voronoi tessellation of space. For reasonably
uniform lattices (uniform site densities), this volume is almost
independent of the site, and a constant volume per cite, Vi =V/N,
can be assumed. In the macroscopic limit, the charge density can
be calculated using a smoothing kernel function, i.e., a distance-
weighted average over multiple sites. Site occupations pi can be
obtained from eq 14 or eq 16 by using the occupation of site i in
state α as an observable.
If the system is in thermodynamic equilibrium, that is without

sources or sinks and without circular currents (and therefore no
net flux), a condition known as detailed balance holds

pjωji ¼ piωij ð18Þ

Figure 8. Isosurface of the current density for amorphous Alq3 (512
molecules, external field Fz = 107V/m, distance-dependent dielectric
constant, DFT-based transfer integrals). Currents have filamentary
structure due to large correlated energetic disorder.91 The red stream-
traces depict interpolated charge pathways.
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It can be used to test whether the system is ergodic or not by
correlating log pi and the site energy Ei. Indeed, if λij = λji, the
ratios of forward and backward rates are determined solely by the
energetic disorder, ωji/ωij = exp(�ΔEij/kBT) (see eq 1).
III.B. Current. If the position of the charge, r, is an observable, the

time evolution of its average Æræ is the total current in the system

J ¼ eÆvæ ¼ e
dÆræ
dt

¼ e∑
i, j
pjωjiðri � rjÞ ð19Þ

Symmetrizing this expression, we obtain

J ¼ 1
2
e∑
i, j
ðpjωji � piωijÞrij ð20Þ

where rij = ri � rj. Symmetrization ensures equal flux splitting
between neighboring sites and the absence of local average fluxes in
equilibrium. It allows one to define a local current through site i as

J i ¼
1
2
e∑

j
ðpjωji � piωijÞrij ð21Þ

A large value of the local current indicates that the site contributes
considerably to the total current. A collection of such sites thus
represents most favorable charge pathways.
Figure 8 illustrates site currents for amorphous Alq3 for a

system of 512 molecules. The distribution of currents is very
inhomogeneous, and some pathways are sampled more fre-
quently than the others, which is a direct consequence of a rough
and correlated energy landscape.91

III.C. Mobility and Diffusion Constant. For a single particle,
e.g., a charge or an exciton, a zero-field mobility can be determined
by studying particle diffusion in the absence of external fields. Using
the particle displacement squared,Δri

2, as an observable, we obtain

2dDγδ ¼ dÆΔri, γΔri, δæ
dt

¼ ∑
i, j
i6¼j

pjωjiðΔri, γΔri, δ �Δrj, γΔrj, δÞ

¼ ∑
i, j
i6¼j

pjωjiðri, γri, δ � rj, γrj, δÞ
ð22Þ

Here, ri is the coordinate of the site i; Dγδ is the diffusion tensor,
γ,δ = x, y, z; and d = 3 is the system dimension. Using the
Einstein relation

Dγδ ¼ kBTμγδ ð23Þ
one can, in principle, obtain the zero-field mobility tensor μγδ.
Equation 22, however, does not take into account the use of
periodic boundary conditions when simulating charge dynamics.
In this case, the simulated occupation probabilities can be com-
pared to the solution of the Smoluchowski equation with
periodic boundary conditions (see the Supporting Information
for details).
Alternatively, one can directly analyze time-evolution of the

KMC trajectory and obtain the diffusion tensor from a linear fit to
the mean square displacement, Δri,γΔri,δ = 2dDγδt.
The charge carrier mobility tensor, μ̂, for any value of the

external field can be determined either from the average charge
velocity defined in eq 19

Ævæ ¼ ∑
i, j
pjωjiðri � rjÞ ¼ μ̂F ð24Þ

or directly from the KMC trajectory. In the latter case, the
velocity is calculated from the unwrapped (if periodic boundary
conditions are used) charge displacement vector divided by the
total simulation time. Projecting this velocity on the direction of
the field F yields the charge carrier mobility in this particular
direction. In order to improve statistics, mobilities can be
averaged over several KMC trajectories and MD snapshots.
For Alq3, the field dependence of the mobility (Poole�

Frenkel plot) is shown in Figure 9 for a system of 4096molecules.
To illustrate the role of disorder and correlations, we also show
the field dependence for a systemwithout energetic disorder (top
panel) and without correlated energetic disorder (randomly
shuffled site energies). Energetic disorder reduces the value of
mobilty by 6 orders of magnitude. The Poole�Frenkel behavior
for small fields can only be observed if correlated disorder is taken
into account. Note that, for a system with such large energetic
disorder, the absolute values of (nondispersive) mobility are
systematically overestimated due to significant finite size effects
(see section II.H and ref 32). The experimentally measured value
of the hole mobility at small fields lies between 10�9 and
10�8cm2 V�1 s�1.92

IV. IMPLEMENTATION

The toolkit is implemented using modular concepts intro-
duced earlier in the versatile object-oriented toolkit for coarse-
graining applications (VOTCA).42 The VOTCA structures are
adapted to reading atomistic trajectories, mapping them onto
conjugated segments and rigid fragments, and substituting (if
needed) rigid fragments with the optimized copies.

The molecular orbital overlap module calculates electronic
coupling elements between conjugated segments from the
corresponding molecular orbitals. It relies on the semiempirical
INDO Hamiltonian and molecular orbitals in the format pro-
vided by the GAUSSIAN package. An alternative, density-func-
tional-based approach, has interfaces to the GAUSSIAN and
TURBOMOLE packages. An interface to the TINKER package

Figure 9. Poole�Frenkel plots for a system of 4096 molecules.
Mobilities were calculated by averaging over ten, 0.1-s-long (10�5 s
for no disorder), KMC runs and six different field directions. Transfer
integrals were calculated using DFT; energetic disorder is based on the
distance-dependent dielectric constant fitted to the site energy distribu-
tion of the Thole model.



3344 dx.doi.org/10.1021/ct200388s |J. Chem. Theory Comput. 2011, 7, 3335–3345

Journal of Chemical Theory and Computation ARTICLE

is provided for calculations of electrostatic and polarization
contributions to energetic disorder.

The kinetic Monte Carlo module reads in the neighbor list,
site coordinates, and hopping rates and performs charge dy-
namics simulations using either periodic boundary conditions or
charge sources and sinks.

The toolkit is written as a combination of modular C++ code
and scripts. The data transfer between programs is implemented
via a state file or database, which is also used to restart simula-
tions. Analysis functions and most of the calculation routines are
encapsulated by using the observer pattern,93 which allows the
implementation of new functions as individual modules.

V. SUMMARY

To summarize, we have presented a toolkit for developing and
testing methods for charge transport simulations in disordered
organic semiconductors. The core of the toolkit is based on a
reader and a postprocessor of atomistic trajectories, a fast
molecular orbital overlap calculations library, and a kinetic
Monte Carlo code. To illustrate its functionality, we have studied
charge transport in amorphous tris-(8-hydroxyquinoline)aluminum,
a typical organic semiconductor. The source code of the toolkit is
available under the Apache license (www.votca.org).
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