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ABSTRACT

We propose a generalization to the usual hydrodynamic description of smectic A liquid crystals: The layer normal
and the director are assumed to be coupled elastically to each other in such a way that they are parallel in equilibrium.
If a sample with the layers parallel to the plates is sheared, our generalization leads in first order to a flow alignment
of the director in the flow direction without perturbing the layers. Due to this tilt of the director the layers have a
tendency to reduce their thickness. A linear stability analysis shows that the layers accommodate this tendency above
a critical shear rate by developing undulations with a wave vector parallel to the vorticity direction of the shear flow.
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I. INTRODUCTION

Over the last decade a large number of experiments has been performed on the reorientation behavior of layered
systems under shear flow. The systems under investigation include low molecular weight liquid crystals exhibiting a
smectic A phase (Panizza et al. 1995, Safinya et al. 1991), lyotropic lamellar phases (Diat et al. 1993, Diat and Roux
1993), liquid crystalline side chain polymers (Noirez et al. 1997a, Noirez and Lapp 1997b) and block copolymers
(Wiesner 1997, Zipfel et al. 1999). These experiments revealed a variety of interesting flow characteristics which
are each common to several types of these layered systems, including reorientation of the layers and the formation of
onion-like structures. Typically, at low shear rates the layers are oriented parallel to the plates (”parallel” orientation).
At higher shear rates this orientation becomes unstable and multilamellar vesicles (”onions”) or layers normal to the
vorticity direction (”perpendicular” orientation) are observed. For even higher shear rates some systems show another
regime where the stable orientation of the layers is once again parallel to the plates (Diat et al. 1993, Wiesner 1997,
Leist et al. 1999). These systems exhibit, however, some interesting differences. Onions are usually observed in systems
in which the layer thickness is increased by a solvent, as in lyotropic lamellar phases (either made of surfactants — see
the work of Roux, Diat and coworkers — or of block copolymers — see Zipfel et al. 1999). In block copolymer melts
(Koppi et al. 1992, Winey et al. 1993a and 1993b, Zhang et al. 1995, Wiesner 1997, Leist et al. 1999) experiments
are usually carried out under large amplitude oscillatory shear. Recently Leist et al. 1999 have shown, that the
reorientation can be described as a function of the shear rate rather than as function of the oscillation frequency.
In thermotropic low molecular weight liquid crystals and liquid crystalline polymers only the first two regimes are
observed (Panizza et al. 1995, Noirez et al. 1997a).

Using the usual set of hydrodynamic equations of the smectic A phase (Martin et al. 1972, de Gennes and Prost
1993, Pleiner and Brand 1996) the observed change of orientation cannot be explained, because in these models each
layer is assumed to be a two dimensional fluid. In the framework of irreversible thermodynamics (de Groot and
Mazur 1969, Forster 1975) the macroscopic variables of a system can be divided in those due to conservation laws
(here: mass density ρ, momentum density ~g = ρ~v with the velocity field ~v and energy density ε) and those reflecting
a spontaneously broken continuous symmetry (here the layer displacement u characterizing the broken translational
symmetry parallel to the layer normal). For a smectic A liquid crystal the director n̂ of the underlying nematic order
is assumed to be parallel to the layer normal p̂. So far only in the vicinity of a nematic-smectic A phase transition a
finite angle between n̂ and p̂ has been shown to be of physical interest (Litster et al. 1979).
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Smectic A liquid crystals are known to be very sensitive against dilatations of the layers. As Clark and Meyer
(1973) and Delaye et al. (1973) have shown, a relative dilatation of less than 10−4 parallel to the layer normal suffices
to cause an undulation instability of the smectic layers. Later on Oswald and Ben-Abraham (1982) investigated the
influence of an additional steady shear flow on the undulation instability. They have shown that undulations with a
wave vector parallel to the vorticity direction sets in at the same threshold value of dilatation as in the static case.
For wave vectors with non-vanishing projections on the flow direction the threshold is increased relative to the static
case. Thus the instability a smectic A liquid crystal under shear flow exhibits at lowest dilatation is an undulation
instability with a single wave vector parallel to the vorticity direction. Over the last decade several explanations
have been proposed for specific systems. In 1992 Bruinsma and Rabin considered the effect of shear flow on layer
fluctuations in lamellar phases. They found that the lifetime of thermal fluctuations is significantly influenced by the
shear flow and concluded that this can give rise to a destabilization of the layers. Williams and MacKintosh (1994)
calculated the effect of the tangential strain on each layer in a sheared block copolymer. By minimization of the free
energy of the system they found a tilt of the polymer chains and a tendency of the layers to reduce their thickness.
They interpreted this tendency as a dilatation and found an undulation instability by similar arguments as Clark
and Meyer (1973) and Delaye et al. (1973). Very recently Zilman and Granek (1999) considered short wavelength
fluctuations. In their model these fluctuations are suppressed for energetic reasons leading to an undulation instability
of the layers.

In this contribution we discuss the possibility of an undulation instability of the layers under shear flow keeping
the layer thickness and the total number of layers constant. Differently from previous approaches we derive the set of
macroscopic dynamic equations within the framework of irreversible thermodynamics and perform a linear stability
analysis of these equations. The key point in our model is to take into account both the layer displacement u and the
director field n̂. The director n̂ is coupled elastically to the layer normal p̂ = ∇(z−u)

|∇(z−u)| in such a way that n̂ and p̂ are
parallel in equilibrium; z is the coordinate perpendicular to the plates. The paper is organized as follows. In Sect. II
we develop the set macroscopic equation describing our model. Sect. III is divided in two parts. In Sect. IIIA we
solve the macroscopic dynamic equations neglecting cross-coupling terms between the layer displacement u and the
director n̂. This simplified analysis already contains most of the dominant physical results of our model. In Sect. III B
we present a more complete linear stability analysis of the governing equations. We demonstrate that an undulation
instability is possible assuming that the elastic constants of the system fulfill a certain condition. Finally we discuss
the numerical values entering in our model as well as a comparison of our results with recent experiments.

II. THE MACROSCOPIC EQUATIONS

We consider an infinite layer of a mono-domain smectic A liquid crystal of thickness d as shown in Fig. 1. The plates
are parallel to the xy-plane, the unperturbed flow is parallel to the x-axis. In the following we call the y-direction the
vorticity direction and the plane spanned by the flow direction and the vorticity direction the shear plane. We note,
that there are other conventions about the notion “shear plane”, where “shear plane” refers to the plane containing
the flow direction and the normal of the sample plane. Both plates move with a velocity of v0

2 along the x-axis but
in opposite direction, thus giving rise to an average shear rate of γ̇ = v0

d . Since our considerations are based on the
symmetry of the system we use the expressions “layered” and “smectic” as analogous (thus neglecting e.g. internal
degrees in polymeric systems). To simplify our notation we will use the following convention. Vectors are either
written with an arrow above the symbol or indexed with a letter representing its components (e.g. ~v or vi for the
velocity field, where i stands for x, y or z). If the vector is normalized to unit length it is written with a hat over the
symbol (e.g. n̂ for the director). In the same way a tensor is given as an underlined symbol or with two lower indices
(e.g. σ or σij for the stress tensor). The same convention applies for nabla ∇ = ( ∂

∂x , ∂
∂y , ∂

∂z ), where ∇i stands for one
of its components. Summation over repeated indices is always assumed.

Several terms contributing to the energy density reflect the symmetry of the system. The director n̂ does not
distinguish between head and tail, thus it can only occur quadratically in this energy density. Furthermore the energy
density of the system is invariant under rigid rotations. Therefore the lowest order term of the director which can
enter in the energy density is of the form Kijkl(∇jni) (∇lnk). In this paper we will use the standard formulation

1
2
K1(∇ · n̂)2 +

1
2
K2[n̂ · (∇ × n̂)]2 +

1
2
K3[n̂ × (∇ × n̂)]2 (1)

which represent splay, twist and bend deformations respectively (de Gennes and Prost 1993). Also variations of u
only contribute as gradient terms, since rigid translations of the whole system cannot change its energy. In linear
approximation, transverse gradients of u correspond to a rotation of the layers (which again cost no energy); therefore
one must take into account second order derivatives in the transverse directions. Invariance under parity requires
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that u appears quadratically in the energy density. Thus the lowest order terms due to the layered structure can be
written as

1
2
K

(
∂2u

∂x2
+

∂2u

∂y2

)2

+
1
2
B0

(
∂u

∂z

)2

, (2)

describing the curvature of the layers and their dilatations respectively. As mentioned above, neither rigid rotations
of the director field nor rigid rotations of the layers can contribute to the energy density due to rotational invariance,
but relative rotations of n̂ versus p̂ may contribute to the energy. Assuming a small angle between n̂ and p̂ we write
this term as:

1
2
B1(n̂ × p̂)2. (3)

We note that this term is non-hydrodynamic, since it does not vanish in the limit of small wave number excitations (i.e.
q → 0). It thus leads dynamically to a relaxation and not to diffusive behavior in the long wavelength limit. In the
following considerations we make several simplifications: 1) Since bend deformations are rather higher order gradient
corrections to dilatations, if the angle between n̂ and p̂ is small, we will neglect bend. 2) In the hydrodynamics of
smectics twist deformations are forbidden. Thus, for n̂ close to p̂, any twist of n̂ has to be very small and we will
neglect it.

To derive the set of macroscopic equations describing our model we follow the standard procedure (Martin et al.
1972, Forster 1975, Pleiner and Brand 1996). In addition to the energy density discussed above, other key ingredients
in this procedure are the Gibbs relation, balance equations for the macroscopic variables (see introduction) and the
dissipation function R. Here we will discuss only the necessary extensions to the hydrodynamics of nematic liquid
crystals given previously (see Pleiner and Brand 1996 and references therein).

In the Gibbs relation we must take into account, in the spirit of our model, both, the terms due to the nematic
order and those due to the smectic order. These terms can be written as

dε = dε0 + Ψi d(∇iu) + h′
i dni + Φij d(∇jni), (4)

where ~Ψ, ~h′ and Φ are the conjugate quantities to ∇u, n̂ and ∇n̂, respectively. They are given by the derivatives of
the energy density with respect to the appropriate variables (e.g. Ψi = ∂ε

∂(∇iu) ).
For variables which arise from conservation laws, these laws lead directly to the balance equations:

∂
∂tρ + ∇i(viρ) = 0 (5)

∂
∂tgi + ∇j(vigj) + ∇jσij = 0 (6)

∂
∂tε + ∇i[vi(ε + p)] + ∇ij

ε
i = 0 (7)

σ denotes the stress tensor, ~jε the energy current and p the pressure. Similar balance equations are obtained for the
other variables (associated with broken symmetries and the entropy density).

∂
∂tσ + ∇i(viσ) + ∇ij

σ
i = R

T (8)
∂
∂tni + vj∇jni + Yi = 0 (9)

∂
∂tu + vj∇ju + Z = 0 (10)

In Eqs. (8-10) σ is the entropy density, T is the temperature and ~jσ, ~Y and Z are the (quasi-)currents associated
with σ, n̂ and u respectively. The pressure is connected with the other macroscopic variables via the Gibbs-Duhem
relation

p = − ε + µρ + Tσ + ~v · ~g. (11)

Here µ, the chemical potential, is the conjugate quantity to the mass density ρ. The dissipation function can be
written as a positive definite quadratic form of the forces:

R =
1
2
γ−1
1 hiδ

⊥
ikhk +

1
2
νijkl(∇jvi) (∇lvk) +

1
2
κij(∇iT ) (∇jT ) +

1
2
λp(∇iΨi)2, (12)

where γ1 is the rotational viscosity, νijkl the viscous stress tensor (consisting of five independent coefficients for
a uniaxial system), κij the thermal conductivity, λp the permeation coefficient, δ⊥

ij = δij − ninj is the transverse
Kronecker symbol and hi = δε

δni
= h′

i − ∇jΦij is the variation of the energy density with respect to the director.
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Since in our model n̂ and p̂ are, in general, not parallel, the thickness of the layers under the influence of an external
force need not be constant. Whenever n̂ and p̂ enclose a non-vanishing angle, the projection of n̂ on p̂ is smaller than
unity, thus there is a tendency of the layers to reduce their thickness.

In all balance equations we split the currents and quasi-currents in two parts: a reversible and an irreversible one.
Inserting the balance equations into the Gibbs relation allows to determine both, the reversible and the irreversible cur-
rents and quasi-currents and leads to a set of macroscopic equations containing several phenomenological coefficients.
Symmetry considerations including rotational and translational invariance reduce the number of phenomenological
constants further. We find, for example:

σij = pδij + Φkj∇ink + Ψj(∇iu + δiz) − 1
2
λkjihk − νijkl∇lvk (13)

Yi = − 1
2
λijk∇jvk +

1
γ1

δ⊥
ikhk (14)

with the flow alignment parameter λ given by

λijk = (λ − 1)δ⊥
ijnk + (λ + 1)δ⊥

iknj . (15)

Note that the transversal Kronecker symbols ensure the normalization of n̂.
The macroscopic description of our model contains elements of both, nematic and smectic A hydrodynamics. Their

usual descriptions are included as limiting cases in our model, provided we suppress the approximations made in the
energy density mentioned above. Letting B1 → ∞, n̂ and p̂ are parallel and the equations become those usually used
for smectic A. On the other hand, if B0 and B1 are zero, one obtains the hydrodynamics of nematic liquid crystals.
This does not imply, that our model describes the nematic–smectic A phase transition. To give such a model one has
to take into account the nematic and smectic order parameter as additional dynamic macroscopic variables.

III. FLOW ALIGNMENT AND ITS CONSEQUENCES

A. Analysis in Two Separate Steps

We analyze the set of equations in two steps: First we determine the flow field and the director assuming that the
layers are unchanged by the shear flow (i.e. they stay parallel to the plates and keep their thickness). In a second
step we investigate undulations of n̂ and p̂ with a wave vector parallel to the vorticity direction.

As described above, the upper plate moves with a velocity ~vu = v0
2 êx and the lower one with ~vl = − v0

2 êx, thus there
is an average velocity gradient of γ̇ = v0

d applied to the sample. For the velocity field we assume no-slip boundary
conditions at the plates. Throughout our analysis the density ρ and the temperature T are taken to be constant and
permeation is neglected. We look for a simple stationary solution of the balance equations. We assume weak anchoring
at the boundaries in the sense that the director is free to rotate around its equilibrium orientation (perpendicular to
the plates) without any energy barrier. This implies that the boundaries have no orienting effect on the director field.

Under the assumption that n̂ and u are constant (i.e. ~Ψ = 0 and Φij = 0) the linear velocity profile

~v = γ̇zêx. (16)

satisfies linear momentum conservation (6, 13) (de Gennes and Prost 1993). Now we determine the director orientation
so that the quasi-current ~Y vanishes. Inserting the above velocity profile in ~Y = 0 and supposing an unchanged layered
structure leads to the equation [

λ + 1
2

− λn2
x

]
γ̇ =

B1

γ1
nxnz +

B0

γ1
nx(1 − nz), (17)

with nz =
√

1 − n2
x and ny = 0. Assuming the angle between n̂ and p̂ to be small and taking into account only linear

terms in nx, we find1

1Note that this stationary solution also occurs for |λ| < 1. The tumbling solution found for nematics for |λ| < 1 above the
nematic-smectic A transition cannot occur in smectic A due to the layering.
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nx = γ̇
γ1

B1

1 + λ

2
. (18)

As shown in Fig. 2a this result has important consequences: The non-vanishing projection of n̂ on the flow direction
directly leads to a z-component of the director less than unity.

nz = 1 − 1
2
n2

x + higher order terms (19)

Following the discussion in Sect. II, this tilt of n̂ is equivalent to an effective dilatation of the layers. Because of this
tilt the layers have a tendency to reduce their thickness, but cannot do so due to the boundary conditions.

To analyze the effect of this dilatation we follow the lines of Clark and Meyer (1973) and Delaye et al. (1973)
and investigate whether an undulation of the layers can reduce the energy density. In accordance with the results of
Oswald and Ben-Abraham (1982) we suppose the wave vector of the undulation to point in the vorticity direction
(Fig. 2b).

~q = qy êy (20)

Since we are interested in the onset of undulations of the smectic layers we use the replacement (see Clark and Meyer
(1973) and Delaye et al. (1973)).

∂u

∂z
→ ∂u

∂z
− 1

2

(
∂u

∂y

)2

+ higher order terms (21)

For small amplitudes undulation of the layers, the angle between the untilted (p̂0) and the tilted layer normal (p̂) is
given by ϕ ≈ |p̂0 − p̂| ≈ ∂u

∂y (see Fig. 3a). Measured along the z-axis the distance increases by δl compared to the

layer thickness l (Fig. 3b). For small ϕ one can express this apparent dilatation by δl
l ≈ 1

2

(
∂u
∂y

)2

. This non-linear
correction has turned out to be crucial to explain the undulation instability in dilated smectic A liquid crystals. The
undulation amplitude must vanish at the plates, so our ansatz for the layer displacement is (see also Fig. 2b)

u = A cos(
π

d
z) cos(qyy) +

1
2
n2

xz, (22)

where A is the small amplitude of the undulations, leading to a layer normal of the form

p̂ = qyA cos(
π

d
z) sin(qyy) êy + êz + higher order terms. (23)

In addition we assume that n̂ follows the undulations of p̂ in such a way that we can neglect the B1 term in the energy
density for the undulations.

For low shear rates it costs energy to generate undulations, but at higher shear rates the effective dilatations may
cause an instability. In between there is a marginal stable state. To determine the parameters of this marginal stable
state, we insert the equations (22) and (23) in the simplified version of the energy density discussed in Sect. II. An
analysis along the lines of that for dilated smectic A shows that the onset of the instability is given by

1
2
n2

x =
(π

d

)2 1
q2
y

+
K

B0
q2
y, (24)

Minimization with respect to qy leads to the threshold values:

n2
x,c = 4

π

d

√
K

B0
(25)

q2
y,c =

π

d

√
B0

K
(26)

γ̇c =
4

1 + λ

B1

γ1

√
π

d

√
K

B0
(27)

Formulas (25) and (26) are identical to the results obtained in the case a of dilated smectic A phase if one exchanges
1
2n2

x,c with the critical dilatation αc.

5



B. Analysis of the Combined Set of Equations

In the following we carry out a linear stability analysis of the combined dynamic equations for n̂ and u assuming the
undulations do not influence the flow field. Taking for u and p̂ the ansätze (22) and (23) and allowing n̂ to undulate
similarly to p̂

n̂ = nxêx + qyÃ cos(
π

d
z) sin(qyy)êy + (1 − 1

2
n2

x)êz + higher order terms (28)

we find just minor corrections to the results presented in the previous section. Looking for stationary solutions the
equations to be solved are the following.

~Y = 0 (29)

∇ · ~Ψ = 0 (30)

The x and z components of (29) lead to the same result as equation (18). From the y component of (29) we find that
the ratio of the undulation amplitudes contained in n̂ and p̂ is close to unity.

Ã =
B1

B1 + Kq2
y

nz A (31)

Inserting typical values (see e.g. Clark and Meyer 1973 and Delaye et al. 1973 for K and qy and the discussion below
for B1) shows that the fraction in (31) is in a good approximation equal to unity. Inserting this result in (30) we find
that the critical wavelength stays unchanged, whereas the critical flow alignment angle acquires a small correction
(and so does the critical shear rate)

n2
x,c = 4

B0

B0 − 2B1

π

d

√
K

B0
(32)

γ̇c =
4

1 + λ

B1

γ1

√
B0

B0 − 2B1

π

d

√
K

B0
(33)

Before discussing numerical values, we want to point out some important implications of our model (equations (27)
and (33)). The critical shear rate increases with increasing B1. The refinement of our first analysis shows, that no
undulation instability is possible if 2B1 exceeds B0. These results could explain why some layered systems do not
show a destabilization of the layers parallel to the plates under shear flow (e.g. most thermotropic smectic A liquid
crystals far from the phase transition).

For smectic A liquid crystal it is known (Clark and Meyer 1973, Delaye et al. 1973) that αc is of the order of
10−5, so we expect nx,c to be of the order of 10−2. Thus, there would be only a comparatively small change to the
uniaxial nature of a layered system even just below the onset of the undulation instability. To give a numerical value
for the critical shear rate appears rather difficult, because neither the elastic constant B1 nor the rotational viscosity
γ1 are used for the hydrodynamic description of the smectic A phase. Therefore, the only possibility appears to
find measurements in the vicinity of the nematic-smectic A phase transition. Measurements on low molecular weight
liquid crystals made by Litster et al. (1979) in the vicinity of the nematic-smectic A transition indicate that B1 is
approximately one order of magnitude less than B0. As for γ1 we could not find any measurements which would
allow an estimate of its value in the smectic A phase. In the nematic phase γ1 increases drastically towards the
nematic-smectic A transition (see e.g. Graf et al. (1992)).

IV. CONCLUDING REMARKS

In this paper we have shown that a modification of the usual smectic hydrodynamics (layer normal and director
are no longer forced to be parallel) will lead to a flow aligning behavior and thus to an effective dilatation of the
smectic layers (see equation (18) and the discussion thereafter). A linear stability analysis shows, that above a critical
shear rate the flow alignment is strong enough to cause an undulation instability and thus to destabilize the layered
structure. We point out, that the linearized analysis presented here does not allow to predict which structure will be
stable at shear rates above the critical shear rate. To overcome this problem two strategies can be followed. Either
one expands the governing equations in small, but non-vanishing amplitudes (in the vicinity of the threshold) along
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the lines of the work by Schlüter, Lortz and Busse (1963) and Newell and Whitehead (1969). Or one attacks the
full non-linear equations by direct numerical integration. The former procedure results in a hierarchy of equations
which have to be solved successively leading at a certain order to an envelope equation for the amplitude. This
procedure also allows to deal with more than one wave vector for the undulations and thus gives a tool to determine
the structure just above onset. This procedure is from the large field of pattern formation and pattern selection in
dissipative systems. For recent overviews to this broad field see e.g. Cross and Hohenberg (1993), Buka and Kramer
(Eds., 1996) or Busse and Müller (Eds., 1998).

Following the lines proposed above will allow to give a prediction of the pattern formed above onset. For a transition
from undulating lamellae to reorientated lamellae or to multilamellar vesicles, defects have to be created for topological
reasons. Since the order parameter varies spatially in the vicinity of the defect core, a description of such a process
must include the full (tensorial) nematic order parameter as macroscopic dynamic variables. Both types of refinements
(non-linear analysis and inclusion of defects) are beyond the scope of the present paper.

An interesting similarity of what we discussed here appears if one deals with mixtures of rodlike and disklike
micelles. These systems could behave very similarly to a truly biaxial nematic, but show interesting differences
to them. Whereas for the usual orthorhombic biaxial nematics both directors are perpendicular to each other by
construction, in mixtures there is no need to impose this restriction. Pleiner and Brand (1985) investigated how
mixtures are influenced by an external field (magnetic field or shear flow) and found, that the angle between the two
directors exhibits a flow aligning behavior similar to equation (18).

Very recent experiments by Müller et al. (1999) on the lamellar phase of a lyotropic system (a low molecular weight
surfactant) under shear suggest, that multilamellar vesicles develop via an intermediate state for which one finds a
distribution of director orientations in the plane perpendicular to the flow direction. These results are compatible
with an undulation instability of the type proposed here, since undulations lead to such a distribution of director
orientations. Furthermore Noirez (1999) found in shear experiment on a smectic A liquid crystalline polymer in a
cone-plate geometry, that the layer thickness reduces slightly with increasing shear. This result is compatible with
the model presented here as well. Nevertheless further investigations on these points are highly desirable.
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FIGURE CAPTIONS

Figure 1: We consider an idealized geometry of a shear experiment. Between two parallel plates we assume a
defect-free well aligned lamellar phase. The upper plate moves with the velocity v0

2 in positive x direction, the lower
plate moves with the same velocity in negative x direction. The y-direction points into the xz-plane. We call the plane
of the plates (xy-plane) the shear plane, the x-direction the flow direction and the y-direction the vorticity direction.

Figure 2: a) In our model the layer thickness is coupled to the director along the layer normal p̂. A small but
finite angle between n̂ and p̂ of the order of nx (due to the flow alignment of the director) reduces the projection
of the director onto the layer normal by 1

2n2
xl. b) Schematic picture of the undulations with a strongly exaggerated

undulation amplitude. Note the difference in the directions: n̂ is tilted in the flow direction, whereas the wave vector
of the undulations points in the vorticity direction.

Figure 3: For undulations the layer normal is not parallel to the z-axis, but is tilted by a small angle ϕ ≈ |p̂0−p̂| ≈ ∂u
∂y

in the y-direction. Measured along the z-axis the distance increases by δl compared compared to the layer thickness
l. For small ϕ, δl is given to lowest order by δl

l = 1
2ϕ2.
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