Constrained-Pairing Mean-Field Theory

Gustavo E. Scuseria

NAMET

MPIP, Mainz

23 SEP 10
Outline

• A novel model for strong correlations: Constrained-Pairing Mean-Field Theory

• Basic ideas about CPMFT and molecular dissociation examples

• Connection with UHF formalism

• Spin off: ROHF theory made simple
What is Static/Strong Correlation?

- It is all about **near-degeneracies**

- A single-determinant **RHF** wavefunction (with **correct symmetries**) becomes a **very poor descriptor** of the electronic structure

- **Static correlation examples:**
 - **Closed-shell H₂** at dissociation (**σ_g/σ_u** degeneracy)
 - Nonlocal, left-right correlation: the physics of **entanglement**
 - **Be atom**
 - Due to **2s²/2p²** near degeneracy
 - **Transition metals, lanthanides, and actinides**
 - Large **DOS** at Fermi energy => heavy fermions in solid state
How to deal with strong correlation?

- **Space- and spin-symmetry breaking** via an unrestricted formalism is the traditional way of dealing with nonlocal, left-right correlation in a computationally inexpensive manner.

- **Exchange hole localization** in DFT also incorporates static correlation but this introduces undesirable self-interaction error.

- **Breaking** space and spin symmetries have nasty consequences, e.g., on magnetic properties.

- **Correct** quantum numbers are hard to recover once symmetries are broken.
H_2: prototype of left-right static correlation
At dissociation, the symmetry-correct orbitals (σ_g and σ_u) become degenerate.

H_2: prototype of left-right static correlation
H_2: prototype of left-right static correlation

Unrestricted scheme breaks symmetry to capture left-right correlation
Exchange-Correlation Hole Localization

- Concept of “hole”: depletion in density that diminishes electron-electron repulsion:

\[E \text{ [x or c]} = - \int \int \rho(r) \rho_{\text{hole}}(r') / |r-r'| \]

- Holes are extensively used in DFT but can be rigorously calculated from wavefunctions

- \(H_2 \) near \(R_e \): both the exchange and correlation holes are localized with the reference electron

- \(H_2 \) at dissociation: exchange is completely delocalized over the two protons (exchange becomes nonlocal); correlation is nonlocal too and exactly cancels the exchange delocalization; \(XC \) hole is localized with the reference electron
2nd Flavor: Angular Static Correlation

• Related to near degeneracies in atoms

• Prototype case:
 4-electron series; 2s/2p near-degeneracy: Li−, Be, B+, C2+, N3+ ...

• When \(Z \to \infty \), atomic levels with same \(n \) but different \(L \) become degenerate ("angular" degeneracy)

• Correlation energy diverges as \(-0.01173 \ Z\)
Dynamic Correlation

• “Weak” as opposed to “strong” correlation

• Has strong basis set dependence because of electron-electron cusp (static correlation has weak basis set dependence)

• Ubiquitous in the 2e-series: He, Li+, Be²⁺...

• When \(Z \rightarrow \infty \), correlation energy goes to a constant (~44 mili \(E_H \)) independent of \(Z \)

• Treatable by perturbation or coupled-cluster theories
Strong Correlation Method Wish List

- Should preserve space and spin symmetries
- Should have low-computational cost (mean-field) instead of CASSCF or FCI combinatorial blowup
- Should cleanly separate static & dynamic correlation
- Should correctly dissociate any polyatomic molecule into ROHF atoms (or fragments)
- Should smoothly connect the dissociation limit (full entanglement) with the equilibrium region (where it should yield RHF in the absence of static correlation)
How do we accomplish this?

• The CPMFT energy functional (JCP 2009)

\[E = 2 \sum h_{pq} P_{pq} + \sum [2(pq,rs)-(pr,qs)] P_{pq} P_{rs} - \sum (pr,qs) K_{pq} K_{rs} \]

where \(K^2 = P - P^2 \) \(P = P^\alpha = P^\beta \)

satisfies all requirements in the wish list if we let \(K \) be non-zero in an active space determined by the entangled electrons of the molecular ground-state dissociation limit.

• Without the active space constraint this model is not good (Staroverov & Scuseria 1HFB, 2002)

• \(K^2 \) is Yamaguchi’s “odd-electron distribution” (1978) identical to Staroverov & Davidson’s “density of effectively unpaired electrons” (2000)
CPMFT: The HFB connection

• The mean-field *model* Hamiltonian:

\[H_0 = \sum_{pq} \left[f_{pq} a_p^+ a_q - \Delta_{pq} a_p^+ a_q^+ - \Delta^*_{pq} a_p a_q \right] \]

breaks electron number conservation but introduces p-p and h-h correlations

• This theory is called Hartree-Fock-Bogoliubov (HFB) and requires attractive interactions for pairing (negative sign in \(\Delta > 0 \))

• A chemical potential is needed in HFB to control \(N_e \)

• The CPMFT energy functional is

\[E_{CPMFT} = \langle 0 | H_0 | 0 \rangle \]

• CPMFT is solved by diagonalization of \(H_0 \) (twice the HF size)

\[H_0 | 0 \rangle = E_{CPMFT} | 0 \rangle \]
CPMFT: The DMFT connection

- H_o is no longer the mean field of the real (Coulomb) two-body Hamiltonian.

- H_o corresponds to the mean field of a repulsive interaction $(2/r_{12})$ treated with HF plus an attractive pairing interaction $(-1/r_{12})$ treated with HFB.

- The resulting CPMFT energy expression is a “hybrid” of HF and HFB. It is a density matrix functional.

- The CPMFT energy expression defines a 2pdm: Γ

\[
E = \langle 0 | H_o | 0 \rangle = \text{Tr} \left[H \Gamma \right]
\]

where $\Gamma_{pqr,s} = 2 P_{pq} P_{rs} - P_{pr} P_{qs} - K_{pr} K_{qs}$.
CPMFT: The key sign flip

- **HFB:** \[\Gamma_{pqrs} = 2 \, P_{pq} \, P_{rs} - P_{pr} \, P_{qs} + K_{pr} \, K_{qs} \]

- **CPMFT:** \[\Gamma_{pqrs} = 2 \, P_{pq} \, P_{rs} - P_{pr} \, P_{qs} - K_{pr} \, K_{qs} \]

- Particle fluctuations: \(\sigma_N^2 = \langle N^2 \rangle - \langle N \rangle^2 \)
 - **HFB:** \(\sigma_N^2 = \text{Tr} [P - P^2 + K^2] = 2 \, \text{Tr} [K^2] \)
 - **CPMFT:** \(\sigma_N^2 = \text{Tr} [P - P^2 - K^2] = 0 \)

- **CPMFT:** \(M_z = P_\alpha - P_\beta = 0 \)
 Spin density (magnetization) is zero everywhere for closed-shells

- Spin fluctuations: \(\sigma_S^2 = \langle S_z^2 \rangle - \langle S_z \rangle^2 \)
 - **HFB:** \(\sigma_S^2 = 0 \)
 - **CPMFT:** \(\sigma_S^2 = 3 \, \text{Tr} [K^2] \)
Is CPMFT rigorous?

• The CPMFT ansatz is unconventional but rigorously justified by:

 - Density Matrix Functional Theory
 • Gilbert Theorem \(\rightarrow\) license to model

 - Levy constrained-search and Legendre transform arguments prove the existence of a functional that takes the model to the exact answer

 - \(H_0\) is a well-defined model Hamiltonian [e.g. perturbation theory based on \((H-H_0)\) is a rigorous \(ab\ initio\) approach]

• The key ingredient of CPMFT is to limit pairings to an “active” space

• CPMFT details are in papers published in JCP 2009-10

H_2 cc-pV5Z

![Graph showing the energy curve for H_2 with different methods: RHF, UHF, 1HFB, CPMFT(2,2), and FCI. The energy (E in a.u.) is plotted against the interatomic distance ($R_{\text{H-H}}$ in Bohr). The graph illustrates the energy minima for different methods at various interatomic distances.]
N_2 6-311++G**
$N_2 \ 6-311++G^{**}$

Dynamical correlation

Significant improvement!
Extension of CPMFT to hetero-nuclear dissociations:

CPMFT + Φ

Note lack of CPMFT static correlation near Re
LiH

Note presence of CPMFT static correlation near Re
The skeptical in the audience ought to be thinking:

In many of the examples, **UHF** is not bad at all!

Why bother with **CPMFT**?
CO_2: a very challenging test!
The onset of strong correlation is connected to the appearance of the CPMFT solution

Two-level model system with two electrons:

Example 1. H_2 molecule in minimum basis:

The CPMFT solution along the dissociation path appears when:

$$\varepsilon_{\text{LUMO}} - \varepsilon_{\text{HOMO}} < \frac{1}{2} \left(J_{11} + J_{22} \right) - K_{12}$$

compared with the Coulson-Fischer point (RHF instability):

$$\varepsilon_{\text{LUMO}} - \varepsilon_{\text{HOMO}} < J_{12} - K_{12}$$

Example 2. Be atom min basis: same formula applies!
Addition of DFT dynamical correlation to CPMFT via alternative densities and tests on hydrogen networks

Constrained-Pairing Mean-Field Theory. III. Inclusion of Density Functional Exchange and Correlation Effects via Alternative Densities,
Dynamical Correlation

- **CPMFT** orbitals and **1pdm** are symmetry-adapted
 How do we add *dynamical correlation only*?

- **Answer**: Use **total** and **on-top** densities from **2pdm**
 ansatz as fundamental **DFT** variables → rewrite code?

- **Better Option**: create “alternative” alpha and beta
 densities derived from the **CPMFT 2pdm** ansatz

- Feed alternative densities into regular **DFT** correlation
 subroutines (eg, **TPSS**) to define **κTPSSc**

- **Related Work**: Becke, Savin, Stoll, **TCA 1995**
 Perdew, Savin, Burke, **PRA 1995**
Alternative Densities

We define alternative densities (χ) from total (ρ) and on-top (Γ) densities:

\[
\chi_\alpha(r) = \frac{1}{2} \left(\rho(r) + \sqrt{\rho^2(r) - 2\Gamma(r)} \right)
\]

\[
\chi_\beta(r) = \frac{1}{2} \left(\rho(r) - \sqrt{\rho^2(r) - 2\Gamma(r)} \right)
\]

where \(\Gamma(r) = 2\rho_\alpha(r)\rho_\beta(r) - (\kappa^2_\alpha\beta(r) + \kappa^2_\beta\alpha(r)) \) and \(\chi_\alpha(r) + \chi_\beta(r) = \rho(r) \)

Example: H_2 molecule

(1) **At** R_e, \(\chi_\alpha(r) = \chi_\beta(r) = \rho_\alpha(r) = \rho_\beta(r) \) (RKS density)

(2) **At dissociation**, \(\chi_\alpha(r) = \rho(r) \) and \(\chi_\beta(r) = 0 \) (UKS-like density)

We change variables of E_{xc}:

\[
E_{xc}[\rho_\alpha, \rho_\beta, \cdots] \rightarrow E_{xc}[\chi_\alpha, \chi_\beta, \cdots]
\]

H_2 cc-pV5Z

![Graph of E vs R_{HH} for different methods, including RHF, UHF, 1HFB, CPMFT(2,2), CPMFT(κTPSSc), and FCI.](image)
Hydrogen networks exhibit a metal-insulator transition as R_{H-H} increases.

When R_{H-H} is

\[
\begin{align*}
\text{Short}: & \text{ metallic (for large } N_{\text{atom}}) \\
\text{Long}: & \text{ insulator} \\
\infty: & \text{ isolated } H \text{ atoms}
\end{align*}
\]

To see this transition on the correct non-magnetic (closed-shell) surface, CASSCF requires 10^{27} and 10^{123} configurations!!

CPMFT includes all required configurations to correctly model the metal-insulator transition and dissociation.
CPMFT does an excellent job
Decay of off-diagonal density matrix terms γ_{12}

TABLE I: Is a method capable of describing the metal-insulator transition?

<table>
<thead>
<tr>
<th>Methods</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td>No</td>
</tr>
<tr>
<td>MP2</td>
<td>No</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>No convergence</td>
</tr>
<tr>
<td>DMRG</td>
<td>Yes, but only for 1D</td>
</tr>
<tr>
<td>CASSCF</td>
<td>Absolutely intractable</td>
</tr>
<tr>
<td>CPMFT</td>
<td>Yes in all cases</td>
</tr>
</tbody>
</table>

Only CPMFT reveals the metal-insulator transition in 3D
Connection to UHF formalism

T. Tsuchimochi, T. M. Henderson, G. E. Scuseria, and A. Savin
(J. Chem. Phys. to appear 28-SEP-10)
UHF, DMFT, and CPMFT

• In terms of charge and spin densities:
 \[P = \frac{1}{2} (P_\alpha + P_\beta) \quad M = \frac{1}{2} (P_\alpha - P_\beta) \]
 and a closed-shell energy term:
 \[E_{CS} = \sum_{ij} 2h_{ij} P_{ij} + \sum_{ijkl} [2(ij,kl)-(ik,jl)] P_{ij} P_{kl} \]

 The UHF energy expression is a DMFT:
 \[E_{UHF} = E_{CS} [P] - \sum_{ijkl} (ik,jl) M_{ij} M_{kl} \]

• This has the same form as CPMFT
 \[E_{CPMFT} = E_{CS} [P] - \sum_{ijkl} (ik,jl) K_{ij} K_{kl} \]

• Except that \(K = +\sqrt{P - P^2} \) is not \(M \)!
CPMFT and UHF

- Introduce alternative idempotent densities A and B
 Define $P = \frac{1}{2}(A+B)$
 then $K^2 = P - P^2 = \frac{1}{4}(A-B)^2$
 So, $K = \frac{1}{2}|A-B|$ instead of $M = \frac{1}{2}(A-B)$

- This choice for K maps CPMFT into a UHF-type framework where P natural occupations occur in “corresponding pairs” $n_i + n_j = 1$
 This constraint was not present in the original CPMFT

- $F_A = \frac{\partial E}{\partial A}$, $F_B = \frac{\partial E}{\partial B}$ UHF-type solution

- Remarkably, unlike UHF, in this model: $M_z = 0$

- Implemented and tested: it works!
CPMFT Summary I

- Dissociates molecules fully accounting for left-right correlation
- Has mean-field (as opposed to combinatorial) computational cost
- The solution is obtained by diagonalization
- Yields correct symmetry natural orbitals and 1pdm everywhere
- Yields a definition for static correlation from the 2pdm ansatz
- Reduces to RHF in the absence of strong correlation
- Has the correct number of electrons on average \(\langle N \rangle = N_e \)
- Has the correct number of correlated electron pairs
- No fluctuations from the 2pdm: \(\sigma_N^2 = \langle N^2 \rangle - \langle N \rangle^2 = 0 \)
- No spurious spin density: \(M_z = 0 \)
CPMFT Summary II

- The number of parameters determining CPMFT is linear in the number of orbitals (same as UHF)

- The 1pdm is N-representable

- The 2pdm is not N-representable but contains physics connected with the concept of static/strong correlation

- CPMFT breaks the symmetry of the “alternative” densities A and B but preserves symmetries of the physical density P

- \(E = \langle 0 | H_0 | 0 \rangle = \text{Tr} \ [H \Gamma] \) wavefunction is gone...

- Results are different from UHF and PUHF
ROHF theory made simple

Problems with ROHF

• Roothaan's formalism defines the wavefunction and densities (both charge and spin) but orbitals and orbital energies are ambiguous and depend on choice of “coupling parameters”

• This is unsatisfactory for post-ROHF methods (correlation and excited states) as the results depend on these choices

• Long controversy in the literature for ~50 years
 No Koopman’s theorem in regular ROHF!

• Unphysical: why do we have the same orbitals and orbital energies for alpha and beta electrons if the potentials that they see are different? \(\Rightarrow \) the MOs should be different

• UHF is not the answer because of spin contamination

• Pople’s semicanonical orbitals are popular (“RO”) but need Roothaan’s formalism a priori [CPL 1991]
Attempts to fix ROHF

• Too many to discuss in detail...

• Not known how to do self-consistent PUHF

• Handy’s SUHF (spin-projected UHF) uses a single Lagrange multiplier Λ to constrain: $[\hat{S}^2 -s(s+1)] = 0$
 • Λ is infinity! \Rightarrow not a practical scheme

• Our solution: CUHF
 • Using the UHF energy formula as a function of P and M, constrain M using (occ x vir) Lagrange multipliers
 • Solution for Lagrange multipliers is analytical

• It works! Crisp and quick convergence to ROHF energy and densities... Alpha orbitals and orbital energies are different from beta. CUHF carries no spin-contamination
Errors (eV) on IPs ($-\varepsilon_{\text{HOMO}}$)

(24 open-shell systems)

<table>
<thead>
<tr>
<th></th>
<th>ROHF (MD)</th>
<th>ROHF (PGB)</th>
<th>CUHF</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>-7.38</td>
<td>0.57</td>
<td>0.54</td>
<td>0.68</td>
</tr>
<tr>
<td>MAE</td>
<td>7.38</td>
<td>0.64</td>
<td>0.61</td>
<td>0.71</td>
</tr>
</tbody>
</table>

CUHF gives good results and has no spin contamination

CUHF can predict both IPs & EAs
Valence and Rydberg excited states (eV) via quick & dirty TD-HF

<table>
<thead>
<tr>
<th></th>
<th>$\langle S^2 \rangle \cdot s(s+1)$</th>
<th>State</th>
<th>CUHF</th>
<th>UHF</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeF</td>
<td>0.001</td>
<td>V_2^Π</td>
<td>4.19</td>
<td>4.20</td>
<td>4.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_2^\Sigma^+$</td>
<td>6.33</td>
<td>6.34</td>
<td>6.16</td>
</tr>
<tr>
<td>CH_3</td>
<td>0.012</td>
<td>$R_2^2A'_1$</td>
<td>6.23</td>
<td>6.54</td>
<td>5.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_2^2A''_2$</td>
<td>7.34</td>
<td>7.73</td>
<td>7.44</td>
</tr>
<tr>
<td>CO$^+$</td>
<td>0.141</td>
<td>V_2^Π</td>
<td>4.84</td>
<td>6.93</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_2^\Sigma^+$</td>
<td>9.81</td>
<td>11.10</td>
<td>5.82</td>
</tr>
<tr>
<td>CN</td>
<td>0.406</td>
<td>V_2^Π</td>
<td>0.95</td>
<td>4.13</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_2^\Sigma^+$</td>
<td>2.01</td>
<td>5.42</td>
<td>3.22</td>
</tr>
<tr>
<td>MAE</td>
<td></td>
<td></td>
<td>0.77</td>
<td>1.44</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Acknowledgements

- **Group**: Takashi Tsuchimochi, Tom Henderson, Jason Ellis, Carlos Jimenez-Hoyos

$ DOE, LANL, NSF, Welch Foundation$