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Selected Macroscopic Consequences
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We discuss for tetrahedratic phases a number of cross-coupling terms not considered
before and we analyse their macroscopic physical consequences. In particular we show
that if a tetrahedratic phase is acted on by an electric field that is perpendicular to
a temperature gradient, an electric current perpendicular to both forces results. We
also demonstrate that spatial variations of the tetrahedratic order, as can arise e.g.
near phase transitions, generate reversible stresses and can thus induce flows.
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Introduction

Traditional liquid crystalline phases show quadrupolar orientational order [1,2].
More recently, in connection with the study of liquid crystalline phases formed
by banana-shaped or bent-core molecules [3-16], the question asked was whether
tetrahedratic (octupolar) order also played a role. The answer now emerging
is that tetrahedratic order plays an essential role in describing the multitude of
new effects exhibited by banana liquid crystals.

After pioneering work by Fel [17, 18], the following investigations [19-22]
focused on phase transitions [19,21] and on the flow properties of a tetrahedratic
phase, which has no simultaneous quadrupolar orientational order [20]. We also
investigated the changes of the flow behavior assuming that, in the absence of
an external flow and/or external fields, there is only tetrahedratic symmetry
in a ground state that is lost when such forces are present [22]. Our interest
in the field of tetrahedratic phases was originally triggered by the observation
of flow in the optically isotropic phase [23,24] above the B7 - isotropic phase
transition [16].

Quite recently several additional phenomena were described for liquid crys-
talline phases formed by banana-shaped molecules, which cannot be understood
using only the classical quadrupolar orientational order parameter, ();;. In one
case [25] it was found that a liquid crystalline phase can be induced by an elec-
tric field up to about ten degrees above the liquid crystalline (B2) - isotropic
phase transition. In addition, it was reported [25], that the shift in transition
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temperature (7' — Tgas0) is linear in the applied electric field. The other class
of phenomena consists of the spontaneous formation of left- and right-handed
domains in nematic [26-28] and smectic C-type [29] LC phases composed of
nonchiral bent-core molecules. Very recently we have suggested an explana-
tion [30] of these experimentally observed phenomena using static cross-coupling
terms between quadrupolar and tetrahedratic (octupolar) order.

In the present paper we explore additional static cross-coupling terms be-
tween quadrupolar and octupolar order. The main emphasis, however, is on
the investigation of reversible and dissipative dynamic cross-coupling terms in-
volving either both, tetrahedratic and quadrupolar order, or tetrahedratic order
and its gradients. We find, for example, that an electric field applied in the
r—direction, say, and a temperature gradient applied in the y—direction, leads
in a tetrahedratic phase to an electric current in the z—direction, that is in a
direction perpendicular to both external forces.

New Cross-Coupling Terms in the Macroscopic Description of the
Tetrahedratic Phase

To make the following presentation self-contained, we will make use of some
of the material presented in ref. [20]. For the tetrahedratic phase one has the
same hydrodynamic variables as for an isotropic liquid, namely the density, p,
the energy density, €, the density of linear momentum, g;, and, in mixtures, the
concentration, c¢. In addition one has a third rank tensor Tj;. characterizing
the tetrahedratic order. Tjjj is symmetric in all indices and traceless T, = 0,
i.e. it does not contain any vectorial quantity. Since it transforms under an
[ = 3 representation, it is odd under parity and thus allows coupling terms not
possible in ordinary simple liquids.

The statics of a macroscopic system is governed by its energy density, f.
Due to the Gibbs relation (the local manifestation of the first and second law
of thermodynamics)

df = pdp+Tdo + p.de (1)

the conjugate quantities follow from the energy density by partial differentiation

of T 1
o af B 1 1
o = 90~ dp + e do + Byoc (3)
of
Spre = Be = vy oc+ By00 + B,6p (4)

The pressure is related to the other conjugate quantities by the Gibbs-Duhem
relation [31]

dp = pop + 00T — p.oc (5)

neglecting contributions quadratic in the velocity.
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For the statics of tetrahedratics, we have found for the energy density [20]
[ =Jo+eaTiyiDiD;Dy + €T, Di HjHy, + fr (6)

where f; denotes the energy density of an isotropic fluid, f7 denotes the density
of the analogue of the Frank energy for the tetrahedratic phase discussed by
Fel [17], and D; denotes the dielectric displacement field.

Very recently we found [30] that the energy density, f, also contains the
contribution for

Jor = DT ViQij — ' DiQ i (7)

when one allows bilinear cross-coupling terms between tetrahedratic (octupo-
lar) order and the usual quadrupolar orientational order, @Q;;, [1,2] in a truly
tetrahedratic phase. Physical consequences of these two contributions have been
elucidated in ref. [30]. In particular we have shown [30], that the application of
an electric field to an isotropic tetrahedratic phase can lead to the induction of
quadrupolar orientational order of the type familiar from nematics and thus to
an optically uniaxial phase.

In addition to an induced orientational order, smectic layering can be induced
simultaneously via terms coupling the smectic order parameter ¢ to the order
parameters T, and @;;. As cross-coupling contributions in the generalized
energy, which are linear in |1|* we find

fsm = [P (T Tin + 12Qi5Qij + 3T DiQjir) (8)

For suitable values of the coefficients of the coupling terms to smectic order,
layering can be induced simultaneously with the onset of );;. We note, that the
same type of analysis as for the coupling to smectic order also applies to that
for columnar order.

The results of our analysis show that the experimental observations described
in ref. [25] would find an explanation if the ‘isotropic’ phase observed in [25] is
actually tetrahedratic. We are not aware of any other explanation which could
account for the experimental results. In contrast to the explanation suggested
in ref. [25], there is no macroscopic polarization in an isotropic liquid. If there
is a liquid phase with a macroscopic polarization P, it would be uniaxial due
to the preferred direction set by P. To further test our suggestion it would
be important to study the ‘isotropic’ phase in detail, for example via x-ray
investigations of well oriented samples.

To construct a pseudoscalar for a system with tetrahedratic and orientational
order necessitates, in the absence of an external electric field, the inclusion of
two spatial gradients

Cr = €mVilijxViQmk 9)

Using the pseudoscalar (r - containing two spatial gradients - one can then
construct the analog of the term familiar from cholesterics and chiral smectics

Jar = € Cré€ijiQieViQje (10)
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We note that (7 has the dimension m~2 and thus ¢ has the dimension of an

energy from the way the pseudoscalar quantity has been constructed.

We also note that in an applied electric field it is possible to construct a
pseudoscalar quantity without spatial gradients by replacing the gradients by
the dielectric displacement field

Cre = €jmiDiDiT5 i1 Qmi (11)

Two additional pseudoscalar quantities can be generated by incorporating an
electric field as well as one spatial gradient into the construction.

Cre2 = €inDrQnViljy (12)
CTES = 6jmnl)mcgnlviT’ijl (13)

Such terms as well as the existence of (rp might explain why chiral domains
are observed to be most pronounced when the preparation and the sample his-
tory involved the application of external electric fields [32].

For a simple liquid, one has as hydrodynamic variables - as already men-
tioned briefly above - the density p, the momentum density pv related to the
velocity v, and the entropy density o, or equivalently the free energy density
f. In the case of mixtures one has as an additional conserved quantity the
concentration ¢. The hydrodynamic equations are 31,33, 34]

<% + UZVZ) p+pdive = 0 (14)
0
P a—i—vjvj' Ui+VjUij =0 (15)
0 e
p(a+vjvj>c+dlvj =0 (16)
0 e e
<a +UjVj)p +divg® = 0 (17)
0 : o _ I
<a + Uz'Vi> otodivv+divg® = T (18)

where we have also included the dynamic equation for the electric charge density

pe.
The electric current density has the form

jie = O'gEj -+ ngj,uc + HgVJT (19)

E

where o}, DS and x[; have the structure

kE = KkFo, (20)

v

with the Kronecker symbol d;;. For the detailed conventional expressions and
the structure of the other currents we refer to ref. [20]
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Since Tj;, is associated with the spontaneously broken orientational symme-
try of the tetrahedratic phase, it serves as an additional hydrodynamic vari-
able [34] and leads to the following quasi-conservation law for T;

Tijk + Yije =0 (21)
As usual the reversible and the dissipative parts of the quasi-current, Y;;;, are ex-
panded into thermodynamic forces, that is, the gradients of eqs.(2-4), 0 f /0T,
and A;; = %(Vivj + V,u;). Since T} is not directly observable, we refrain from
writing down explicitly all expressions, but concentrate on the cross-coupling
terms of T;;;, to other hydrodynamic variables.
A similar quasi-conservation law arises for the usual nematic order parameter
Qij )
Qi +Yi; =0 (22)
an equation well-known near the isotropic - nematic transition [1,2].
The Gibbs relation taking into account quadrupolar order ();; and tetrahe-
dratic order, T;;; assumes the form

df = ;Ldp + T do + e de + SZ]CZQ” + ‘/;]kdj-'z]k
+E;dD; + vidg; (23)

with the momentum density g, = pv;, the thermodynamic conjugates S;; (for
quadrupolar order) and Vj;; (for tetrahedratic order), and the dielectric dis-
placement vector connected to the electric charge density by divD = p°.
The conjugates inherit the symmetries of the variables, ie. S;; = S; and
Viik = Vjik = Vigi = Vigj.

In addition to the reversible currents discussed previously [20] describing a
coupling between the stress tensor and electric fields or gradients of temperature
(or concentration in mixtures) involving one factor T;j;, we find also a direct

coupling between gradients of 7;j; and the stress tensor

R = .-+ aVkV;jk (24)

ij

«
Y;ij = g(vaw + vak:j + V]Azk) (25)

g

We note that there is also the analog of the reversible couplings considered previ-
ously to the stress tensor [20] for the conjugate associated with the quadrupolar
order, S;;

o = -+ T ViSu (26)
Vit o= - %(Vz’TjklAlk + VT Ak (27)
When we consider the effect of an external electric field on the macroscopic

dynamics, we find additional contributions to the dissipative part of the electric
current

iP = o+ AT E By + AT BV T + AsTyE; Ve
+A4 Tk (V) (ViT) + AsTije (V) (Vie)
+A¢T5i(V;T) (Vi T) (28)
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The experimental consequences of these cross-coupling terms will be inves-
tigated in more detail in the next section.

For the irreversible contributions associated with the coupling between the
conjugates of the two order parameter fields we have in the entropy production
in addition

R=--+ [VijrViSj (29)
which gives rise to cross-coupling terms in the two quasi-currents
Kﬁc =+ §(V,Sjk + V]Szk + VkSﬂ) (30)
and
Y == BViVig (31)

This cross-coupling term is the dissipative analog of the static cross-coupling
term ~ T;;,V;Q;r whose implications for the ground state of phases showing
both, quadrupolar and tetrahedratic order, have been discussed very recently
[30]. Finally there are dissipative contributions describing the coupling of S;; to
an electric field as well as to temperature and concentration gradients

We note that the first term in eq.(32) is similar in structure to the term
~ Tk D;Qji in the generalized energy whose importance has been discussed
recently in the context of field induced transitions [30].

Experimental Consequences

Equation (28) suggests a very simple experiment to evaluate the magnitude of
one of the effects predicted here: if one applies an electric field F in x-direction
and a temperature gradient in y-direction, the prediction of this equation is
that an electric current should appear in z-direction, that is orthogonal to the
directions of the applied electric field and of the temperature gradient.

G0 =k ATy BV, T (33)

Making use of the explicit form of T}, used in ref. [22], this leads to, with
B, = Eyi and |V,T| = G
4E,G
.eD 0
D _ A
: 3V3

and vanishing components of the electric current in the other two directions, j¢”
and j¢” (Fig. 1).  We note, that the sign in eq.(34) depends on the specific
representation used to calculate T;;;. This component arises in addition to the
Ohmic contribution one expects for an isotropic liquid in the £— direction

(34)

jP = oFE, (35)

with the electric conductivity o, when the electric field is applied in the
T—direction.
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Figure 1 : An electric field in the Z-direction combined with a temperature
gradient in the g-direction generates an electric current in the 2
direction.

Another experiment is suggested by eq.(24) for the reversible contribution
to the stress tensor presented here for the first time: spatial variations of the
tetrahedratic order will generate stresses, which can trigger flows. For example,
for spatial variations of T};;, in Z—direction, eq.(24) gives

an expression, which can give rise to shear flow. For example, for + = z and
| = y we have
R
Oy = OV Vs (37)

This effect should be observed experimentally, for example, near the truly
isotropic-tetrahedratic transition.
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