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Macroscopic dynamics of polar nematic liquid crystals
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We present the macroscopic equations for polar nematic liquid crystals. We consider the case where one has
both, the usual nematic director, n̂, characterizing quadrupolar order as well as the macroscopic polarization,
P , representing polar order, but where their directions coincide and are rigidly coupled. In this case one has
to choose P as the independent macroscopic variable. Such equations are expected to be relevant in connec-
tion with nematic phases with unusual properties found recently in compounds composed of banana-shaped
molecules. Among the effects predicted, which are absent in conventional nematic liquid crystals showing only
quadrupolar order, are pyro-electricity and its analogs for density and for concentration in mixtures as well as a
flow alignment behavior, which is more complex than in usual low molecular weight nematics. We also discuss
the formation of defect structures expected in such systems.
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I. INTRODUCTION

One of the most important developments in the field of liq-
uid crystals over the last few years has been the invention and
study of liquid crystalline phases formed by banana-shaped
molecules [1–5]. These molecules trigger the formation of
many new phases unknown from rodlike molecules, in partic-
ular of the smectic variety [5].

From a fundamental point of view, an important issue in
this field is the question to what extent a macroscopic polar-
ization and fluidity are compatible macroscopically. Corre-
spondingly it was pointed out early on [4] that there are sev-
eral possibilities to achieve a low symmetry by the various
ways one can pack banana-shaped molecules onto layers. As
one would expect from the previous experience in solid state
physics, mainly the antiferroelectric variety of phases with a
macroscopic polarization was found in the beginning (com-
pare the early review [5]).

The number of nematic phases reported to arise for banana-
shaped molecules was comparatively small from the very be-
ginning [5–8]. In particular, when one requires a phase se-
quence involving both a nematic as well as a B-type phase,
this number is even smaller. Nematic phases are of particular
interest, since they are fluid in three dimensions. Neverthe-
less it turns out that there are various possibilities in which
uniaxial and biaxial nematic phases with one or more polar
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directions could arise [9]. On the synthetic and experimen-
tal side it was found that for some compounds composed of
banana-shaped molecules nematic phases with ambidextrous
chirality (equal amount of left-handed and right-handed do-
mains) arise for some nonchiral compounds [6, 10, 11]. This
rather surprising phenomenon can be explained by the simul-
taneous presence of the usual quadrupolar orientational order
as well as of tetrahedratic (octupolar) order [12]. The latter,
suggested first for the application to the field of liquid crystals
by Fel [13], can also have numerous other fascinating macro-
scopic consequences [14–16].

Stimulated by the new possibilities to generate polar di-
rections in liquid crystalline phases formed by bent-core
molecules including polar nematics, we present here the
macroscopic dynamic equations for the simplest possibility
of such a phase, namely a uniaxial polar nematic for which
one can distinguish between head and tail of the preferred di-
rection, thus giving rise to a phase of C∞ symmetry. There
have been historically (almost 2 decades ago) already some
efforts to synthesize polar nematics [17, 18], for example for
molecules of pyramidic structure [17]. Triggered by this early
synthetic work, two of us investigated the question whether
phases with spontaneous splay defects would be energetically
more favorable in a polar nematic phase [19]. This was found
to be the case for a temperature range close to the isotropic -
polar nematic phase transition using a Ginzburg-Landau type
analysis. This possibility will not be considered further here.

The method we use in the present paper for our description
is macroscopic dynamics, that is to a purely hydrodynamic de-
scription we add variables, that relax on long, but finite time
scales. In pure hydrodynamics one concentrates exclusively
on two classes of variables: conserved quantities (such as den-
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sity and density of linear momentum) and variables associated
with spontaneously broken continuous symmetries [20–22],
such as, for example, director variations for a usual uniaxial
nematic phase. For nonpolar uniaxial nematics the hydrody-
namic equations have been derived by Forster and colleagues
[23–25]. The use of macroscopic variables has been pioneered
by Khalatnikov [26] using the modulus of the order parameter
as a macroscopic variable in the vicinity of the λ transition in
superfluid 4He. This concept has since been applied to numer-
ous systems including the superfluid phases of 3He [27] (for
which the tiny magnetic dipole interaction renders the mag-
netization density to be no longer strictly hydrodynamic) and
to nematic elastomers [28, 29] and uniaxial magnetic gels [30]
(for which relative rotations between the polymer network and
the director or the magnetization become macroscopically im-
portant) as well as to polymers [31] and nematic side-chain
polymers [32] for which the strain associated with the tran-
sient network becomes a macroscopic variable.

In the next section we derive the macroscopic equations in
some detail. Then we present several experimentally testable
predictions followed by discussions and conclusions, where
we also critically compare our results to previous work on re-
lated topics [19, 33].

II. DERIVATION OF MACROSCOPIC EQUATIONS

A. Hydrodynamic and macroscopic variables

First we must clarify which type of polar nematics we will
study in the following. In Ref. [9] we have shown that - de-
pending on the number of polar and nonpolar directions - there
can be, on the basis of symmetry considerations, a fairly large
number of biaxial nematic phases. Here we focus on the sim-
plest possibility of a polar nematic phase: we assume that
there is one preferred direction associated with quadrupolar
order and one with polar order and that these two directions
coincide. Thus one has overall uniaxial symmetry. We charac-
terize the direction associated with quadrupolar order with the
usual director n̂ and the polar order with the macroscopic po-
larization P , which can be decomposed into the unit vector p̂
and the modulus P = |P |. Since we will assume throughout
this paper that n̂ and P are rigidly coupled, variations of n̂
are no longer independent macroscopic variables, but already
described by variations of p̂. Thus the relevant variables [22]
come in three classes. The first class of variables, also called
the conserved quantities, contains those already known from a
simple fluid, the mass density ρ, the energy density ε, and the
momentum density g. In our case we add another variable,
the concentration c in mixtures. In the second class we have
the variables that are related to spontaneously broken contin-
uous symmetries. In our case we have the orientation of the
macroscopic polarization, p̂, which is associated with sponta-
neously broken rotational symmetry. The variations of p̂, δpi

with p̂i · δpi = 0 are truly hydrodynamic. p̂ is a polar vec-
tor and thus odd under parity and even under time reversal;
the former property leads to a number of static and dynamic
cross-coupling terms unknown from conventional uniaxial ne-

matics. The modulus or magnitude of the macroscopic polar-
ization, P , belongs to the third class of variables, which relax
on a long, but finite time scale. The main difference to ordi-
nary nematics lies in the fact that p̂i is a true vector (no general
p̂i → −p̂i invariance, but p̂i → −p̂i under spatial inversion)
and in the modulus variable P , which is strongly susceptible
to electric fields, in contrast to the nematic order parameter
modulus. It should be noted that even in ordinary nematics
the modulus (S) has been treated as an additional degree of
freedom [34, 35], although it is only weakly susceptible to
external fields and its fluctuations often have a rather short
relaxation time. Due to the strong coupling of P to electric
fields, it is even more reasonable to keep that variable in polar
nematics.

Throughout this paper we stick to the splitting of P into its
modulus and its orientation, because that shows off the differ-
ent hydrodynamic nature of the latter variables and facilitates
comparison with ordinary nematics. We stress, however, that
no additional (static and/or dynamic) material parameters or
effects are introduced by this procedure and we have checked
that using P as a variable leads to a completely equivalent
macroscopic dynamics (for an analogous discussion for ordi-
nary nematics cf. [36]). Contrarily, in a Ginzburg-Landau
type description of the phase transition from the isotropic (no
P ) to the polar nematic state (finite P ) certainly the vector P
should be used as a variable.

B. Statics and thermodynamics

To get the static properties of our system we formulate the
local first law of thermodynamics relating changes in the en-
tropy density σ to changes in the hydrodynamic and macro-
scopic variables discussed above. We find the Gibbs relation

dε = Tdσ + µdρ + µcdc + vidgi + h
′P dP + ΦP

i d∇iP

+h′idp̂i + Φijd(∇j p̂i), (1)

where we have kept inhomogeneous variations of the polar-
ization magnitude,∇iP , which become relevant for defects as
well as for inhomogeneous external fields. Similar to the case
of an ordinary nematic director, homogeneous variations of
the preferred direction p̂ do not cost energy due to the sponta-
neous nature of the broken rotational symmetry, except in the
presence of an external (symmetry breaking) field; thus, in the
field-free, homogeneous case h′i = 0. In addition, h′ip̂i = 0,
since p̂i is a unit vector.

In Eq. (1) the thermodynamic quantities, temperature T ,
chemical potential µ, relative chemical potential µc, velocity
vi, the electric molecular fields h

′P , ΦP
i , h′i, and Φij are de-

fined as partial derivatives of the energy density with respect
to the appropriate variables [22]. If we neglect surface effects
and integrate Eq. (1) by parts we can obtain a simplified ex-
pression for the Gibbs relation

dε = Tdσ + µdρ + µcdc + vidgi + hP dP + hidp̂i (2)

where the molecular fields hP and hi are given by hP = h
′P−

∇jΦP
j and hi = h

′

i −∇jΦij , respectively.
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In the true equilibrium state, the polarization magnitude,
P0, is constant and a given material parameter. The orientation
of the polarization p̂0

i is homogeneous and arbitrary. In an
external electric field E, P0 is function of the field strength,
P0 = P0(E), a function which we will not specify further and
which we assume to be known. To simplify notation, we will
always use P0, even if a field is present. For the type of polar
nematic phase chosen here, the orientation of the polarization

is parallel to the external field, p̂0 = E/E in equilibrium.
Assuming this equilibrium state to be the stable ground

state, the energy density expanded in all variables about this
state has to be convex. In addition, this energy density must
be invariant under time reversal as well as under parity and it
must be invariant under rigid rotations, rigid translations, and
covariant under Galilei transformations. Taking into account
these symmetry arguments we get

ε = χE2(δp̂i)2 +
1
2χ

(δP )2 +
1
2
K

(2)
ij (∇iδP )(∇jδP ) +

1
2
Kijkl(∇ip̂j)(∇kp̂l) + K

(3)
ijk(∇iδP )(∇j p̂k)

+(γ1δρ + γ2δσ + γ3δc) δP + (β1δρ + β2δσ + β3δc) p̂i∇iδP + (β̄1δρ + β̄2δσ + β̄3δc) div p̂

+
cρρ

2
(δρ)2 +

cσσ

2
(δσ)2 +

ccc

2
(δc)2 + cρc(δρ)(δc) + cρσ(δρ)(δσ) + cσc(δσ)(δc) +

1
2ρ

gigi + O(3), (3)

where δ denotes deviations from the equilibrium value, in par-
ticular, δP = P − P0, δp̂i = p̂i − p̂0

i , δc = c − c0, etc. and
the tensors are of the form

Kijkl =
1
2
K1

(
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk

)
+ K2 p̂pεpij p̂qεqkl

+K3 p̂kp̂iδ
⊥
lj , (4)

K
(2)
ij = K4 p̂ip̂j + K5 δ⊥ij , (5)

K
(3)
ijk = K6

(
p̂iδ

⊥
jk + p̂jδ

⊥
ik

)
, (6)

where εijk is the totally antisymmetric symbol and δ⊥ij the
transverse Kronecker delta, δ⊥ij = δij − p̂ip̂j .

Equation (3) contains the energy density of a normal fluid
binary mixture (third line) and that of a usual nematic phase
including spatial modulations of the order parameter modulus:
the Frank orientational elastic energy (∼ Kijkl with splay,
bend, and twist [37]), the energy associated with gradients of
the modulus (∼ K

(2)
ij ) [22], and a cross-coupling term be-

tween gradients of the preferred direction to gradients of the
order parameter modulus (∼ K

(3)
ijk) [38]. The orientation en-

ergy due to an external field is governed by the electric sus-
ceptibility χ (rather than by the dielectric anisotropy as in the
case of ordinary nematics) and the stiffness of order parameter
variations is given by 1/χ. Although the energy density ex-
pression is given in harmonic approximation only, it can give
rise to nonlinear effects, since all material parameters (and
particularly χ) are still functions of the state variables, like
temperature, pressure, and polarization P0, and therefore also
of E. This is in contrast to ordinary nematics, where the ma-
terial parameters can only be a function of E2.

The second line of Eq. (3) contains all those contributions
that are specific for polar nematics and are absent for ordinary,
nonpolar nematics as they would violate the n̂ → −n̂ invari-
ance. These comprise couplings (∼ γ1,2,3) between the po-
larization and variations of ρ, σ and c, which are of the same
nature as the pyroelectric term in solids [39]. Other cross-
coupling terms, ∼ β̄1,2,3 and ∼ β1,2,3, are relating variations

of ρ, σ and c to splay div p̂, and to spatial variations of the po-
larization along the preferred direction, p̂i∇iδP , respectively.
Since we are dealing with a stable homogeneous equilibrium
state here, a possible surface term, β div p̂, can be neglected.

We now give the expressions for the conjugated variables in
terms of the hydrodynamic and macroscopic variables. They
are defined as partial derivatives with respect to the appropri-
ate variable, while all the other variables are kept constant,
denoted by ellipses in the following:

vi =
∂ε

∂gi


...

=
1
ρ
gi, (7)

h
′P =

∂ε

∂P


...

=
1
χ

δP + γ1δρ + γ2δσ + γ3δc, (8)

ΦP
i =

∂ε

∂(∇iP )


...

= K
(2)
ij (∇jP ) + K

(3)
ijk(∇j p̂k)

+(β1δρ + β2δσ + β3δc)p̂i, (9)

h
′

i =
∂ε

∂p̂i


...

= 2χE2δp̂i, (10)

Φij =
∂ε

∂(∇j p̂i)


...

= Kjikl(∇kp̂l) + K
(3)
kji(∇kP )

+(β̄1δρ + β̄2δσ + β̄3δc)δ⊥ij , (11)

δµ =
∂ε

∂δρ


...

= γ1δP + β1p̂i∇iP + β̄1 div p̂

+cρρδρ + cρcδc + cρσδσ, (12)

δT =
∂ε

∂δσ


...

= γ2δP + β2p̂i∇iP + β̄2 div p̂

+cσσδσ + cρσδρ + cσcδc, (13)

δµc =
∂ε

∂δc


...

= γ3δP + β3p̂i∇iP + β̄3 div p̂

+cccδc + cρcδρ + cσcδσ, (14)

from which the total molecular fields hP = h
′P −∇jΦP

j and
hi = h

′

i −∇jΦij follow immediately.
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C. Thermostatic stability

The generalized energy density, Eq. (3), must be positive to
guarantee thermostatic stability [20]. This requirement leads
to a number of inequalities for the static susceptibilities ap-
pearing there as prefactors. They take the form χ > 0, ρ > 0,
cρρ > 0, cσσ > 0, ccc > 0, c2

ρσ < cσσcρρ, c2
ρc < ccccρρ,

c2
σc < cσσccc, χγ2

1 < cρρ, χγ2
2 < cσσ , χγ2

3 < ccc,
β̄2

1 < K1cρρ, β̄2
2 < K1cσσ , β̄2

3 < K1ccc, β2
1 < K4cρρ,

β2
2 < K4cσσ, β2

3 < K4ccc, K1 > 0, K2 > 0, K3 > 0,
K4 > 0, K5 > 0, K2

6 < K3K5, K2
6 < K1K4.

We note that these conditions arise as a consequence of
thermodynamics and are not related to the description of a
phase transition. For the latter, the energy expression (3) is
insufficient and one has to go back to a Ginzburg-Landau en-
ergy that allows, as a minimum, for an alternative state. If the
thermodynamic relations listed above are violated, this means
the hydrodynamic description based on Eq. (3) can no longer
be used and has to be replaced by a different one starting from
a different ground state.

D. Dynamic equations

To determine the dynamics of the variables we take into
account that the first class of our set of variables contains
conserved quantities that obey a local conservation law while
the dynamics of the other two classes of variables can be de-
scribed by a simple balance equation where the counter term
to the temporal change of the quantity is called a quasicurrent.
As a set of dynamical equations we get

∂tρ +∇igi = 0, (15)

∂tσ +∇i(σvi) +∇ij
σ
i =

R

T
, (16)

ρ(∂tc + vi∇i)c +∇ij
c
i = 0, (17)

∂tgi +∇j(vjgi + δij [W + E · D] + σth
ij + σij) = 0, (18)

∂tP + vi∇iP + XP = 0, (19)
∂tp̂i + vj∇j p̂i + (p̂× ω)i + Xi = 0, (20)

where we introduced the vorticity ωi = (1/2)εijk∇jvk and
the Maxwell and Ericksen-type stresses

σth
ij = −1

2
(EiDj + DiEj) + ΦP

j ∇iP + Φkj∇ip̂k. (21)

In Eq. (21) we implemented the requirement that the energy
density should be invariant under rigid rotations [22].

The pressure W in Eq. (18) is given by ∂E/∂V and reads
for our system

W = −ε + µρ + Tσ + v · g. (22)

In the equation for the entropy density (16) we introduced
R, the dissipation function which represents the entropy pro-
duction of the system. Due to the second law of thermody-
namics R must satisfy R ≥ 0. For reversible processes this
dissipation function is equal to zero while for irreversible pro-
cesses it must be positive. In the following we will split the

currents and quasicurrents into reversible parts (denoted with
a superscript R) and irreversible parts (denoted with a super-
script D). These phenomenological currents and quasicur-
rents are given within ”linear irreversible thermodynamics”
(guaranteeing general Onsager relations), i.e. as linear rela-
tions between currents and thermodynamic forces. The result-
ing expressions are nevertheless nonlinear, since all material
parameters can be functions of the state variables (e.g., p, T ,
P ).

E. Reversible dynamics

If we again make use of the symmetry arguments men-
tioned above (behavior under time reversal, parity, rigid rota-
tions, rigid translations, and covariance under Galilei transfor-
mations) and use Onsager’s relations we obtain the following
expressions for the reversible currents up to linear order in the
thermodynamic forces:

gi = ρvi, (23)
jσR
i = 0 (24)
jcR
i = 0, (25)
σR

ij = λP
ijh

P + λkjihk, (26)

XPR = λP
ijAij , (27)

XR
i = λijkAjk, (28)

with Ajk = 1
2 (∇ivk+∇kvi). The coupling of the polarization

and the density of linear momentum is provided by the tensors

λijk = λ(p̂jδ
⊥
ik + p̂kδ⊥ij) and λP

ij = λP
2 δ⊥ij + λP

3 p̂ip̂j . (29)

One finds a total of three material dependent coupling terms.
The first is the analogue of the classical flow alignment term
coupling the orientation of the preferred direction to defor-
mational flow, while the coupling to rotational flow (rigid ro-
tation) is not material dependent and has already been made
explicit in Eq. (20). The two contributions ∼ λP

2 and ∼ λP
3

are associated with the coupling of the magnitude of the po-
larization, P , to velocity gradients (compare also the detailed
discussion in the next section). We note that this coupling be-
tween the density of linear momentum and the polarization is
identical in structure to that of a uniaxial nematic, when for-
mally p̂i is replaced by the director n̂i and P by the nematic
order parameter modulus S.

F. Irreversible dynamics and entropy production

We can use the dissipation function R as a Liapunov func-
tional to derive the irreversible currents and quasicurrents.
One can expand the function R (R/T is the amount of en-
tropy produced within a unit volume per unit time) into the
thermodynamic forces using the same symmetry arguments
as in the case of the energy density. We obtain
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R =
1
2
κij(∇iT )(∇jT ) + DT

ij(∇iT )(∇jµc) +
1
2
Dij(∇iµc)(∇jµc) +

1
2
νijklAijAkl

+
1
2
b⊥hihi +

1
2
b||h

P hP + κP
⊥δ⊥ij(∇iT )hj + κP

|| (p̂i∇iT )hP + DP
⊥δ⊥ij(∇iµc)hj + DP

|| (p̂i∇iµc)hP (30)

The tensors κij , DT
ij , Dij , and νijkl are of the standard uniax-

ial form for second and fourth ranks tensors [22]. The contri-
bution∼ b|| in the entropy production describes the relaxation
of the polarization modulus P , while the contribution associ-
ated with b⊥ corresponds the diffusion of the preferred direc-
tion (conventionally called γ−1

1 in the literature of nematody-
namics). These terms have their analogs in ordinary nematics
(with the order parameter modulus included). Specific for po-
lar nematics are the dissipative cross-couplings between po-
larization and diffusion and thermodiffusion governed by the
material parameters κP and DP . Their experimental meaning
will be discussed below.

To guarantee the second law of thermodynamics locally, R
has to be positive definite, which imposes a number of in-
equalities to the dissipative coefficients: κ|| > 0, κ⊥ > 0,
D|| > 0, D⊥ > 0, (DT

|| )
2 < D||κ||, (DT

⊥)2 < D⊥κ⊥, b|| >

0, b⊥ > 0, (κP
⊥)2 < κ⊥b⊥, (κP

|| )
2 < κ||b||, (DP

|| )
2 < D||b||,

(DP
⊥)2 < D⊥b⊥, and where the five viscous coefficients νi

satisfy the usual inequalities for a uniaxial system [40].
To obtain the dissipative parts of the currents and quasicur-

rents we take the partial derivatives of R with respect to the
appropriate thermodynamic force

jσD
i = − ∂R

∂(∇iT )


...

= −κij(∇jT )−DT
ij(∇jµc)

−κP
⊥hi − κP

|| p̂ih
P , (31)

jcD
i = − ∂R

∂(∇jµc)


...

= −Dij(∇jµc)−DT
ij(∇jT )

−DP
⊥hi −DP

|| p̂ih
P , (32)

σD
ij = − ∂R

∂(∇jvi)


...

= −νijklAkl, (33)

XD
i =

∂R

∂hi


...

= b⊥hi

+δ⊥ij(D
P
⊥∇jµc + κP

⊥∇jT ), (34)

XPD =
∂R

∂hP


...

= b||h
P

+p̂i(DP
||∇iµc + κP

||∇iT ). (35)

III. EXPERIMENTAL CONSEQUENCES

In this section we briefly outline some of the experimental
consequences of the static and dynamic cross-coupling terms,
which are absent in the usual description of ordinary nemat-
ics. We start with those static susceptibilities (γ1,2,3), which
are similar in structure to the pyroelectric term in solids. Vari-

ations of the density, the entropy density, or the concentration
lead to a change in the magnitude of the polarization. In ex-
periments it is easier to vary the temperature, the pressure, or
the relative chemical potential. Thus one of the experimen-
tally testable predictions for a polar nematic is the occurrence
of a change in the macroscopic polarization when a tempera-
ture (pressure) change is applied. This can be done, for exam-
ple, with a low frequency variation: temperature (pressure)
variations and polarization changes then occur at the same
frequency. Similar effects are described by the static sus-
ceptibilities β1,2,3 that couple inhomogeneous variations of
the magnitude of the polarization (along the preferred direc-
tion p̂i∇iP ) with temperature, pressure, and relative chemical
potential changes, while the β̂1,2,3 provide such couplings to
splay deformations of div p̂ .

A rather outstanding effect is the shift of the sound wave
velocity, cs, in polar nematics, which is no longer given solely
by compressibility effects, but also by the static coupling be-
tween density and polarization, c2

S = ρ0(cρρ − χγ2
1). Since

the electric susceptibility is field dependent, the sound veloc-
ity can be changed by an external field. Sound waves can
also be excited by (longitudinal) polarization waves due to the
same static pyroelectric-like coupling term. The relaxation of
P , expressed by the dissipative transport parameter b|| shows
up in an isotropic and an anisotropic contribution to the sound
wave damping (of order k2 in the wave vector).

Now we turn to terms associated with reversible currents.
Homogeneous shear flow alignment of p̂i is governed by the
reversible transport parameter λ, Eqs. (29), provided |λ| ≥ 1,
similar to the case of usual nematics. The two contributions
∼ λP

2 and ∼ λP
3 , are associated with the coupling of the mag-

nitude of the polarization, P , to deformational flow, Eq. (27).
They are identical in structure to contributions discussed be-
fore arising in the vicinity of nematic - smectic A [41] and the
nematic - columnar [42] phase transitions. In Refs. [41, 42]
the corresponding second rank tensor was denoted by βij and
took the form βij = β‖n̂in̂j + β⊥δ⊥ij ; it was shown that this
contribution leads to the induction of smectic or columnar or-
der in a flow field (for example, a shear flow) in the vicinity
of the nematic - smectic A and the nematic - columnar tran-
sitions. In our system these coupling terms give rise to flow-
induced changes in P .

The dynamic couplings between polarization and heat and
concentration current, provided by the dissipative transport
parameters DP

⊥,|| and κP
⊥,||, Eqs. (31) and (32) are specific to

polar nematics. In such materials a (transverse) heat current
is invoked by a rotation of p̂i, if an external field is present,
jσ
⊥ ∼ −2κP

⊥χE2δp̂⊥, while changes in the magnitude of the
polarization and of the temperature, pressure, or concentra-
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tion all lead to a longitudinal heat current jσ
|| ∼ −κP

|| χ
−1δP ,

∼ δρ, ∼ δT , ∼ δc, respectively. For example, for heat diffu-
sion this results in an anisotropic correction of order O(k3) to
the dispersion relation for small frequencies iωχ � b||, while
for large frequencies a unidirectional propagating heat wave
with ω = γ2κ

P
|| k|| is possible. Appropriate statements can be

made regarding the concentration current.

IV. DISCUSSION AND CONCLUSIONS

In Sec. II we have derived the macroscopic dynamics for
a polar nematic liquid crystal and we have shown that this
dynamics is rather different from that of uniaxial nematics.
In particular there is a number of static cross-coupling terms
leading to pyroelectricity and its analogs when coupling the
macroscopic polarization to concentration and pressure varia-
tions.

Using the macroscopic polarization as a variable, in partic-
ular its modulus as a relaxing variable and its orientation as
a truly hydrodynamic one, we have seen that there are three
phenomenological coefficients associated with dynamic re-
versible effects coupling the polarization to flow. One is the
analog of flow alignment in usual nematics and the other two
are due to the coupling of the modulus to flow. The latter ef-
fects have been studied before close to the transition from the
nematic to the smectic A [41] and to the columnar phase [42].

All these three phenomenological cross-coupling terms as-
sociated with reversible currents contain contributions from
the frequency as well as from the memory matrix in the
spirit of hydrodynamics derived in the framework of the Mori-
Zwanzig formalism [21, 24]. That such contributions from the
reversible part of memory matrix enter hydrodynamic equa-
tions has been pointed out first by Forster [25]. Later on it
was found that all systems having hydrodynamic variables as-
sociated with broken rotational symmetries in real space (in-
cluding superfluid 3He-A [27] and 3He-A1 [43] , smectic C
[44], biaxial nematics [44], and smectic C∗ [45] as well as
systems with broken rotational symmetry associated with to-
tal angular momentum in 3P2 neutron star matter [46]) pick up
reversible contributions from the memory matrix in the hydro-
dynamic regime. We would like to point out in this paper that
the cross-coupling terms between the degree of order and the
flow also acquire reversible contributions from the memory
matrix. This applies for the macroscopic dynamics of polar
nematics as studied here as well as to the macroscopic equa-
tions derived previously [41, 42] in the vicinity of phase tran-
sitions involving a nematic phase. We would also like to stress
that such reversible contributions from the memory matrix en-
tering the hydrodynamic equations cannot be obtained in the
framework of the formalism using Poisson brackets, implying
that the approach of macroscopic dynamics is more general.

In this paper we have focused, in the spirit of hydrodynam-
ics and macroscopic dynamics, on the bulk contributions. It is
known, however, that for a polar nematic phase surface con-
tributions play an important role and can lead to the spon-
taneous formation of a phase characterized by spontaneous

splay [19]. In Ref. [19] it was shown that for a certain temper-
ature interval the surface term, D1∇·P , leads to a lowering of
the overall energy (including both bulk and surface contribu-
tions) when defects are formed. In this case the spontaneously
splayed polar nematic phase, necessarily including defects,
represents the thermodynamic ground state of the system [19].
To arrive at this conclusion one uses a Ginzburg-Landau ap-
proach, which is valid in the vicinity of a phase transition. The
Ginzburg-Landau energy density of interest takes the form

εGL = −A

2
P 2 +

B

4
P 4 −D1 div P +

D2

2
(div P )2

+
D3

2
(curlP )2 (36)

Then a spontaneous splay phase was shown to arise and to be
thermodynamically stable in the vicinity of the phase transi-
tion to the isotropic phase [19] provided the inequality

D2
1 > α

A2

B
D2 (37)

is fulfilled, where α is a number of order unity; we refer to
Ref. [19] for the evaluation of α.

This approach is different and rather complementary to that
of hydrodynamics and macroscopic dynamics. It therefore ap-
pears to be inappropriate, as it has been done recently [33], to
conclude from the violation of thermostatic stability for bulk
terms - the corresponding conditions have been discussed in
section II C - that a phase with spontaneous splay is formed.
Rather the type of analysis given in Ref. [19] must be used to
find an alternative ground state.

Throughout this paper we have concentrated on the case
where P and the nematic director are rigidly coupled and par-
allel. Clearly, generalizations to different configurations of n̂
vs P are possible. If their relative orientation is not fixed, a
term∼ (n̂ · p̂)2 arises in the generalized energy, similar to the
case of a mixture of two uniaxial, nonpolar nematic phases
[47]. If n̂ and P are not parallel, the systems will be biaxial
[9] and will have, in general, three truly hydrodynamic vari-
ables like a nonpolar biaxial nematic [48]. In addition, those
biaxial polar nematics will have more complex structures for
the pyroelectric and related coupling terms.

Throughout the present paper we have focused on polar ne-
matics as they could arise for nematic liquid crystalline phases
composed of bent-core molecules. It seems natural, however,
to generalize our analysis to polar nematic phases in active
media as they appear in biological systems like the cytoskele-
ton [49–52] or as they are discussed for suspensions of active
and self-propelled particles, for example, bacteria [53, 54].
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