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In this overview, I will present some more or less widely used integration
schemes for molecular dynamics simulations. It’s essentially a ‘cocktail’ of
undergrad mechanics and undergrad numerics using a smart ‘recipe’. After
deriving very simple schemes, I will sketch some general concepts for devising
more accurate integrators. These notes are an excerpt from some of Burkhard
Dünweg’s lecture notes [1, 2] and my diploma thesis [3].

1 A bit of theory

1.1 Equations of motion of classical mechanics

The Lagrangian equation of motion for a Hamiltonian system of particles is

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (1)

where qi and q̇i are generalized coordinates and velocities, respectively, and the Lagrange
function is given in terms of the kinetic energy K and the potential U :

L = K − U. (2)

Using Cartesian coordinates ri and the usual definition of the kinetic energy

K =
1
2

∑
i

miṙ2
i (3)

and forces f i

f i = ∇riL = −∇riU, (4)

the Euler-Lagrange equation (1) yields Newton’s equation of motion

mir̈i − f i = 0. (5)
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Introducing generalized momenta pi conjugate to the coordinates

pi =
∂L

∂q̇i
, (6)

we can define the Hamiltonian for the system

H =
∑

i

q̇ipi − L. (7)

If the potential does not depend on the velocities q̇i and the time t, the Hamiltonian
resembles the energy. The Hamiltonian equations of motion are

q̇i =
∂H

∂pi
,

ṗi = −∂H

∂qi
.

(8)

For Cartesian coordinates we get

ṙi =
pi

mi
,

ṗi = f i.
(9)

While (5) is a system of 3N second-order differential equations, (9) is a system of 6N first
order differential equations. Both systems are equivalent but they can lead to different
discrete algorithms for their solution. The Euler algorithm introduced later uses the first
order system while the Verlet algorithm uses the second order system.

1.2 Liouville’s equation

Let Γ = {ri,pi} be the phase-space formed by all positions and momenta. It contains
all information about the microscopic state of the system. A trajectory in phase-space
is denoted by Γ(t) and the phase-space density is denoted by ρ(Γ; t). We introduce the
Liouville operator L

iL =
∑

i

(
ṙi

∂

∂ri
+ ṗi

∂

∂pi

)
. (10)

For an observable A(Γ) in phase-space the time evolution is

d

dt
A(Γ) =

∑
i

(
∂A

∂ri
ṙi +

∂A

∂pi

ṗi

)
= iLA(Γ), (11)

With this notation, from the equations of motion follows immediately Liouville’s theorem

∇ΓΓ̇ = 0, (12)

which implies the continuity equation for the phase-space density

∂ρ

∂t
+∇Γ

(
ρΓ̇

)
= 0. (13)
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As a consequence, the phase-space density along a trajectory is conserved
d

dt
ρ(Γ; t) = 0. (14)

Application of the chain rule yields Liouville’s equation
∂

∂t
ρ(Γ; t) + iLρ(Γ; t) = 0. (15)

Liouville’s equation is the basis for deriving symplectic integrators.

2 Simple integration schemes

I will focus on Verlet-like algorithms (in contrast to Gear predictor-corrector algorithms).
A discretization of the equations of motion can be obtained by Taylor expansion:

ri(t + ∆t) = ri(t) + ∆t vi(t) +
∆t2

2mi
f i(t) +

∆t3

3!
...r i(t) +O(∆t4) (16)

vi(t + ∆t) = vi(t) +
∆t

mi
f i(t) +

∆t2

2
v̈i(t) +

∆t3

3!
...v i(t) +O(∆t4). (17)

2.0.1 Euler algorithm

Perhaps the most simple integration scheme based on equations (16) and (17) is realized
by the Euler algorithm. The trajectory is calculated according to

ri(t + ∆t) = ri(t) + ∆t vi(t) +
∆t2

2mi
f i(t) +O(∆t3)

vi(t + ∆t) = vi(t) +
∆t

mi
f i(t) +O(∆t2)

(18)

The Euler algorithm is neither time-reversible nor phase-space preserving and hence
rather unfavorable. Nevertheless, the Euler scheme can be used to integrate other equa-
tions of motion, e.g. the Boltzmann equation.

2.0.2 Verlet algorithm

If we solve the second order system (5) based on the current positions ri(t) and forces
f i(t) and the previous positions ri(t−∆t), we get the Verlet algorithm. The derivation
is straightforward:

ri(t−∆t) = ri(t)−∆t vi(t) +
∆t2

2mi
f i(t)−

∆t3

3!
...r i(t) +O(∆t4). (19)

The updating equation for the positions is obtained by adding (16) and (19), and for
the velocities by subtracting them, respectively:

ri(t + ∆t) = 2ri(t)− ri(t−∆t) +
∆t2

mi
f i(t) +O(∆t4),

vi(t) =
ri(t + ∆t)− ri(t−∆t)

2∆t
+O(∆t3).

(20)
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The velocities are actually not needed to compute the trajectories, but they are useful
for calculating observables like the kinetic energy. However, in the Verlet scheme the
velocities v(t) are only available once r(t + ∆t) has been calculated, i.e. one time step
later. Moreover, the updating of positions according to (20) gives rise to numerical
imprecision because a small term of order ∆t2 is added to a difference of O(1)-terms.

2.0.3 Leap-frog algorithm

To obtain both the positions and velocities from readily available quantities, the leap-frog
scheme can be applied. The updating equations are:

vi(t +
∆t

2
) = vi(t−

∆t

2
) +

∆t

mi
f i(t),

ri(t + ∆t) = ri(t) + ∆t vi(t +
∆t

2
).

(21)

The velocities are updated at half time steps and ‘leap’ ahead the positions. The current
velocities can be obtained from

vi(t) =
vi(t− ∆t

2 ) + vi(∆t + ∆t
2 )

2
. (22)

Numerical imprecision is minimized in the leap-frog scheme. However, the velocities are
still not accessible in an ad-hoc manner.

2.0.4 Velocity-Verlet algorithm

An algorithm that yields the positions, velocities and forces at the same time is given
by the Velocity-Verlet scheme. The positions and velocities are updated according to

ri(t + ∆t) = ri(t) + ∆t vi(t) +
∆t2

mi
f i(t) +O(∆t3),

vi(t + ∆t) = v(t) +
∆t

2mi
(f i(t) + f i(t + ∆t)) +O(∆t3).

(23)

The Velocity-Verlet scheme is algebraically equivalent to the original Verlet algorithm.
Equations (20) can be derived from (23) by elimination of the velocities in the position
update. Despite its simplicity the Velocity-Verlet algorithm is very stable and has be-
come the perhaps most widely used Molecular Dynamics algorithm. The Velocity-Verlet
scheme is a symplectic integrator, i.e. it preserves the volume in phase-space.

3 Splitting methods

3.1 The Trotter expansion

We can formally integrate the equation of motion for an observable to obtain

A(t) = exp (iLt) A(0). (24)
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The Liouville operator can be split into a position part and a momentum part:

iL = iLr + iLp, (25)

where
iLr =

∑
i

ṙi
∂

∂ri
iLp =

∑
i

ṗi

∂

∂pi

. (26)

These operators yield shifts of coordinates and momenta, respectively. To use iLr and
iLp in equation (24) we write the Trotter expansion of the Liouville operator

ei(Lr+Lp)∆t = ei∆t
2
Lp ei∆tLr ei∆t

2
Lp +O(∆t3). (27)

If we apply the single terms of this expansion to the positions and momenta, we get

ei∆t
2
Lp ri = ri

ei∆tLr ri = ri + ∆t ṙi

ei∆t
2
Lp pi = pi +

∆t

2
ṗi

ei∆tLr pi = pi.
(28)

Altogether we obtain

ei∆t
2
Lp ei∆tLr ei∆t

2
Lp ri(t) = ri(t) + ∆t ṙ(

∆t

2
)

= ri(t) + ∆t vi(t) +
∆t2

2mi
f i(t)

ei∆t
2
Lp ei∆tLr ei∆t

2
Lp pi(t) = pi(t) +

∆t

2
(ṗi(t) + ṗi(t + ∆t))

= pi(t) +
∆t

2
(f i(t) + f i(t + ∆t)) .

(29)

This yields exactly the updating equations (23) of the Velocity-Verlet algorithm. The
operators Lr and Lp are hermitian, thus ei∆t

2
Lp ei∆tLr ei∆t

2
Lp is a unitary operator,

which implies that the volume in phase-space is preserved. Time-reversibility is satisfied
because the equations are symmetric with respect to future and past coordinates. The
Trotter expansion (27) is correct up to terms of order ∆t3. Due to the deviations, the
true Hamiltonian H of the system is not strictly conserved. However, under certain
conditions it can be shown that some kind of pseudo-Hamiltonian is conserved. This
explains the absence of energy drift and is the reason for the good stability of the
Velocity-Verlet scheme.

3.2 Integrator for Langevin thermostat

Now we consider the Langevin equations of motion

d

dt
ri =

1
mi

pi, (30)

d

dt
pi = Fi − γi

[
1

mi
pi − ui

]
+ f i, (31)
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where ui is the solvent velocity in case of coupling to a lattice Boltzmann fluid, while
ui = 0 in case of the standard Langevin thermostat. Fi is the conservative deterministic
force, which (as before) depends only on the positions of the particles. The fluctuation–
dissipation relation reads

〈fiα〉 = 0, (32)〈
fiα (t) fjβ

(
t′
)〉

= 2γikBTδijδαβδ
(
t− t′

)
. (33)

In order to derive a Verlet-like algorithm, we rewrite the equations of motion using
the Fokker-Planck picture (Kramers-Moyal expansion, cf. [1]):

∂tρ(Γ; t) = (L1 + L2 + L3 + L4) ρ(Γ; t) (34)

with

L1 = −
∑

i

∂

∂ri
· pi

mi
, (35)

L2 = −
∑

i

∂

∂pi

· Fi, (36)

L3 =
∑

i

γi
∂

∂pi

·
[

1
mi

pi − ui

]
, (37)

L4 = kBT
∑

i

γi
∂2

∂p2
i

, (38)

which describe conservative real–space, conservative momentum–space, dissipative, and
stochastic propagation, respectively. Now we can again use the Trotter expansion

exp [(L1 + L2 + L3 + L4) ∆t] (39)
= exp [L1∆t/2] exp [(L2 + L3 + L4) ∆t] exp [L1∆t/2] + O(∆t3),

Observing that L1 contains only derivatives with respect to the particle positions and
L2+L3+L4 contains only derivatives with respect to the momenta, we thus get an O(h3)-
algorithm that subsequently shifts positions for ∆t/2, momenta for ∆t and positions
again for ∆t/2.

For this sequence, the solutions of the equations of motion can be found exactly. The
position update is trivially given by

ri(t +
∆t

2
) = ri(t) +

∆t

2
pi(t)
mi

. (40)

The momentum update is given by exactly solving the Langevin equation

d

dt
pi = Fi − γi

[
1

mi
pi − ui

]
+ f i (41)
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for constant Fi, ui. This is the main task which will allow us to construct the second–
order updating scheme.

Mathematically, Eq. (41) is nothing but the well–known problem of Brownian motion
in a harmonic potential (Ornstein–Uhlenbeck process). However, the solution shall be
worked out here for the convenience of the reader. We first re–write the equation as(

d

dt
+

γi

mi

)
pi = φi + f i, (42)

where we have introduced the abbreviation

φi = Fi + γiui, (43)

and consider the right hand side as an inhomogeneity. The solution of the homogeneous
equation is

pi(t) = exp
(
− γi

mi
t

)
pi(0). (44)

Variation of constants tells us that for the full problem we should use the ansatz

pi(t) = exp
(
− γi

mi
t

)
πi(t). (45)

The Langevin equation for πi then reads

d

dt
πi = exp

(
+

γi

mi
t

)
(φi + f i) . (46)

Taking into account that φi is constant, we can straightforwardly integrate this one time
step to find

πi(∆t) = πi(0) +
mi

γi

[
exp

(
+

γi

mi
∆t

)
− 1

]
φi +

∫ ∆t

0
dt exp

(
+

γi

mi
t

)
f i(t), (47)

or

pi(∆t) = exp
(
− γi

mi
∆t

)
pi(0) (48)

+
mi

γi

[
1− exp

(
− γi

mi
∆t

)]
φi

+
∫ ∆t

0
exp

(
− γi

mi
(∆t− t)

)
f i(t).

Since this is a linear operator acting on the Gaussian white noise, we find that the pi(∆t)
must be Gaussian random variables. We characterize these by calculating their first two
moments, taking into account the fluctuation–dissipation relation for the noise:

〈pi(∆t)〉 = exp
(
− γi

mi
∆t

)
pi(0) +

mi

γi

[
1− exp

(
− γi

mi
∆t

)]
φi, (49)
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〈[piα(∆t)− 〈piα(∆t)〉] [pjβ(∆t)− 〈pjβ(∆t)〉]〉 (50)

= mikBT

[
1− exp

(
−2

γi

mi
∆t

)]
δijδαβ .

Thus, the update of momenta can be written as

pi(∆t) = di(∆t)pi(0) + qi(∆t)φi + σi(∆t)ζi, (51)

where we have introduced the parameters

di(∆t) = exp
(
− γi

mi
∆t

)
, (52)

qi(∆t) =
mi

γi

[
1− exp

(
− γi

mi
∆t

)]
, (53)

σi(∆t) =

√
mikBT

[
1− exp

(
−2

γi

mi
∆t

)]
, (54)

which can be calculated at the beginning of the simulation. The random variables ζiα

are mutually uncorrelated, Gaussian, and have zero mean and unit variance. Taylor-
expanding the exponentials we recover the Velocity-Verlet scheme, which shows that
this is only first order in ∆t for Langevin dynamics.

3.3 Integrator for Anderson barostat

The Anderson barostat is based on the following Lagrangian [4, 5]

L =
∑

i

L2

2
miṡ2

i −
∑
i<j

Uij +
1
2
QV̇ 2 − PV, (55)

where mi is the mass of particle i, si are the scaled coordinates, Uij is the potential
between particles i and j, and Q is the mass associated to the piston.

Legendre transformation yields the Hamiltonian

H =
∑

i

1
2L2mi

π2
i +

∑
i<j

Uij +
1

2Q
Π2

V + PV (56)

and the equations of motion are

ṡi =
1

L2mi
πi (57)

π̇i = Lf i (58)

V̇ =
1
Q

ΠV (59)

Π̇V =
1

3V

∑
i<j

f ijsij +
1

3L2V

∑
i

1
mi

π2
i − P (60)
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Again, we use the Fokker-Planck picture to apply the Trotter expansion, where the
splitting of the operators is

iL1 = −
∑

i

Lf i
∂

∂πi
, (61)

iL2 = −

 1
3V

∑
i<j

f ijsij +
1

3L2V

∑
i

1
mi

π2
i − P

 ∂

∂Πv
, (62)

iL3 = −Πv

Q

∂

∂V
, (63)

iL4 = −
∑

i

πi

L2mi

∂

∂si
. (64)

With this, we arrive at the following algorithm:

1. p′
i = pi(t) + ∆t

2 f i(t)

2. ΠV (t + ∆t
2 ) = Πv(t) + ∆t

2

(
1

3V (t)

∑
i<j f ij(t)rij(t) + 1

3V (t)

∑
i

1
mi

p
′2
i − P

)
3. V (t + ∆t

2 ) = V (t) + ∆t
2QΠV (t + ∆t

2 )

4. r′i = ri(t) + ∆t L2(t)
L2(t+∆t/2)

p′
i

mi

5. V (t + ∆t) = V (t + ∆t
2 ) + ∆t

2QΠV (t + ∆t
2 )

ri(t + ∆t) = L(t+∆t)
L(t) r′i

p′′
i = L(t)

L(t+∆t)p
′
i

6. Πv(t+∆t) = ΠV (t+∆t
2 )+∆t

2

(
1

3V (t+∆t)

∑
i<j f ij(t + ∆t)rij(t + ∆t) + 1

3V (t+∆t)

∑
i

1
mi

p
′′2
i − P

)
7. pi(t + ∆t) = p′′

i + ∆t
2 f i(t + ∆t)

It is straightforward to extend this algorithm with noise and friction in order to integrate
the Langevin equations of motion for the NPT ensemble.
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References and further reading

The material presented here just summarizes the basics of integration methods, which
every simulator should be familiar with in my view. If you want to know more, take
a look into the literature or ask the experts in the group (e.g. Burkhard, Berk, Matej,
Torsten and others).
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