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ABSTRACT: Quantitative structure�property relationships (QSPRs) have been developed and assessed for predicting the
reorganization energy of polycyclic aromatic hydrocarbons (PAHs). Preliminary QSPR models, based on a combination of
molecular signature and electronic eigenvalue difference descriptors, have been trained using more than 200 PAHs. Monte Carlo
cross-validation systematically improves the performance of the models through progressive reduction of the training set and
selection of best performing training subsets. The final biased QSPR model yields correlation coefficients q2 and r2 of 0.7 and 0.8,
respectively, and an estimated error in predicting reorganization energy of (0.014 eV.

I. INTRODUCTION

A key property of organic semiconducting materials is that
their conducting properties can be tuned by optimizing their
chemical structure.1�5 A practical route to do this includes the
synthesis of a new compound, optimization of its processing
conditions, fabrication of the device, and measurement of its
performance (properties). By repeating this procedure, one can
formulate structure�processing�property relationships and
proceed with the rational design of organic semiconductors.

It is desirable to assist the design by optimizing material pro-
perties using computer simulations. First, methods are required
that are capable of predicting the property of interest starting
from the chemical structure, preferably without fitting para-
meters. The second step consists of correlating these properties
with the corresponding structures for a specified training set of
compounds and formulating quantitative structure�property
relationships (QSPRs). Finally, improved compounds are iden-
tified for a specific property range.

For organic semiconductors, already the first step in this
scheme is nontrivial since charge carrier mobility depends on
molecular geometry, electronic structure, and global percolation
pathways for charge carriers. Without discussing any details, this
represents a typical multiscale problem, and attempts to solve it
constitute an entire research field.6�22 Current experience suggests
that it is very difficult to directly evaluate charge carriermobility as a
property of interest for an arbitrary chemical compound, since
several assumptions are necessary regarding material morphology,
the type of transport, and the model used to describe it. One could,
however, ask whether it is possible to find adequate QSPRs that
relate chemical structure to charge transport properties, the link
between chemical structure and mobility being established first.

In this paper, we construct and assess the quality of several
such QSPRs in the context of organic semiconductors. As a test

system, we use polycyclic aromatic hydrocarbons (PAHs). PAHs
or, more specifically, discotic liquid crystals have already found
application in organic solar cells and field effect transistors.2,23,24

A typical chemical structure of a discotic liquid crystal consists of
a flat conjugated core with side chains attached to its periphery.
Discotics self-assemble into columnar structures with aromatic
cores stacked on top of each other. Overlap of the π orbitals of
these cores enables charge transport along columns, rendering
these materials one-dimensional semiconductors. The efficiency
of charge transport can be engineered by either varying the shape
and size of the conjugated core or influencing their packing
through the modification of side chains.

Due to structural, dynamic, and energetic disorder, charge
transport in discotic liquid crystals occurs via charge carrier hopping
between the neighboring molecules. The rate of hopping is given
by the high-temperature nonadiabatic Marcus theory:6,25,26

ω ¼ J2
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where J is the electronic coupling matrix element between the
donor and acceptormolecules,λ is the reorganization energy,ΔG is
the free energy difference between the initial and final states, and
T is the temperature.

Equation 1 identifies several parameters important for charge
transport. The transfer integral J is related to the overlap of
electronic orbitals, highest occupied molecular orbital (HOMO)
for the hole and lowest molecular orbital (LUMO) for the
electron transport. As such, it is very sensitive to the relative
position and orientation of neighboring molecules.13,17,27
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In columnar phases of discotics, the maximum of the transfer
integral is achieved in a face-to-face molecular arrangement, with
the typical intermolecular distance of d = 3.5 Å.24,28�30 In what
follows, we assume such an “ideal”molecular arrangement, since
it maximizes charge transport and hence provides an upper
bound for the charge mobility which can be reached experimen-
tally. We ignore the distribution in transfer integrals due to
thermal fluctuations as well as static defects in morphology.
Another parameter,ΔG, is the free energy difference between the
states with charge localized on a donor or an acceptor of the
charge transfer complex. For an ideal face-to-face arrangement,
this contribution vanishes due to equivalence of the initial and
final states. Finally, the internal reorganization energy, λ, ex-
presses the strength of electron�phonon coupling and has an
exponential impact on the transfer rate, with small λ favoring
more efficient charge transport.

For an ideal face-to-face columnar alignment, the mobility
of the charge carrier along the column is proportional to the

hopping rate, eq 1, with ΔG = 0:
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where d is the distance between neighboring sites. We can
therefore argue that large hopping rates (that is, large transfer
integrals, small reorganization energies) favor high charge mo-
bilities. Hence, the potential descriptors shall link the chemical
structure of a compound with the hopping rate, or, alternatively,
J and λ.

In this study, we develop appropriate structure�mobility
QSPRs. To do this, we first present how the PAH compound
data set was generated and used to select the parameters
dominating the charge transport in columnar phases of discotics.
We then present two descriptors and assess their performance
within preliminary QSPR models. Finally, a robust QSPR model
is developed using Monte Carlo cross-validation for variable
training/test set ratios.

Figure 1. Analysis of reorganization energies, transfer integrals, and transfer rates in the PAH compound data set: Sorted values of (a) λ, (b) J, and (c)ω
as functions of compound indices, as well as the respective compound distributions (red lines). For illustrative purposes, several compounds at λ values
of 0.3 eV (benzene), 0.19 eV (triphenylene), 0.14 eV (anthracene), 0.13 eV (coronene), and 0.09 eV (pentacene) are shown. Panel d shows a combined
plot of the three properties against the λ-sorted compound index. The red dash-dotted line indicates a λ-only prediction of the transfer rates based on
eq 1, assuming a constant transfer integral for the entire data set.
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II. COMPOUND DATA SET

Even for an “ideal” molecular packing, it is not immediately
obvious which of the two physical parameters, J or λ, is more
important for charge transfer rate prediction. In order to identify
the dominant physical parameter and set up the reference values
for QSPRs, we have generated a compound data set of PAHs and
analyzed its properties. Starting from benzene, we have appended
additional aromatic rings at random available bonds. We have
used standard carbon�carbon and carbon�hydrogen bond
lengths and angles, checking for atom overlaps as well as
aromaticity (H€uckel rule) and discarding multiple copies of the
same PAH. Thus, a data set of 211 closed shell aromatic PAHs
with up to nine benzene rings has been generated.

For hole transport, the reorganization energy can be written as
a sum of the relaxation energies in neutral and positively charged
states

λ ¼ Eþn � E0n þ E0c � Eþc ð3Þ

where Eg
q is an energy of the compound in charge state q and

geometry g. q= 0 corresponds to a neutral molecule and q = + to a
cation. g = n indicates optimized geometry of a neutral molecule,
while g = c corresponds to an optimized cation geometry. Hence,
four calculations per compound are necessary, two geometry
optimizations for the neutral (En

0) and cationic (Ec
+) species and

two single point energy calculations for the cationic species in the
neutral geometry (En

+) and for the neutral species in the cationic
geometry (Ec

0).
Reorganization energies were computed using density func-

tional theory (DFT; B3LYP functional,31 the 6-311++g(d,p)
basis set) using the Gaussian 03 package.32 Figure 1a shows the
values of λ in ascending order together with their distribution in
the data set. The reorganization energies of 211 compounds are
spread from 0.06 to 0.30 eV.

Transfer integrals Jwere calculated for a cofacial geometry and
molecular separation of 3.5 Å using Zerner’s Intermediate Neglect
of Differential Overlap method as implemented in the Molecular
Orbital Overlap package.33 Figure 1b shows the resulting values of
J in ascending order and their distribution within the data set. The
transfer integrals span a range of 0.1 to 0.5 eV, which is relatively
large due to the assumed columnar stacking of the molecules. This
distribution is sharply peaked around 0.4 eV, indicating that there
are only small variations of Jwithin the data set. The corresponding
distribution of transfer rates ω is shown in Figure 1c.

Figure 1d combines the three parameters x = λ, J, and ω
plotted as a function of the λ-sorted compound index. All values
are shown relative to the value of the compound with index zero
(x0). This representation illustrates that among the three parameters
the reorganization energy has the largest relative variance and that
the transfer integrals only slightly fluctuate around a constant value.
To further support this conclusion, we have included a λ-only
estimate of the transfer rates, with a constant transfer integral for the
entire data set. The result, shown in Figure 1d, corroborates the
assumption that, for an “ideal” packing considered here, the
reorganization energy is a dominant factor influencing the transfer
rates and thereby the charge carrier mobilities. Henceforth, we will
concentrate on developing QSPRs for the reorganization energy λ.

III. DESCRIPTORS

QSPR relies on the definition of descriptors that characterize
the chemical structure, for instance, the number of atoms,

molecular mass, and deviations of the molecular shape from
planarity or linearity. Several scalar descriptors that have been
investigated but rejected due to their low correlation with the
reorganization energy are described in the Supporting Information.

The two descriptors, molecular signature and Δε, had the
largest correlation with λ. We first discuss their use for the
preliminary QSPR models that are based on the full 211-com-
pound PAH data set. We then present the development of “biased”
QSPR models after partitioning the data set into a 188-compound
training set and a 23-compound test set. Finally, we address the
predictive power of the biased models for the test set compounds.
A. Molecular Signature. The molecular signature is a compi-

lation of a set of atomic signatures, {σ}, that occur in a molecule.
It was first presented and applied in the context of structure
elucidation34 and later defined for acyclic compounds and used in
QSPR analyses.35 An atomic signature describes the extended
covalent bonding neighborhood of an atom within a molecule up
to a certain “height”, h. Figure 2 illustrates how atomic signatures,
hσ, are generated. The molecular signature for a given height is a
vector that contains the frequencies of all of the hσ’s occurring in
the molecule. As such, it represents a methodical codification
system over an alphabet of atom types.
The MolConverter program from ChemAxon36 was used

to convert the xyz-coordinate files of the structures in our
PAH data set to corresponding simplified molecular input line
entry specification (SMILES) strings. SMILES describe chemical
structures and topologies using short textual strings.37 From the
SMILES strings, molecular signatures have been determined for
individual heights. The correlation between these molecular
signatures alone and the reorganization energy is, however,
insufficient formaking predictions of λ. For example, the correlation

Figure 2. Atomic signatures hσ from height h = 0�4 for an atom X in
2-methyldecahydronaphtalene. hσ(X) is determined as follows: (1) The
subgraph containing all atoms at distance 4 from atomX is extracted. (2)
This subgraph is canonicalized with atom X having label 1. (3) A tree
spanning all edges of the subgraph is constructed. (4) All labels
appearing only once are removed, and the remaining labels are renum-
bered in the order they appear. (5) The atomic signature is determined
after reading the tree in a depth-first order, the depth corresponding to
height h.
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coefficient, r2, of molecular signatures with h ∈ (0, 1, 2, 3) versus
λ does not exceed 0.39.
B. HOMO Eigenvalue Difference, Δε. As mentioned above,

the reorganization energy λ expresses the strength of electro-
n�phonon coupling in the molecule. Thus, a weak correlation of
λ and the descriptor based solely on structural features, such as
the molecular signature, is not surprising. In order to add
electronic properties to descriptors, we note that eq 3 can be
rearranged in terms of the difference between vertical excitation
energies, linking states of the same geometry but a different
number of electrons Ne, yielding

λ ¼ δn � δc,

δn ¼ Eþn ðNe � 1Þ � E0nðNeÞ
δc ¼ Eþc ðNe � 1Þ � E0cðNeÞ ð4Þ

Here, δn is the iso-nuclear change in energy due to removal of an
electron from the neutral species in its relaxed geometry, while δc
is the iso-nuclear change in energy due to addition of an electron
to the cationic species in its relaxed geometry.
Based on molecular grand-canonical ensemble DFT,38�40

we can Taylor-expand δn and δc in number of electrons, Ne

EðNe þ ΔNeÞ ¼ EðNeÞ þ ∂EðNeÞ
∂Ne

ΔNe þ OðΔN2
e Þ ð5Þ

For an exact expression for the exchange-correlation potential
within density-functional theory, all higher order terms would
vanish for 0 e ΔNe e 2 because the total potential energy of a
molecule with fixed external potential changes only linearly as
one varies the number of electrons.41,42 Since the derivative of
the energy with respect to Ne is the eigenvalue of the highest
occupied molecular orbital (HOMO),43,44 we can combine
eqs 4 and 5 and express λ as

δn ¼ ∂E0nðNeÞ
∂Ne

ΔNe ¼ ε0nðNeÞΔNe

δc ¼ ∂E0cðNeÞ
∂Ne

ΔNe ¼ ε0cðNeÞΔNe

λ ¼ ε0c � ε0n ð6Þ
whereΔNe =� 1 and εn

0(Ne) and εc
0(Ne) denote the eigenvalues

of the highest occupied molecular Kohn�Sham orbitals of the

neutral molecule in the respective optimal neutral and cationic
geometries.
The exact form of the exchange-correlation functional is,

however, unknown. Moreover, the self-interaction error increases
for fractional occupation within widely used functionals.45 The
difference between electronic eigenvalues of the HOMOs in the
neutrally and cationically relaxed geometries, εc

0 � εn
0, yields

therefore only an estimate of λ. In our case, we have tested the
quality of this approximation for the B3LYP hybrid functional by
correlating the λ obtained from the eigenvalues as in eq 6with the
λ obtained from the energies according to eq 3. As shown in
Figure 3a, the correlation is very strongwith a correlation coefficient
r2 of 0.96. This could be further improved by using functionals that
correctly account for fractional occupation numbers.42

The (approximate) determination of the reorganization en-
ergy according to eq 6 still requires the optimizations of neutral
and cationic geometries, as well as a single-point calculation
for the neutral molecule in the cationic geometry. While this is
one calculation less than in eq 3, it is inconvenient since ideally
one would like to predict λ from ground-state properties of the
neutral molecule alone, i.e., without having to calculate εc

0. We
have therefore probed whether εc

0 correlates with εn
0 in the PAH

data set. The inset in Figure 3a shows εc
0 plotted versus the

respective εn
0. The linear regression yields εc

pred = 0.93εn
0 � 0.25

[eV] with a remarkable correlation of r2 = 0.99. On the basis of
these observations, we have used

Δε � εpredc � ε0n ð7Þ

as an additional scalar descriptor for λ.
Figure 3b shows the correlation of the actual λ from eq 3 with

the estimated Δε, λ ≈ 1.01Δε + 0.001 [eV]. The regression for
this expression, however, yields a rather low correlation coeffi-
cient of only r2 = 0.39. Thus, solely an electronic descriptor
cannot reliably predict reorganization energies.

IV. QSPR MODELS

From the two preceding sections, it is apparent that when
used separately neither the structural molecular signature nor the
electronic eigenvalue descriptor Δε are sufficient for reliable
quantitative estimates of the reorganization energy in our set of
PAHs. Since λ is a measure of the coupling of structural and

Figure 3. Correlations of calculated reorganization energies λ of the PAH data set with differently predicted values. In panel a, the correlation to εc
0� εn

0

according to eq 4 results in λ = 1.05 � (εc
0 � εn

0) � 0.004 [eV] with r2 = 0.96 (blue triangles). The inset shows the correlation between the highest
occupied electronic eigenvalue of the neutral molecule in cationic geometry, εc

0, with the respective value for the neutral geometry εn
0, resulting in εc

0 =
0.93� εn

0� 0.25 [eV] and r2 = 0.99. Using this relation to predict λ from εn
0 only according toΔε in eq 6 yields the correlation shown in panel b with λ =

1.01 � Δεn
0 + 0.001 [eV], r2 = 0.39 (red squares).
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electronic degrees of freedom in a molecule, it is natural to
attempt a combination of the two descriptors.
A. Preliminary QSPR Models. For the different heights of

molecular signatures (see Section IIIA), we have set up different
preliminary QSPR models using signatures of heights 0�3
through 0�5 for the PAH compound data set (without outliers).
Specifically, leave-one-out cross-validated correlation coeffi-
cients (q2) have been calculated using multiple linear regression
(MLR) and partial least-squares (PLS). These coefficients,
together with the preliminary models, are listed in Table 1. For
the sake of completeness, we also present the results for additional
models that are not based on Δε but that combine molecular
signature with various other scalar structural descriptors. More
technical details can be found in the Supporting Information.
Our results show that while the PLS calculations yield a q2 of

around 0.50, indicating predictability in general for all of the
models, they do not suggest a preference for a particular
descriptor combination. MLR results, in contrast, indicate a clear
preference for the model combination of the height 0�3
molecular signature with Δε, which has a q2 of 0.62 (see model
ii in Table 1). For the alternative combinations of molecular
signature and various structural scalar descriptors, the corre-
sponding r2 ranges only from 0.20 to 0.29. An additional model
which combines all descriptors considered in this study (see, e.g.,
model vii in Table 1) does not improve the performance of
preliminaryQSPRmodel ii, evenwhen using unsupervised forward
selection of the descriptors (see the Supporting Information) to
further eliminate redundancy among descriptors (model viii).
Thus, the combination of height 0�3 signatures and Δε in

model ii is identified as the optimal starting combination for
developing the “biased” QSPR model in the next section. More
specifically, the logarithm of λ is estimated by

log10 λ ¼ cλΔε þ c0 þ ∑
i
ciσi ð8Þ

where i runs over all 63 signatures and where c0, cλ, and {ci}
are the trained QSPR coefficients of the intercept and the
descriptors Δε and signatures, respectively (see the Supporting
Information).
B. Biased QSPR Models. We found that the previously

identified optimal preliminary QSPR model can further be

developed into a “biased” QSPR model with the help of Monte
Carlo cross-validation. To this end, the PAH compound data set
was first split into a total 188-compound training set and a test set
of 23 compounds, enabling the validation of the biased models.
The test set was determined using dissimilarity-based compound
selection, as described in the Supporting Information. The
resulting test set compounds are shown in Table 2.
Thereafter, out of the total 188-compound training set, subsets

with varying percentages x were defined, where x ∈ (5, 10, 15, ...,
90, 95)%. For each x, 10 000 random partitions from among the
188 compounds were generated. All of the random partitions
were subjected to training using the preliminary QSPR model ii,
i.e., height 0�3 molecular signatures combined with Δε based
on PLS.
The models obtained, dubbed Mx

k (k ∈ 1, 2, ..., 10 000), were
subsequently ranked according to their performance as measured
by q2. For M100, q

2 = 0.44 and r2 = 0.53, which is below the
conventional predictive threshold of 0.50. As described in more
detail in the Supporting Information, q2 can be improved by
reducing the training subset size x, followed by the QSPR model
training of 10 000 random partitions for each of these reduced
training subsets.
Figure 4 illustrates the results for varying percentage x. The

average q2, i.e., the average of the cross-validated correlation
coefficients over all randomly chosen partitions, declines pro-
gressively as the training set size decreases. The standard devia-
tion around that average, however, increases even more, thereby
enabling us to identify “biased”modelsMx

I , Mx
II, Mx

III, etc., namely
models that yield the respective best, second best, third best, etc.
qx
2 out of all 10 000 models that have been trained for each
partition at a particular x. This behavior is in line with ref 46.
C. Test Set Results of Biased QSPR Models. Figure 4

demonstrates overfitting, namely, that predicting the reorganiza-
tion energy based on the biased (best performing) Monte Carlo
models will always be themore favorable the smaller the subset is.
From the behavior of q2 versus x, one could therefore be tempted
to deduce that the optimal model should be based on the smallest
training subset. Obviously, q2 is not a sufficient requirement for
the predictability of a model, and only external validation
provides a sound assessment of a QSPR model.47 Thus, to
determine the optimal size of the training subset, we compute
the root-mean-square (RMS) deviation of predicted λ from
actual λ for the 23 test set molecules using the biased Mx

I , where
x = 5, 10, ..., 100. Note that we excluded two outliers from the test
set since they had the largest residuals and corresponded to
extreme λ values (maximum and minimum) within the entire
compound data set.
As shown in Figure 4, as x decreases from 100 to 60%, RMS

remains roughly constant (∼ 16 meV) and starts to strongly
increase in oscillatory fashion for subsets smaller than 55%. Since
RMS is minimal at x = 40% (14 meV), we define the correspond-
ing biasedmodelM40 as our best QSPRmodel for predicting λ of
PAHs. In contrast, model M100 has a higher RMS of 17 meV.
Biased QSPR model M40 does not only have a lower RMS
deviation but also exhibits improved correlation coefficients, q2 =
0.70 and r2 = 0.80. Table 2 lists the residuals for the predictions
of λ based on models M100 and M40.
In summary, model M100 predicts the reorganization energy of

more than 75% compounds within a reasonable margin of error
((20 meV). The biased model M40, however, predicts a larger
number (>85%) of test set compounds within the same error
margin of (20 meV.

Table 1. Preliminary QSPR Models, i�viii, and Corre-
sponding q2 Values for Multiple Linear Regression (MLR)
and Partial Least Squares (PLS), Respectivelya

h type #σ i ii iii iv v vi vii viii

0�3 MLR 63 0.29 0.62 0.20 0.28 0.29 0.29 0.63 0.64

0�3 PLS 63 0.47 0.47 0.47 0.46 0.47 0.47 0.46 0.45

0�4 PLS 431 0.50 0.50 0.50 0.49 0.50 0.50 0.50 0.26

0�5 PLS 1635 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.31
a See section IV.A and the Supporting Information for more details.
Here, h is the signature height; #σ refers to the number of atomic
signatures, i.e., the dimension of the molecular signature vector. These
models were generated using the data set of 211 PAHs. Highlighted
model ii has been used for the construction of the “biased” QSPR. (i)
molecular signatures. (ii) molecular signatures + Δε. (iii) molecular
signatures + dM (molecular distance). (iv) molecular signatures + dL
(molecular linearity). (v) molecular signatures + dP (molecular
planarity). (vi) molecular signatures + dH (hydrogen repulsion). (vii)
molecular signatures + dM + dL + dP + dH + Δε. (viii) vii redundant
descriptors removed based on UFS.



2554 dx.doi.org/10.1021/ct200231z |J. Chem. Theory Comput. 2011, 7, 2549–2555

Journal of Chemical Theory and Computation ARTICLE

V. CONCLUSIONS

On the basis of conceptual density functional theory, we have
developed a frontier orbital eigenvalue descriptor Δε for the
empirical prediction of reorganization energies, λ. For a compound
data set of over 200 polycyclic aromatic hydrocarbons, we have
investigated the performance of various QSPR models aimed at
predicting reorganization energies of PAHs based on a combina-
tion of a structural and an electronic descriptor, molecular
signature, and Δε, respectively. For the entire data set, we find
that preliminary QSPR models yield at best a correlation coeffi-
cient of q2 = 0.5.MonteCarlo cross-validationwith training subsets

permits the definition of a “biased”model with significantly better
performance, yielding a q2 and r2 of 0.70 and 0.80, respectively, and
a root-mean-square deviation of predicted from actual λ of 0.014
eV. Additional scalar structural descriptors, such as average intera-
tomic distance, deviation from linearity, or deviation fromplanarity
yielded only negligible improvement when combined with molec-
ular signature. Furthermore, we have confirmed the basic assump-
tion of selection algorithms based on dissimilarity, which requires
that compounds spanning structure/descriptor space also span
property/activity space. The main drawback of the proposed
descriptor is that it does not account accurately enough for the
changes of the molecular geometry upon charging/discharging.
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