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Abstract

We discuss the hydrodynamic modes of a thin viscoelastic film of polymeric ma-

terial at the interface between two Newtonian fluids. The mode dispersion relations

and the dynamic structure factor of thermally induced (transverse) modes are ob-

tained by the method of fluctuating hydrodynamics utilizing generalized boundary

conditions derived for a thin viscoelastic interface. Specific examples appropriate

to liquid-like films of entangled polymers are presented, and possible relevance to

existing experimental studies of dynamic light scattering from insoluble polymeric

monolayers is discussed.
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1 Introduction

The properties of fluid interfaces in the presence of surface active materials has been a

very active area of research in the last few decades [1]-[3]. Studies of such systems have

implications in physics, chemistry, and biology, as well as many technological applications.

The hydrodynamics of such interfaces is one of the most active and interesting areas of

study. The qualitative effects of impurities at a liquid-vapor interface have been known

for many years [4, 5]; very small amounts of surface active material strongly damp surface

fluctuations. Early theoretical studies identified Gibbs elasticity of the surface impurity

as the cause of the capillary wave damping, and experimental studies of mechanically

generated surface waves on monolayer covered interfaces were carried out [6]. The sub-

sequent development of quasi-elastic surface light scattering techniques made possible

non-invasive studies of surface hydrodynamics. Recent refinements of this technique al-

low for extremely precise measurements of the thermally induced modes of fluid interfaces

[7, 8].

Extensive theoretical studies of the surface light scattering from monolayers at liquid

interfaces have been made [9, 10]. In a seminal paper, Kramer [9] developed a general

theory of the light scattering from surface modes of membranes and monolayers. This

theory is based on interfacial stress-strain relations for membranes and monolayers with

two-dimensional isotropic or hexagonal rotational symmetry and postulated forms for the

three independent interfacial viscoelastic moduli. In Ref.[9], the transverse modulus, P ,

and the in-plane shear and compressional moduli, S and K, respectively, were assumed

to have a Voigt form [11]: S(ω) = S0 + iωS1, K(ω) = K0 + iωK1, and P(ω) = P0 + iωP1;

where S0, K0, and P0 are the elastic moduli of in-plane shear and compression, and

transverse displacement of the membrane, respectively, and where S1, K1, and P1 are the

associated viscosities [12]. Most other theoretical treatments have followed this approach,

although some have excluded the possibility of a transverse viscosity, P1. Experimental

light scattering studies of monolayers of low molecular weight surfactant molecules at

liquid/vapor and liquid/liquid interfaces are in good agreement with this picture [13]-
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[19]. Similar experiments on monolayers of insoluble polymers have also been carried

out [16]-[24]. These experiments are also in basic accord with existing theory, although

some unusual viscoelastic features were observed [22, 23]. For a recent review of such

experiments, see Ref. [24].

Monolayers, however, are only one class of viscoelastic polymer film that may be

present at a liquid/liquid or liquid/vapor interface. One may imagine various types of

viscoelastic interfacial films of finite but small thickness. Examples include wetting layers

of entangled flexible polymers, insoluble films of entangled polymeric surfactants, and

smectic layers of polymer liquid crystalline materials. The internal structure of such sur-

face films is expected to result in more complex viscoelastic behavior than in the case of

classical monolayers discussed above. A more general approach for studying the interfa-

cial viscoelastic behavior of more complex films is to start with a proper hydrodynamic

description of the three component system consisting of two liquid phases and an interme-

diate viscoelastic phase of finite thickness. This point of view has recently been adopted

to discuss the related problem of hydrodynamic modes of a freely suspended soap film

containing a viscoelastic liquid [25]. In the limit of a very thin film, however, one may

reduce the full three-phase hydrodynamic problem to an effective two-phase problem with

interfacial boundary conditions that are derived from the bulk viscoelastic properties of

the interfacial material rather than postulated apriori. This approach allows one to sys-

tematically deduce the effect of interfacial structure on the hydrodynamic modes of a

viscoelastic interface.

In this paper, we illustrate this scheme by considering the case of a thin isotropic film

of viscoelastic material at the interface between two Newtonian liquids. Such a film may

serve as a model of an entangled polymer film (e.g. a melt, a concentrated solution, or a

gel) at the interface between two dilute polymer solutions. In Section 2, we present the

general hydrodynamic description of the three-phase system consisting of a viscoelastic

film and two Newtonian liquids. We then show how this description in the thin film limit

reduces to the equations of motion for two Newtonian liquids with generalized boundary

conditions at the liquid-film-liquid interface. Derivation of these boundary conditions is

3



presented in Appendix A. In Section 3, we present general results for the dispersion rela-

tions ω(k) of the interfacial modes and the structure factor S(k, ω) of thermally induced

transverse modes. Derivation of these results is presented in Appendix B. We illustrate

these results by considering two special cases: (i) fluctuations of a polymeric film sepa-

rating two fluids of the same viscosity and density (the “symmetric interface”), and (ii)

fluctuations of a polymeric film at the interface between a Newtonian liquid and vapor

(the “free interface”). We compare these results to those of the classical monolayer model

discussed in Refs[9] and [10]. Finally in Section 4, we conclude with a discussion of pos-

sible applications of our general model, and with suggestions for possible experiments to

check our predictions. A preliminary report of our findings has been published in a recent

proceedings volume [26].
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2 Hydrodynamic Model

We consider two semi-infinite incompressible Newtonian liquids separated by a film of

viscoelastic material of thickness d. For the sake of argument, we assume liquid 1 occupies

the region z > d/2, while liquid 2 occupies the region z < −d/2 in equilibrium. We

characterize each liquid by its viscosity ηi and density ρi. Thermal fluctuations or weak

externally applied forces will induce small amplitude surface modes on the upper and lower

boundaries of the film. Under these assumptions, the appropriate linearized equations of

motion have the form

ρi
∂~v(i)

∂t
= ∇ · σ(i) + ρi~g (1)

∇ · ~v(i) = 0 (2)

ρm
∂~v(m)

∂t
= ∇ · σ(m) + ρm~g (3)

where ~v(i) and σ(i) for i = 1, 2 are respectively the Newtonian liquid velocities and stress

tensors; where ρm, ~v(m) and σ(m) denote, respectively, the density, velocity, and stress ten-

sor of the viscoelastic material; and where ~g ‖−ẑ is the acceleration of gravity. Equation 1

is the usual linearized Navier-Stokes equation if σ
(i)
αβ = −P (i)δαβ+ηi(∇αv

(i)
β +∇βv

(i)
α ), where

we denote components of vectors and tensors by greek indices and where ∇β ≡ ∂/∂xβ.

Equation 2 is the incompressibility condition for the Newtonian fluids. Equation 3 is the

generalization of the Navier-Stokes equation to a linear viscoelastic medium; it must be

amended by dynamical equations for the internal degrees of freedom of the viscoelastic

medium as discussed in Appendix A.

The solutions to these equations of motion are subject to appropriate boundary con-

ditions on the upper and lower film interfaces. As is usual in hydrodynamic theories,

we characterize these interfaces by step-function density profiles and surface tensions γi.

Then, in addition to requiring continuity of velocity at the interfaces, we also require

continuity of shear stress, and the balance of normal stress difference with the Laplace

pressure at each deformed interface.

In the limit of a very thin film (d → 0), the equation of motion of the viscoelastic

material and the boundary conditions at the fluid-film interfaces may be replaced by ef-
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fective boundary conditions between the Newtonian fluids 1 and 2. These are obtained by

imposing conservation of momentum across the viscoelastic interface separating the flu-

ids. As we are interested in relatively long wavelength modes of very thin films (kd� 1,

where k is the mode wave number), we may restrict our attention to transverse undula-

tion modes of the film, i.e. modes in which the upper and lower interfaces fluctuate in

phase, approximately maintaining the constant thickness of the film [27]. Then, we may

consider the film as a membrane of negligible thickness and characterize its modes by the

local transverse and in-plane displacements from equilibrium, ζ and ~ξ, respectively. In

Appendix A, we show that the effective dynamic boundary conditions for such membrane

modes have the form

[σαz]1,2 = P (m)
α (4)

where [f ]1,2 denotes the discontinuity of f across the membrane, P (m)
α is the total interfa-

cial force density (given below), including the contributions from the viscoelasticity of the

film and from the Laplace pressure of the perturbed fluid-membrane-fluid interface with

an effective surface tension γ. Note that the viscoelastic contribution to the boundary

conditions is determined in part by the choice of a bulk dynamical constitutive equation

for the membrane material. One may use an empirically determined bulk constitutive

equation for σ
(m)
αβ , such as a Maxwell model [11], to obtain P (m)

α . Alternatively, we discuss

a very general form of σ
(m)
αβ appropriate for homogeneous, isotropic viscoelastic materials

from the point of view of macroscopic hydrodynamics [28], in which the elastic degrees of

freedom are taken to be additional macroscopic slow variables that, however, relax in finite

time. Thus in addition to the usual static elastic and liquid-like viscous responses dis-

cussed in the introduction, we allow for extra frequency dependent viscoelastic response,

the origin of which is in the relaxation of entanglements in a concentrated polymeric film.

We also include higher order viscoelastic bending moduli, for the sake of completeness.

This approach is introduced and developed extensively in Appendix A.

As for kinematic boundary conditions, we require surface modes to be localized at the

membrane surface, i.e. we impose ~v(i) → 0 as z → ±∞; and we require the continuity of
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velocity at the fluid-membrane-fluid interface,

~v(1) = ~v(2) = ~v(m) (5)

In a linearized theory such as ours, Eqs(4) and (5) are to be evaluated at z = ζ(~x) ≈ 0.

Since we are neglecting the thermal degree of freedom, we do not need boundary conditions

for heat flow.

In order to study both the mode spectrum and the amplitude-amplitude correlation

function of thermally induced transverse membrane fluctuations, we employ the usual

method of linear fluctuating hydrodynamics, in which the hydrodynamic currents in flu-

ids 1 and 2 are amended by fluctuating parts with zero means and variances given by

generalized fluctuation dissipation relations [29]. The stress tensors in the bulk liquid

phases then take the form

σ
(i)
αβ = −P (i)δαβ + ηi(∇αv

(i)
β +∇βv

(i)
α ) + Σ

(i)
αβ (6)

where Σ
(i)
αβ are random sources of stress related to dissipation in liquid i through the

generalized fluctuation dissipation theorem for incompressible classical fluids

〈Σ(i)
αβ(~r, t) Σ(j)

µν (~r′, t′)〉 = 2kBTηi (δαµδβν + δανδβµ) δijδ(~r − ~r′)δ(t− t′) (7)

where kB is Boltzmann’s constant, T is the absolute temperature, δαβ is the Kroneker

delta function, and δ(x−x′) is the Dirac delta function. We have suppressed the effects of

extensional viscosity in Eq(7) since we are considering the limit of incompressible liquids

in regions 1 and 2.

Equations (1), (2), and (4)-(7), together with a dynamical constitutive equation for

the viscoelasticity of the membrane material, provide the necessary equations of motion

and boundary conditions to determine the membrane mode spectrum and fluctuation

amplitude correlations.

It suffices to consider the case of plane waves of wavevector k and frequency ω prop-

agating along, say, the x-direction. Then, the macroscopic dynamics approach leads to a
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P (m)
α in the boundary conditions [Eq.(4)] of the form P (m)

α = C(α)(k, ω)(ik2/ω)v(m)
α with

C(x)(k, ω) = ε+ iων‖ +
iωτ‖c‖

1 + iωτ‖
(8)

C(y)(k, ω) = iωνs +
iωτscs

1 + iωτs
(9)

C(z)(k, ω) = γ + iω(ν⊥ + νbk
2) +

iωτ⊥
1 + iωτ⊥

(c⊥ + cbk
2) (10)

where γ is the effective surface tension of the fluid-membrane-fluid interface; ε is the static

compressional modulus; ν‖ , νs, and ν⊥ are, respectively, the liquid-like uniaxial dilational

viscosity, surface shear viscosity, and transversal viscosity; and where the dynamical con-

tribution to the film viscoelasticity due to polymer entanglements is characterized by

transient uniaxial-compressional, shear, and transverse moduli, c‖ , cs, and c⊥ , and by

associated relaxation times, τ‖ , τs, and τ⊥ , as discussed in Appendix A. In addition to

these terms, we include in the surface viscoelasticity term corresponding to transverse

displacements [Eq.(10)] the possibility of a transverse-bending mode viscosity νb, and a

dynamic viscoelastic bending modulus cb with corresponding relaxation time τ⊥ , i.e. the

same relaxation time as for c⊥ . Note that the dynamic viscoelastic terms in Eqs.(8)-(10)

corresponding to relaxation of entanglements are equivalent to those obtained within the

context of a Maxwell rheological model.
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3 Results

Localized surface mode solutions of Eqs.(1), (2), and (4)-(10) include in-plane shear

modes, in-plane compressional modes and transverse modes. Due to the isotropic ro-

tational symmetry of the polymer films under consideration, the shear modes decouple

from the others. Furthermore, in-plane shear modes are not easily observable with con-

ventional radiation scattering techniques. So, we ignore the shear modes, and assume

~v = ~v(x, z) and ~v · ŷ = 0. In general, however, the transverse modes and in-plane com-

pressional modes are coupled. The general film dispersion relation ω(k), and the dynamic

structure factor S(k, ω) of thermally induced transverse modes are derived in Appendix B.

The resulting expressions for ω(k) and S(k, ω) are given by Eqs.(B.24) and Eqs.(B.26)-

(B.28). These are rather involved so we don’t reproduce them here. Rather, in the next

two subsections, we discuss two interesting limiting cases. The first case (the symmet-

ric interface) corresponds to the limit of equal fluid viscosities η1 = η2 and equal fluid

densities ρ1 = ρ2. In this limit, transverse and compressional modes are decoupled, and

S(k, ω) is independent of C(x)(k, ω). This is a consequence of reflection symmetry with

respect to the x-y plane; from a hydrodynamic point of view fluids 1 and 2 are identical

in this limit. The second case (the free interface) corresponds to the limit of vanishing η

and ρ for the fluid in one region. This limit is essentially the case of a viscoelastic film

at a liquid/vapor interface, an often studied situation[16]-[23]. In this limit, the coupling

between transverse and compressional modes is maximized.

3.1 Modes of a Symmetric Interface

In the limit of equal fluid viscosities and densities, the compressional and transverse modes

of the film are independent, with dispersion relations obtained from Eq.(B.24) in the limit
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η1 = η2 = η and ρ1 = ρ2 = ρ. These are given by

ω2 =
k2(q − k)C(x)(k, ω)

2ρ
(11)

ω2 =
k3(q − k)C(z)(k, ω)

2ρq
(12)

where q/k = (1 + iρω/ηk2)1/2, and where C(x) and C(z) are given by Eqs.(8) and (10).

Eq(11) is the implicit dispersion relation of uniaxial compression modes, while Eq.(12)

is that of transverse modes. The corresponding dynamic structure factor of thermally

induced transverse modes is obtained from Eqs.(B.26)-(B.28) in the limit η1 = η2 = η and

ρ1 = ρ2 = ρ; we find

S(k, ω)sym =
kBTΛsym(k, ω)

|ω2 − C(z)(k, ω)k3/2ρ+ ik(q + k)ηω/ρ|2
(13)

where Λsym(k, ω) = ηk2|q + k|2/(2ρ2Re[q]). Notice that S(k, ω)sym is independent of

all in-plane viscoelastic moduli and viscosities. In the absence of viscoelastic material

at the liquid-liquid boundary, Eqs(12) and (13) reduce to expressions for the capillary

fluctuations of a symmetric liquid-liquid interface [30], in which case the dynamic structure

factor S(k, ω)sym in the low fluid viscosity limit has a peak at ω0 = (γ/2ρ)1/2k3/2 of width

∆ω0 = 4ηk2/ρ. The presence of viscoelastic material can modify the mode spectrum

in novel ways. Consider the case of a thin film of concentrated polymer solution at

the liquid-liquid interface as might occur, for example, when it is energetically favorable

for polymer in solution to wet the interface between two immiscible solvents. In the

simplest model of such a scenario, the viscoelastic interface may be characterized by an

effective surface tension γ, and by a transient modulus c⊥ and relaxation time τ⊥ due to

polymer entanglements (a Maxwell model). Thus, for simplicity we ignore the viscoelastic

bending modulus and interfacial viscosities in C(z), and write C(z)(k, ω) = γ + c∗(ω) with

c∗(ω) = iωτ⊥c⊥/(1 + iωτ⊥). Qualitatively, the viscoelastic contribution c∗(ω) provides

an effective transverse viscosity at moderate frequencies (ω ' 1/τ⊥) and augments the
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effective surface tension at high frequencies. Thus, the peak width ∆ω is anomalously

broadened at intermediate k and the peak position ωp is shifted to higher frequencies at

high k. In Fig. 1, we give plots of ωp and ∆ω vs k for γ = 40 dynes/cm, η = 10−2 poise,

ρ = 1 g/cm3, τ⊥ = 3x10−5 sec−1 and c⊥ = 2, 4, 6, and 8 dynes/cm. Fig. 1(a) shows ωp

normalized by the peak position for a bare symmetric interface, ω0 = (γ/2ρ)1/2k3/2, and

plotted against k. Notice that the peak position is essentially unaffected by interfacial

viscoelasticity for k < 200, but that ωp increases monotonically with k for k > 200.

Fig. 1(b) shows ∆ω normalized by the intrinsic peak width for a bare symmetric interface,

∆ω0 = 4ηk2/ρ, and plotted against k. Notice that the peak width increases sharply at

k ' 350, corresponding to the crossover frequency ω(k) ' 1/τ⊥. In both the plots of ωp

and ∆ω, the viscoelastic effects become more pronounced for larger values of the transient

stretching modulus c⊥. We note, however, that in realistic situations c⊥ is probably quite

small, and that the effects shown in Fig.(1) might be difficult to observe in practice.

3.2 Modes of a Free Interface

The limit of vanishing density and viscosity in one fluid region corresponds to the case

of a viscoelastic film at a liquid/vapor interface. The interface mode dispersion relation

in this limit is obtained from Eq.(B.24) with ρ1 → 0 and η1 → 0; we find an implicit

dispersion relation D(k, ω) = 0 with

D(k, ω) =
[
C̃(z)(k, ω)k3 + iηk(q + k)ω − ρω2

] [
C(x)(k, ω)k3 + iηk(q + k)ω

]
+ η2k2(q − k)2ω2 (14)

where C̃(z)(k, ω) = C(z)(k, ω) + g/k2, ρ2 = ρ, η2 = η, q/k = (1 + iρω/ηk2)1/2, and where

C(x) and C(z) are given by Eqs.(8) and (10). Eq.(14) is the generalization of the well-

known Lucassen mode dispersion relation [6, 9, 10] to general viscoelastic interfaces. The

corresponding dynamic structure factor of thermally induced transverse modes obtained
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from Eqs.(B.26)-(B.28) in the limit ρ1 → 0 and η1 → 0 is given by

S(k, ω)fr =
kBTΛfr(k, ω)

|D(k, ω)|2
(15)

where D(k, ω) is given in Eq.(14) and Λfr(k, ω) is given by

Λfr(k, ω) =
8ρ2ηk5

|q − k|2
{
ω4λ1 − ω2

(
λ2Re[C(x)]− λ3Im[C(x)]

)
+ λ4|C(x)|2

}
(16)

with

λ1 = 1− Im[q]/βk

λ2 = k2|q − k|2/2Re[q]ρ

λ3 = k2|q − k|2/Im[q]ρ

λ4 = βIm[q]k5/4ρ2 (17)

where Re[f ], Im[f ], and |f | denote, respectively, the real part, the imaginary part, and

the modulus of f ; and β ≡ ρω/ηk2. Equations (14)-(17) reduce to the classical theory for

the surface hydrodynamics dynamics of monolayers discussed in the introduction [6, 9, 10]

if C(x) = ε+ iων‖ and C̃(z) = γ+ iων⊥ . The general viscoelastic response is more complex,

however. Consider the idealized case where C(x) = ε+iων‖+c
∗(ω) and P = γ+iων⊥+c∗(ω)

with c∗(ω) = iωτc0/(1 + iωτ). Here we assume, for simplicity, a single characteristic

viscoelastic response c∗(ω) due to entanglements for both transverse and compressional

modes of the film. In Figs. 2 and 3, we give plots of peak position ωp and peak width ∆ω

vs ε/γ at k = 200 for c0 = 4 dynes/cm, γ = 40 dynes/cm, η = 10−2 poise, ρ = 1 g/cm3,

ν‖ = 10−4 surface poise, and ν⊥ = 0 surface poise. Fig. 2(a) shows a plot of ωp for τ = 10−3

normalized by the peak position for a bare free interface, ω0 = (γ/ρ)1/2k3/2; while Fig. 2(b)

shows the corresponding plot of ∆ω normalized by the intrinsic peak width for a bare free

interface, ∆ω0 = 4ηk2/ρ. Fig. 3 shows analogous plots of ωp and ∆ω for τ = 10−4. In both

plots, the dashed curves are those corresponding to c∗(ω) = 0, i.e. the analogous classical

results. Notice that while the anomalous film viscoelasticity has only a small effect on

the peak positions, it has a significant effect on the broadening of the peaks; the apparent
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static Gibbs modulus ε at which peak width is maximized decreases in the presence of

viscoelasticity due to entanglements. This behavior is inherently frequency dependent, as

can be seen by comparing Figs. 2(b) to Fig. 3(b). At a given frequency ω, the film depicted

in Fig.(2) [with τ = 10−3] is more solid-like (elastic) than the film depicted in Fig.(3) [with

τ = 10−4]. We should add that the qualitative behavior in Figs.(2) and (3) is unchanged

if we suppress transverse viscoelastic effects and write P = γ + iων⊥ ; the broadening of

the peak in S(k, ω) is controlled primarily by the coupling of the transverse and in-plane

modes of the film, and hence is most sensitive to the entanglement contribution to the

compressional viscoelasticity.
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4 Discussion

We have presented a general theoretical approach for the hydrodynamics of thin vis-

coelastic films at liquid/liquid and liquid/vapor interfaces based on the method of linear

fluctuating hydrodynamics utilizing generalized boundary conditions obtained from the

bulk viscoelastic properties of the interface material. We have illustrated this approach

for the case of homogeneous and isotropic polymeric films characterized by an idealized

constitutive equation modeling the effects of polymer entanglements on film viscoelastic-

ity.

In Section 3.1, we showed that the viscoelastic stretching modulus of the film augments

the effective interfacial tension and provides an extra source of dissipation. As a result,

the peak of the dynamic structure factor of the thermally induced transverse mode shifts

to higher frequency with increasing k (i.e. ω(k) grows with k somewhat faster than k3/2

at high k; c.f. Fig. 1(a)). Also, the peak width ∆ω(k) is anomalously broadened at

intermediate k (c.f. Fig. 1(b)). For realistic films, these effects may be quite modest since

c⊥ is expected to be quite small.

In Section 3.2, we considered the effect of film viscoelasticity on the coupling between

transverse modes and in-plane compressional modes. In the conventional Lucassen picture

of monolayer hydrodynamics[6, 9, 10], coupling between transverse and in-plane compres-

sional modes results in broadening of the peak in the transverse mode dynamic structure

factor, S(k, ω) . This broadening is maximized for a static Gibbs modulus ε ' 0.2γ. How-

ever, in the present case the complex, frequency-dependent contribution to the in-plane

compressional modulus due to entanglements significantly alters the apparent maximizing

value of ε (c.f. Figs. 2(b) and 3(b)). Such interfacical viscoelasticity due to entanglements

could complicate the interpretation of dynamic light scattering data.

The theory we have presented may have some relevance to recent dynamic light scat-

tering studies of insoluble polymer monolayers at liquid/liquid and liquid/vapor interfaces

[16]-[22]. In these experiments, the surface tension γ and static Gibbs elasticity ε of poly-

meric monolayers as a function of surface coverage Γ were monitored in a Langmuir trough
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simultaneously with dynamic light scattering studies of transverse interfacial modes. In

these studies, dynamic light scattering results were analysed using the classical theory

discussed in the Introduction [9, 10]; and for the most part, theory and experiment were

consistent, especially at low to moderate surface coverages. Some unusual features were

observed in several studies, however, especially at high surface coverage including (i) a

significant discrepency between measured static and dynamic surface elasticities at high

Γ, and (ii) a novel double maximum in the transverse mode peak width ∆ω vs surface cov-

erage Γ [22]. The former feature is quite plausibly a viscoelastic effect of the sort discussed

in this work. The latter feature was explained in terms of a non-monotonic dependence

of ε on Γ [22]. However we suggest that a viscoelastic interpretation is also possible.

Very recent electrocapillary wave diffraction studies of cellulose-based polymer monolay-

ers have reported effective compressional moduli and surface viscosities, ε(ω) and κ(ω)

with unusual frequency dependencies, and have qualitatively analysed the viscoelastic

properties of these monolayers in terms of a phenomenological Maxwell model of surface

viscoelasticity [23]. We should note that chain entanglements are relatively ineffective in

true 2-D polymers monolayers. However, at sufficiently high Γ monolayers may buckle,

leading to films of finite thickness in which entanglements might play a role in the surface

viscoelasticity. Alternatively, films subjected to high surface pressures may also respond

by formation of loops in the solvent subphase(s). Hydrodynamic and direct interactions

between such loops might also contribute to the effective viscoelastic properties of the

films [23].

There are several interesting experimental scenarios in which our hydrodynamic model

may be applied. For instance, dynamic light scattering might be used to monitor the pro-

cess of adsorption or wetting of polymer at a liquid/vapor interface from solution as a

function of solvent quality and polymer concentration. The viscoelastic behavior of very

thin films would be essentially like that of monolayers, while for thicker films viscoelastic

effects due to chain entanglements would play an increasing role [31]. Another interesting

possibility would be to use dynamic light scattering to study the gel-sol transition in poly-

mer wetting films. In this case, the characteristic relaxation times associated with chain
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entanglements diverge at the gel transition, leading to essentially different viscoelastic

behavior in the gel and sol regimes. This effect perhaps could be probed by dynamic light

scattering techniques.

The theoretical approach described in this paper may be extended to include non-

isotropic films and membranes with internal structure such as films of copolymeric sur-

factants, liquid crystalline polymer materials, or hybrid macromolecular materials. One

must then modify the procedure described in Appendix A to deduce the appropriate gen-

eralized boundary conditions from the known viscoelastic properties of the analogous bulk

phase of the material.
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Appendix A

We consider a thin film separating two Newtonian fluids. On hydrodynamic length scales,

we may regard the film as a membrane of negligible thickness which we assume lies in the

z = 0 plane. The region z > 0 contains fluid 1, while the region z < 0 contains fluid 2.

The conservation of linear momentum in both regions implies [32]

ġ(i)
α = ∇βσ

(i)
αβ (A.1)

where ġ(i)
α and σ

(i)
αβ are respectively the components of the linear momentum density and

the stress tensor in fluid i, and where the Einstein convention on summation over repeated

greek indices is implied everywhere. Consider a cylinder of volume V containing a small

area ∆A of membrane and aligned parallel to the z axis, as shown in Fig. 4. Integration

of Eq.(A.1) inside the cylinder using the divergence theorem of vector calculus yields

∫
V
ġ(i)

α dV =
∫

∂V
σ

(i)
αβdfβ (A.2)

where ∂V denotes the surface of the cylinder, and dfβ are the components of the local

surface normal multiplied by an infinitesimal area element. The contribution to the surface

integral in Eq.(A.2) from the cylindrical mantle vanishes by symmetry, giving

∫
∂V
σ

(i)
αβdfβ =

(
σ(1)

αz − σ(2)
αz

)
∆A (A.3)

In the limit V → 0, the volume integral in Eq.(A.2) is governed solely by the momentum

density at the membrane surface and we have

∫
V
ġ(i)

α dV = ∇βσ
(m)
αβ ∆A (A.4)

where σ
(m)
αβ is the surface stress of the membrane (i.e. a surface energy per unit area),

and where we have used the equation of linear momentum conservation in the membrane

ġ(m)
α = ∇βσ

(m)
αβ . Putting together Eq.(A.3) and Eq.(A.4), we obtain an effective boundary

condition (
σ(1)

αz − σ(2)
αz

)
= ∇βσ

(m)
αβ (A.5)
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for the discontinuity of stress across the membrane.

In order to complete the derivation of the stress boundary conditions, we must relate

the viscoelastic surface stress tensor σ
(m)
αβ to the corresponding bulk material constitu-

tive relation. For purely elastic materials, the usual approach to this problem amounts

to obtaining the strain energy per unit area E by integration of the deformation free

energy per unit volume e across the film [33]-[35]. The deformation energy per unit vol-

ume is assumed to be a function of the spatial derivatives of the film deformation profile

uα(x, y, z), i.e. e = e(∇βuα). If the film deformation profile is homogeneous, there are

only shear, stretching, and compressional terms in the corresponding strain energy per

unit area. However, for more general deformations there are also bending energy con-

tributions which depend on the local film curvature. One may see this by considering

a deformation profile that depends linearly on z, with a coefficient that depends on the

local film deformation: uα(x, y, z) = uα(x, y) + f [∇βuα]z for β = 1, 2. Expansion of such

an e(∇αuβ) around the film mid-point z = 0 to second order in z and integration of

the resulting expression across the film yields an E which is the sum of in-plane elastic

terms proportional to the film thickness d multiplied by e, and bending energy terms

proportional to d3 and depending on second derivatives ∇α∇βuγ. A general mathemat-

ical discussion of this approach including a detailed discussion of membrane mechanical

stability issues can be found in Ref.[35] and references therein.

For the case of linear elasticity, this procedure is equivalent to the classical theory of

thin elastic plates and shells (see for instance Ref.[33]), in which E = Ep +Eb with in-plane

and bending contributions given by

Ep =
d

2
σαβεαβ (A.6)

Eb =
µd3

24(1− σ)
(∆⊥ζ)

2 +
µd3

12

[
(∇x∇yζ)

2 −∇2
xζ∇2

yζ
]

(A.7)

where σαβ = 2µεαβ + (K − 2µ/3)εγγδαβ is the usual stress tensor of a linear elastic solid

with shear modulus µ, compression modulus K, and εαβ is the 2-D membrane strain
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tensor

εαβ =
1

2
(∇βuα +∇αuβ)z=0 (A.8)

and where σ is Poisson’s ratio, and ∆⊥ ≡ ∇2
x +∇2

y.

The analysis for isotropic linear viscoelastic materials is analogous to the case of

linear elasticity presented above. The principle difference is that the deformation energy

density e(t) is a history dependent quantity which relaxes for sufficiently long times. The

terms in the strain energy per unit area E inherit their history dependence from the

bulk deformation energy density (e.g. Ep(t) = e(t) d). There are many schemes used

to model the bulk viscoelastic properties of materials. The traditional approach is to

use a phenomenological constitutive equation relating stress to strain history, which is

either postulated apriori or obtained empirically. In this case, one generally has σαβ(t) =∫ t
−∞G(t − t′)αβγδ ε̇γδ(t

′) for the bulk viscoelastic material. The Maxwell model, with

G(t)αβγδ ∼ exp(−t/τ), is a typical example of such a constitutive equation [11]. In

frequency space, this approach entails frequency dependent moduli, e.g. µ = µ(ω), K =

K(ω), etc. Then for the case of thin viscoelastic films, one simply obtains E(t) from

Eqs.(A.6) and (A.7) with the relevant µ(ω) and K(ω). The corresponding interfacial

force densities, P (m)
α , due to film viscoelasticity are then easily obtained from E(t).

We adopt an alternative approach in the following which is somewhat less phenomeno-

logical. Rather than assuming a dynamical constitutive equation σ
(m)
αβ (ω) for the mem-

brane stress tensor, we treat the displacement field uα as a slowly relaxing field within the

context of macroscopic dynamics [28], in which very slowly relaxing fields are included

among the list of true hydrodynamic variables of a system in the formulation of its linear

irreversible thermodynamics. This approach has been utilized to describe the dynamics of

the λ-transition in 4He [36], and more recently has been applied to the dynamics of poly-

meric liquids [28] and liquid crystalline polymeric elastomers [37]. In the present context,

this approach reduces to the usual Maxwell model of rheological behavior. We utilize

the macroscopic dynamics approach, however, since it is less adhoc than the traditional

rheological modelling and since it is rather a general approach which may be extended to

non-isotropic materials with additional internal degrees of freedom. As this approach is
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developed extensively for bulk polymeric liquids in Ref.[28], and the connection between

bulk and interfacial viscoelasiticity is discussed above, we only present an abbreviated

derivation in the following.

In an isotropic single-component viscoelastic membrane, the rigorous hydrodynamic

variables corresponding to conserved quantities are the membrane density ρm, the inter-

facial linear momentum density g(m)
α , and the energy density E . In the case that the

viscoelastic membrane is a two-component mixture (as in the case of a thin film of semi-

dilute polymer solution) we would also include the local concentration φ of one constituent

as a hydrodynamic variable. In addition to these true hydrodynamic variables, we also

keep the elastic displacement field uα as a quasi-hydrodynamic variable which relaxes in

a large but finite time. Since the membrane separates two bulk samples of immiscible

liquids, the thermodynamic state of the interfacial region also depends on the area A

of the membrane. We include this dependence in the thermodynamic description of the

membrane, for convenience. In the hydrodynamic regime, the membrane is locally in

thermodynamic equilibrium and satisfies the following Gibbs-Duhem relation

Tds = dE − µdρm − vαdg
(m)
α − ψαβdεαβ − γA−1 dA (A.9)

where s is the local entropy per unit area, γ is the effective surface tension of the fluid-

membrane-fluid interface, and where dA is the local infinitessimal area increment arising

from small fluctuations of the membrane around its planar equilibrium state.

Equation (A.9) gives the variation of the entropy per unit area s with the changes in

the other thermodynamic variables. Since the properties of the system are invariant under

homogeneous displacements and rotations, the appropriate quasi-hydrodynamic variable

appearing in Eq. (A.9) and below is the symmetrized 2-D strain tensor εαβ rather than the

displacement field uα. The quantities T , µ, vα, ψαβ and γ are the thermodynamic forces

conjugate to the above thermodynamic variables. Note that all quantities are independent

of the z coordinate within an infinitesimally thin film, and in particular that ∇zuα = 0.

The thermodynamic forces are generally obtained by variation of the total free energy

of the film E =
∫
E(x, y)dx dy with respect to the relevant thermodynamic variable. For
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instance, the surface stress ψαβ conjugate to εαβ is given by ψαβ = δE/δεαβ|..., where |...
indicates that all other thermodynamic variables are held constant. Within linear ther-

modynamics, the total energy is the most general bilinear function of the thermodynamic

variables that is consistent with all fundamental invariance properties of the system (e.g.

time reversal symmetry, translational and rotational symmetry, symmetry under spatial

parity transformations, etc.). Thus, the corresponding thermodynamic forces are linear

functions of the thermodynamic variables. Of particular interest in our case is the form

of the surface stress ψαβ. In the absence of cross-couplings to thermodynamic variables

other than εαβ, we find

ψαβ = (ck + cs)εγγδαβ + 2csεαβ + (c⊥ − cb∆⊥)εαβδβz (A.10)

where ∆⊥ ≡ ∇2
x + ∇2

y and where ck and cs are, respectively, the in-plane compression

and shear elastic constants; and c⊥ and cb are, respectively, the transverse stretching

and bending elastic constants. It is convenient in the following to define a uniaxial com-

pressional modulus c‖ ≡ ck + cs. The membrane elastic constants are given in terms of

the corresponding transient bulk elastic constants of compression and shear, K and µ,

Poisson’s ratio σ of the material and the film thickness d by c‖ = (K + µ)d, cs = µd,

c⊥ ∼ cs, and cb = µd3/12(1 − σ) [ c.f. Eqs. (A.6)-(A.8)]. There is only one curvature

elastic contribution (cb), related to the mean curvature of the surface, since the second

part of Eq. (A.7) does not contribute to ψαβ.

We will now discuss the appropriate dynamic equations. The conservation laws for

the areal density and density of linear momentum are given by

ρ̇(m) +∇αg
(m)
α = 0 (A.11)

ġ(m)
α = ∇βσ

(m)
αβ (A.12)

where σ
(m)
αβ is the membrane surface stress tensor, the sign of which is chosen to conform

to the usual Navier-Stokes equation in the case of a viscous liquid film. Note that the

density of linear momentum g(m)
α is both a hydrodynamic variable and the current of the
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areal density [c.f. Eqs. (A.10) and (A.12)]. The corresponding dynamical equations for

the non-conserved variables εαβ and s are

ε̇αβ +Xαβ = 0 (A.13)

ṡ+∇αjα =
R

T
(A.14)

where jα is the entropy current, R/T is the entropy production (R ≥ 0, as required by the

second law of thermodynamics), and Xαβ is the quasi-current associated with the strain

tensor field εαβ. In a Newtonian fluid the dynamical equation for εαβ would be absent,

since there the strains relax on a microscopic time scale. The conservation equation for

membrane energy density E is obtained from Eqs. (A.10)-(A.14). In the following, how-

ever, we focus on the dynamical equations (A.11)-(A.13) for density, momentum density

and strain field.

In order to close our set of equations (A.10)-(A.14), we must relate the currents and

quasi-currents g(m)
α , σ

(m)
αβ , s, and Xαβ to the thermodynamic forces T , µ, vα, and ψαβ,

taking into account all symmetries of the system. Within linear macroscopic dynamics,

these currents are linearly related to the thermodynamic forces, and in general are the

sum of reversible and dissipative contributions. The reversible parts may be obtained

using general symmetry and invariance arguments alone. Their dissipative counterparts

are obtained from functional derivatives of the dissipation function R, which is the most

general bilinear function of the thermodynamic forces that is consistent with all symmetry

and invariance properties of the system, and the requirement of positive definite entropy

production R ≥ 0. For example, the dissipative part of the strain quasi-current XD
αβ is

given byXD
αβ = δR/δψαβ|.... This procedure is discussed in detail in Ref. [28], so we simply

give the results here. The momentum g(m) = ρ̄mv
(m)
α is a purely reversible current, while

the stress σ
(m)
αβ and strain quasi-current Xαβ have both reversible and dissipative parts.

The resulting membrane contribution to the surface stress (excluding the contribution

from the fluid-membrane-fluid surface tension) is given by

σ
(m)
αβ = −pδαβ + ψαβ + ν‖δαβ∇ · v(m) + νsAαβ + (ν⊥ − νb∆⊥)δαz∇βv

(m)
z (A.15)
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where p is the hydrostatic pressure, and ψαβ is the elastic contribution of the transient

polymer network to the stress tensor, Aαβ = (∇αv
(m)
β + ∇βv

(m)
α )/2 is the symmetrized

velocity gradient tensor, and ν‖ , νs, ν⊥ , and νb are, respectively, the viscosities corre-

sponding to uniaxial compression, shear, transverse stretching and bending motions of

the membrane. Changes in the pressure δp are related to variations in density δρm via

δp = εδρm/ρ̄m, where ε is the liquid-like compressibilty of the membrane. This relation

provides a connection between pressure and spatial variation of the momentum density

through the continuity equation Eq. (A.11).

The quasi-current Xαβ is given by

Xαβ = −Aαβ +
1

2
T −1

αβγδψγδ (A.16)

where the T −1
αβγδ are relaxation coefficients of the viscoelastic material, i.e. each is a

product of a relaxation time and an appropriate elastic constant. The tensor of these

coefficients has the same symmetries as the elastic strain field εαβ. We should note that

while v(m)
z = ζ̇ in the above, εαz 6= ∇αζ from the point of view of macroscopic dynam-

ics; internal rearrangement of material within a thin viscoelastic film is not necessarily

connected to its geometric transverse displacement ζ. Eqs. (A.11)-(A.16) give the diver-

gence of the membrane stress tensor components ∇βσ
(m)
αβ in terms of spatial derivatives

of membrane velocity and strain. For our purposes it suffices to consider the simplified

case of one-dimensional membrane modes, in which all quantities are assumed to vary as

exp(ikx + iωt). Then the above analysis simplifies considerably; all spatial derivatives

with respect to y and z vanish, while ∇x → ik and ∂/∂t → iω. After some algebraic

manipulations, we find a total interfacial force density of the form

P (m)
α = C(α)(ik2/ω)v(m)

α (A.17)

with C(α) for α = x, y, z given by

C(x)(k, ω) = ε+ iων‖ +
iωτ‖c‖

1 + iωτ‖
(A.18)
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C(y)(k, ω) = iωνs +
iωτscs

1 + iωτs
(A.19)

C(z)(k, ω) = γ + iω(ν⊥ + νbk
2) +

iωτ⊥
1 + iωτ⊥

(c⊥ + cbk
2) (A.20)

where we have included in Eq.(A.20) the contribution to the surface force density from the

Laplace pressure of the fluid-membrane-fluid interface, PL = γ∇2
xζ = γ(ik2/ω)v(m)

z ; and

where we have explicitly written the relaxation coefficients as products of macroscopic

relaxation times and elastic constants, e.g. T‖ = τ‖c‖ , Ts = τscs, and T⊥ = τ⊥c⊥ , in order

to make a connection with the classical Maxwell model. Equations (A.17)-(A.20) are the

boundary conditions given in Eqs.(8)-(10) of Section 2. The C(x)(k, ω) and C(z)(k, ω)

in Eqs.(A.18) and (A.20) can be interpreted as a generalized ω and k dependent com-

pressional modulus εeff (k, ω) and surface tension γeff (k, ω), respectively, both of which

contain dissipative contributions due to internal viscoelastic effects.
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Appendix B

To obtain the membrane mode dispersion relation ω(k) and the transverse membrane

mode structure factor S(k, ω), one must solve the linearized equations of motion and

boundary conditions given in Section 2. The techniques used in this appendix are very

similar to those used in a previous work to calculate the surface modes of a semi-infinite

viscoelastic liquid [38, 39]. Hence, we give only an abbreviated derivation in the following.

For our purposes, it suffices to consider one-dimensional membrane modes, for which all

quantities vary as exp(ikx+ iωt). Then, Eqs. (1) and (2) for fluid i become

iωρiv
(i)
x = −ikP̂ (i) + ηiD̂v

(i)
x + ikΣ(i)

xx +∇zΣ
(i)
xz (B.1)

iωρiv
(i)
z = −∇zP̂

(i) + ηiD̂v
(i)
z + ikΣ(i)

xz +∇zΣ
(i)
zz (B.2)

ikv(i)
x +∇zv

(i)
z = 0 (B.3)

where D̂ ≡ ∇2
z − k2 and where Σ

(i)
αβ are the components of the fluctuating stress tensor

in each liquid. In Eqs.(B.1) and (B.2), we have implicitly included the gravitational con-

tribution to the hydrostatic pressure by writing P̂ (i) = P (i) + ρigz. These equations of

motion are subject to the requirement that mode amplitudes vanish far from the mem-

brane, i.e. v(i)
α → 0 as z → ±∞, and subject to the effective kinematic and dynamic

boundary conditions at the membrane surface

~v(1)|z=0 = ~v(2)|z=0 = ~v(m) (B.4)

[
2ηi∇zv

(i)
z + Σ(i)

zz − P (i)
]
1,2

+ C(z)(k, ω)(k2/iω)v(m)
z = 0 (B.5)

[
ηi(∇zv

(i)
x + ikv(i)

z ) + Σ(i)
xz

]
1,2

+ C(x)(k, ω)(k2/iω)v(m)
x = 0 (B.6)
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where [f (i)]1,2 denotes the discontinuity of f across the liquid-membrane-liquid interface,

and where C(x)(k, ω) and C(z)(k, ω) are given by Eqs. (A.18) and (A.20). The Fourier-

transformed components of the random stress tensors Σ
(i)
αβ(k, z, t) are related to the fluid

viscosities ηi through the generalized fluctuation-dissipation theorem for classical fluids

[29]

〈Σ(i)
αβ(k, z, t) Σ∗ (j)

µν (k′, z′, t′)〉 = 8π2kBTηi (δαµδβν+δανδβµ) δijδ(z−z′)δ(k−k′)δ(t−t′) (B.7)

where kBT is the thermal energy, ∗ denotes complex conjugation, and where we define

the Fourier transform by f(k, ω) =
∫+∞
−∞ dx

∫+∞
−∞ dt f(x, z, t) exp(ikx + iωt). It is conve-

nient to express all equations of motion and boundary conditions in terms of v(i)
z . The

incompressibility condition, Eq.(B.3), gives v(i)
x in terms of v(i)

z . Then, taking the curl of

the Navier-Stokes equation by subtracting ik times Eq. (B.2) from ∇z of Eq. (B.1) gives

an equation of motion for v(i)
z ,

(
ρiω + iηiD̂

)
D̂v(i)

z = −ik2∇z

(
Σ(i)

xx − Σ(i)
zz

)
− kD̂+Σ(i)

xz (B.8)

where D̂+ ≡ ∇2
z + k2. Solving Eq.(B.1) for the pressure P (i) and using Eq. (B.3) to

eliminate v(i)
x yields

P (i) =
1

k2

(
ηiD̂ − iωρi

)
∇zv

(i)
z + Σ(i)

xx −
i

k
∇zΣ

(i)
xz − ρigz (B.9)

Substitution of Eq. (B.9) into Eq. (B.5) gives the normal stress boundary condition in

terms of the v(i)
z

[(
ηi(D̂ − 2k2)− iρiω

)
∇zv

(i)
z

]
1,2

− k2

iω
(C(z)(k, ω)k2 + ∆ρg)v(i)

z |z=0

=
[
k2(Σ(i)

zz − Σ(i)
xx) + ik∇zΣ

(i)
xz

]
1,2

(B.10)

where ∆ρ = ρ2 − ρ1, and where we have used ζ(x) = v(i)
z (x, 0)/iω (for the gravitational

contribution), v(m)
z = v(i)

z |z=0, and [f (i)]1,2 = (f (1) − f (2))|z=0 here and in the following.

Similarly, elimination of v(i)
x in Eq. (B.6) gives the shear stress boundary condition as

[
ηiD̂+v

(i)
z

]
1,2

+
k2

iω
C(x)(k, ω)∇zv

(i)
z |z=0 =

[
ik∇zΣ

(i)
xz

]
1,2

(B.11)
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where we have used v(m)
x = v(i)

x |z=0 = i∇zv
(i)
z |z=0/k.

The most general solution to the equations of motion is the sum of a particular solution

of Eq. (B.8) and the solution of the associated homogeneous equations with Σαβ = 0 which

satisfies the boundary conditions, Eqs. (B.10) and (B.11). To obtain a particular solution

in region i, it is convenient to Laplace transform Eq. (B.8) with respect to the z coordinate

using

f̃ (i)(qi) =


∫∞
0 dz exp(−q1z)f (1)(z)∫ 0
−∞ dz exp(+q2z)f

(2)(z)
(B.12)

Since we seek any particular solution of Eq. (B.8) that is consistent with the boundary

conditions, we have the freedom to choose the values of v(i)
z , and its derivatives with

respect to z, v(i)′
z , v(i)′′

z , and v(i)′′′
z on z = 0. For convenience we take these to be

v(i)
z (0) = 0

v(i)′
z (0) = 0

v(i)′′
z (0) = ikΣ(i)

xz(0)/ηi

v(i)′′′
z (0) = [ikΣ(i)

xz(0)− k2(Σ(i)
xx(0)− Σ(i)

zz (0))]/ηi

(B.13)

Then after Laplace transformation of Eq. (B.8) using Eq. (B.12), one finds ṽ(i)
z (qi) in

region i given by

ṽ(i)
z (qi) =

−[qik
2(Σ̃(i)

xx(qi)− Σ̃(i)
zz (qi)))− ik(q2

i + k2)Σ̃(i)
xz(qi)]

ηiq4
i − (iρiω + 2ηik2)q2

i + (iρiω + ηik2)k2
(B.14)

These ṽ(i)
z (qi) are easily inverted into real-space expressions using the convolution theorem

of Laplace transformations. The general solution for v(i)
z is then the sum of the homoge-

neous solution [v(i)
z ]h and the particular solution obtained by inverse Laplace transforma-

tion of Eq. (B.14); we find

v(1)
z (k, z, ω) = [v(1)

z ]h +
∫ z

0
dz′λ

(1)
αβ(z − z′)Σ

(1)
αβ(z′)

v(2)
z (k, z, ω) = [v(2)

z ]h +
∫ 0

z
dz′λ

(2)
αβ(z − z′)Σ

(2)
αβ(z′)

(B.15)
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where λ
(1)
αβ(z) is given by

λ
(1)
αβ(z − z′) =

k2 exp(kz)

2η1(k2 − q2
1)
{−(δαxδβx − δαzδβz) + 2iδαxδβz}

+
k2 exp(−kz)
2η1(k2 − q2

1)
{−(δαxδβx − δαzδβz)− 2iδαxδβz}

+
k3 exp(q1z)

2η1q1(k2 − q2
1)

{
q1
k

(δαxδβx − δαzδβz) +
k2 + q2

1

ik2
δαxδβz

}

+
k3 exp(−q1z)
2η1q1(k2 − q2

1)

{
q1
k

(δαxδβx − δαzδβz)−
k2 + q2

1

ik2
δαxδβz

}
(B.16)

and where λ
(2
αβ(z) = λ

(1)
αβ(−z) with q1 → q2 and η1 → η2. The homogeneous solutions

[v(i)
z ]h have the form

[v(i)
z ]h = ai exp(kz) + bi exp(−kz) + ci exp(qiz) + di exp(−qiz) (B.17)

where q2
i = k2−iρiω/ηi, and where the coefficients ai, bi, ci, and di are to be determined by

the boundary conditions. The requirement that the modes are localized at the membrane

surface (v(i)
z → 0 as z → ±∞) implies that

a1 = −I(1)
k

c1 = +I(1)
q

b2 = −I(2)
k

d2 = +I(2)
q

(B.18)

with I
(i)
k and I(i)

q given by

I
(i)
k =

k2

2iω

∫ ∞

0
dz′ exp(−kz′)

[
Σ(i)

xx(z
′)− Σ(i)

zz (z′)− 2iΣ(i)
xz(z

′)
]

I(i)
q =

k2

2iω

∫ ∞

0
dz′ exp(−qiz′)

[
Σ(i)

xx(z
′)− Σ(i)

zz (z′) +
k2 + q2

i

ikqi
Σ(i)

xz(z
′)

]
(B.19)

Due to our judicious choice of derivatives of [v(i)
z ]p on the membrane surface z ' 0

[c.f. Eq. (B.13)], the general solution for v(i)
z given by Eqs. (B.15) and (B.16) will satisfy
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the kinematic and dynamic boundary conditions provided [v(i)
z ]h satisfies the associated

homogeneous boundary conditions, i.e. Eq. (B.4), and Eqs. (B.10) and (B.11) with Σ
(i)
αβ =

0. These homogeneous boundary conditions are

[v(1)
z (0)]h = [v(2)

z (0)]h = v(m)
z (B.20)

∇z[v
(1)
z ]h|z=0 = ∇z[v

(2)
z ]h|z=0 = −ikv(m)

x (B.21)

[(
ηi(D̂ − 2k2)− iρiω

)
∇z[v

(i)
z ]h

]
1,2
− k2

iω
(C(z)(k, ω)k2 + ∆ρg)[v(i)

z (0)]h = 0 (B.22)

[
ηiD̂+[v(i)

z ]h
]
1,2

+
k2

iω
C(x)(k, ω)[∇zv

(i)
z ]h|z=0 = 0 (B.23)

where in Eq. (B.21) we have used the incompressibility relation to write −ik[v(i)
x (z)]h =

∇z[v
(i)
z (z)]h. Substitution of the form of [v(i)

z (z)]h from Eqs. (B.17) and (B.18) into

Eqs. (B.20)-(B.23) yields four inhomogeneous linear equations for { a2, b1, c2, d1} in terms

of I
(i)
k and I(i)

q .

The determinant of the matrix of coefficients of { a2, b1, c2, d1} gives the implicit mem-

brane mode dispersion relation D(k, ω) = 0. After substantial algebraic manipulation we

find

D(k, ω) = (k − q1)(k − q2)C(x)(k, ω)
(
C(z)(k, ω) +

g

k2

)
k6

− 2(k − q1)(k − q2)
[
η2

1q1 + η2
2q2 − η1η2 (q1 + q2)− (∆η)2k

]
ω2k3

+
[(
ρ1q1 + ρ2q2 − 2ρ̄

q1q2
k

)
C(x)(k, ω)

− (ρ1q2 + ρ2q1 − 2ρ̄k)
(
C(z)(k, ω) +

g

k2

)]
ω2k4

−
[
2ρ̄
q1q2
k

(η1q1 + η2q2)− 2 (ρ2η1q1 + ρ1η2q2) k

+ ∆ρ
(
η1

(
q2
1 − q2k

)
− η2

(
q2
2 − q1k

)
−∆ηk2

)]
iω3k2

(B.24)

where 2ρ̄ = ρ1 + ρ2, ∆ρ = ρ2 − ρ1 and ∆η = η2 − η1. In the limit η1 = η2 and ρ1 = ρ2 the

compressional and transverse modes decouple, and Eq. (B.24) reduces to the product of
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the compressional and transverse membrane mode dispersion relations given in Eqs. (11)

and (12) of Section 3.1. On the other hand, for ρ1 → 0 and η1 → 0, we recover the limit

of a film at a liquid-vapor interface, and Eq. (B.24) reduces to the generalized Luccassen

mode dispersion relation given by Eq. (14) of Section 3.2.

Solving the inhomogeneous equations for {a2, b1, c2, d1} gives ζ(k, ω) = v(i)
z (k, 0, ω)/iω

in terms of I
(i)
k and I(i)

q . The dynamic structure factor S(k, ω) = (2π)−3〈|ζ(k, ω)|2〉 of

thermally excited membrane modes is then determined by the thermal averages of I
(i)
k and

I(i)
q . These are obtained with the aid of the generalized fluctuation-dissipation theorem

given in Eq. (B.7) as

〈I(i)
k I

∗ (j)
k 〉 = (2π)3 2kBTηi

k3

ω2
δi,j

〈I(i)
q I∗ (j)

q 〉 =
k

qi + q∗i

(
1 +

|k2 + q2
i |2

4k2|qi|2

)
〈I(i)

k I
∗ (j)
k 〉

〈I(i)
k I∗ (j)

q 〉 =
k

k + q∗i

(
1 +

(k2 + q2
i )
∗

2kq∗i

)
〈I(i)

k I
∗ (j)
k 〉 (B.25)

where no summation convention on repeated roman indices is implied. With the use of

Eq. (B.25), one eventually obtains S(k, ω) in the form

S(k, ω) =
2kBTω

2Λ(k, ω)

|D(k, ω)|2
(B.26)

where D(k, ω) is given by Eq. (B.24), and where Λ(k, ω) is

Λ(k, ω) = 4Re
[
C(x)(k, ω)

]
Λ1(k, ω)− 8Im

[
C(x)(k, ω)

]
Λ2(k, ω)

+ |C(x)(k, ω)|2Λ3(k, ω) + 4Λ4(k, ω)

(B.27)

with the Λi(k, ω) given by

Λ1(k, ω) =
(
ρ1η2|k − q2|2 + ρ2η1|k − q1|2

)
Im [q1] Im [q2] k

2

+ (η1Im [q1]− η2Im [q2]) |k − q1|2|k − q2|2∆η
k3

ω
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Λ2(k, ω) =
(
ρ1Im [q1] |k − q2|2 − ρ2Im [q2] |k − q1|2

)
∆η k3

+ ρ1ρ2Im [q1] Im [q2]ωk
2 + |k − q1|2|k − q2|2(∆η)2 k

4

ω

Λ3(k, ω) =
(
ρ1Im [q1] |k − q2|2 + ρ2Im [q2] |k − q1|2

) k4

ω

Λ4(k, ω) = ρ1ρ2 (ρ2Im [q1] + ρ1Im [q2])ω
3 −

(
ρ2

1|k − q2|2 − ρ2
2|k − q1|2

)
∆η ω2k

−
(
ρ1Im [q1] |k − q2|2 + ρ2Im [q2] |k − q1|2

)
(∆η)2 ωk2

(B.28)

where Re[f ], Im[f ], and |f | denote, respectively, the real part, the imaginary part, and

the modulus of f . Eqs. (B.24), (B.26), (B.27), and (B.28) for the the implicit dispersion

relation D(k, ω) = 0 and the dynamic structure factor S(k, ω) are our central results.

In the limit η1 = η2 and ρ1 = ρ2, Eqs. (B.26)-(B.28) reduce to the symmetric interface

dynamic structure factor S(k, ω)sym given in Eq. (13) of Section 3.1. On the other hand,

for ρ1 → 0 and η1 → 0, we recover the limit of a film at a liquid-vapor interface, and

Eqs. (B.26)-(B.28) reduce to the generalized Luccassen mode dynamic structure factor

S(k, ω)fr given by Eqs. (15)-(17) of Section 3.2.
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Figure Captions

Fig. 1:

Plots of ωp and ∆ω vs k for γ = 40 dynes/cm, η = 10−2 poise, ρ = 1 g/cm3, τ⊥ = 3x10−5

sec−1 and c⊥ = 2, 4, 6, and 8 dynes/cm [bottom to top]. Fig. 1(a) shows ωp normalized by

the peak position for a bare symmetric interface, ω0 = (γ/2ρ)1/2k3/2, and plotted against

k. Fig. 1(b) shows ∆ω normalized by the intrinsic peak width for a bare symmetric

interface, ∆ω0 = 4ηk2/ρ, and plotted against k.

Fig. 2:

Plots of peak position ωp and peak width ∆ω vs ε/γ at k = 200 for c0 = 4 dynes/cm,

γ = 40 dynes/cm, η = 10−2 poise, ρ = 1 g/cm3, ν‖ = 10−4 surface poise, and ν⊥ = 0

surface poise. Fig. 2(a) shows a plot of ωp for τ = 10−3 normalized by the peak position

for a bare free interface, ω0 = (γ/ρ)1/2k3/2. Fig. 2(b) shows the corresponding plot of

∆ω normalized by the intrinsic peak width for a bare free interface, ∆ω0 = 4ηk2/ρ. The

dashed curves are those corresponding to c∗(ω) = 0, i.e. the analogous classical results.

Fig. 3:

Plots of peak position ωp and peak width ∆ω vs ε/γ at k = 200. Parameters are chosen

as in Fig. 2, except that τ = 10−4.

Fig. 4:

Sketch of a small cylinder of volume V intersecting a thin film which separates two New-

tonian fluids. On hydrodynamic length scales, we may regard the film as a membrane of

negligible thickness positioned at the z = 0 plane. The cylinder is assumed to be aligned

parallel to the z axis, and contain a small area ∆A of membrane.
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