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Abstract. – Side-chain liquid crystalline polymers differ from their low molecular weight

counterparts not only quantitatively with respect to the macroscopic properties, but can

show even qualitative differences in symmetry and structure. We discuss theoretically

chiral smectic side-chain polymers, which can exhibit true ferroelectricity due to the poly-

meric backbone, while low molecular weight systems are known to be helielectric in fluid

phases. We give two scenarios of large and small scale orientational order of the backbone,

respectively, and discuss a number of experimental implications.
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1. Introduction

Liquid crystalline side-chain polymers [1] are hybrid systems combining liquid crys-

tal properties due to the mesogenic side-chains with the polymeric behaviour of long chain

molecules. The latter aspects make these systems very interesting for certain applications,

e.g. concerning their high viscosity (or rather visco-elasticity) and durability [2]. On the

other hand, the mesogenic side-chains show qualitatively similar behaviour as their low

molecular weight counterparts, e.g. concerning their dielectric response over a large fre-

quency range [3]. It is therefore appropriate in many situations to describe such systems

macroscopically by a combination of the variables of the two subsystems and derive the

coupled dynamical equations for all of them. In addition, there is a class of relevant macro-

scopic variables that does not exist in either of the two isolated subsystems, but only in

the combined system. In the nematic phase we mention as an example the relative rota-

tion of the side-chains with respect to the backbone segments to which they are attached,

– a variable, which is neither defined in isotropic polymers nor in low molecular weight

nematics, but influences considerably the macroscopic properties of side-chain systems [4].

This procedure of combining the two subsystems is based on the assumption that the

symmetries (and broken symmetries) of a given liquid crystal phase are the same whether

the phase is formed by a low molecular weight or by a polymeric material. However, this

assumption need not be true in all cases. If the backbone orders orientationally, this ad-

ditional order can interfere with the liquid crystalline order of the side-chains to yield an

overall different (and lower) symmetry for the combined system compared to the liquid

crystalline system alone. Hints for such a case can be found in weakly biaxial side-chain

nematics [5], where the mesogenic units can no longer rotate freely about their long axis,

since they are attached to the backbone via the flexible spacers in an umbilical fashion
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(side-on side-chain polymers). A rather striking evidence for the symmetry reduction in

polymeric systems is provided by the existence of a longitudinal piezoelectric effect in

certain side-chain cholesteric liquid crystal elastomers [6], which must be absent in low

molecular weight cholesteric phases of the conventional symmetry [7]. There is also exper-

imental evidence that the same phenomenon occurs in chiral smectic side-chain polymers

[8].

In the following we investigate theoretically, using simple arguments of the Ginzburg-

Landau type, how the symmetry of a polymeric chiral smectic phase can be lower than that

of a low molecular weight C∗ phase due to either an orientational ordering of the backbone

conformation (section 2) or due to a local oblique ordering of backbone segments (section

3). We expect most of our results to be applicable as well to elastomeric (permanently

cross-linked) systems. We will show that due to the reduced symmetry in polymeric chiral

smectic phases the electric polarization has a ferroelectric (or antiferroelectric) component,

while in low molecular weight systems the symmetry of the C∗ phase only allows helielec-

tricity [9] (i.e. the polarization spirals about a direction, which is perpendicular to the

polarization itself). Thus, in polymeric systems conic helical polarizations (i.e. the spiral-

ing polarization makes an angle less than 90 degree with the helical axis), ferroelectric and

even more complicated structures are possible.

All these liquid crystal phases are ’improper’ ferroelectrics etc.[10, 11], since the

phase transitions from states without a polarization to states with any kind of spontaneous

polarization (or between states of different types of polarization) are not driven by the

formation of ordered patches of molecular electric moments, but by structural changes of

the mean orientation of the molecules. E.g. the phase transition from a smectic A to a

C∗ phase (in low molecular weight materials) is governed by the occurence of a tilt angle
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(the molecules start to be tilted in the mean with respect to the normal of the smectic

layers), which lowers the symmetry and allows the formation of a (helical) polarization

as a secondary effect. Accordingly, in the polymeric case the existence of a ferroelectric

component is a consequence of the additional backbone ordering (and not the origin of the

latter). This absence of ’proper’ ferroelectricity etc. in liquid crystalline and polymeric

liquid crystalline structures appears to be a result of the fluidity, which allows an easy

reorientation and compensation of electrical moments on the molecular level.

In low molecular weight smectic C∗ phases averaging over many pitch lengths of the

helix reduces the mean polarization to almost zero. Thus, electrooptic devices using chiral

smectic phases are obtained by unwinding the helical structure using surface effects, which

makes such devices rather complicated in detail and requires thin samples. The existence

of a spontaneous ferroelectric component in polymeric systems would make helix unwind-

ing unnecessary and large bulk domains could be achieved. Since the switching times

are still quite short in polymeric systems and given their enhanced mechanical stability

such systems may be a good alternative to low molecular weight systems for a number of

applications.

2. Conformational Anisotropy

Low molecular weight smectic C∗ phases show several preferred directions, the nor-

mal of the smectic layers k (k = êz), which is identical to the helical axis and the director n

(n = [êx cos q0z + êy sin q0z] sin θ + êz cos θ), which spirals conic helically about the helical

axis and which has a fixed angle (the tilt angle θ) with k. Since the structure of the liquid

crystalline phase is invariant under the combined transformation k → −k and n → −n,

the direction k × n is the only polar axis in the system and, thus, the direction of the
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polarization P0. The latter also spirals helically about k, but is by symmetry completely

confined within the layers, i.e. it is always perpendicular to k. As mentioned above this

helix has to be unwound by external fields or surfaces in order to get a macrosocopic net

polarization.

In nematic liquid crystalline side-chain polymers the backbone configuration is not

isotropic [12-14], but shows an anisotropy axis (l). It is very likely that such an anisotropy

prevails in the more complicated phases as e.g. in chiral smectic phases. There, however,

already several preferred directions exist and it is not obvious, how the additional direction

l (l = êx sin θl + êz cos θl), orients itself with respect to the liquid crystalline directions k,

n or P0 [15]. A simple Ginzburg-Landau type ansatz for the free energy density f

f =
a

2
(l · k)2 +

b

2
(l · n)2 +

1
2
Kijkl(∇jni)(∇lnk) + K2q0 n · curln (1)

reveals after minimization that l is constant in space (i.e. not spiraling) and can either be

parallel to k, or oblique to it (fixed angle θl between k and l), or perpendicular (θl = π/2)

depending on the values of the (unknown) parameters a and b. The tensor Kijkl is the

orientation elastic tensor depending generally on n, k and l and containing the Frank

constants (e.g. K2), while q0 is the helical wave vector [16]. In the first case (k ‖ l) the

symmetry of the total system is the same (C2) as that of a low molecular weight smectic

C∗ phase, i.e. no ferroelectricity (only helielectricity) and no longitudinal piezoelectric

effect is possible. In the other two cases the symmetry of the polymeric system is different

(C1) from that of ordinary low molecular weight systems. The lack of any symmetry axis

in this case allows polar directions, which have also longitudinal (i.e. parallel to k) and

non-spiraling components. This general scenario is true except for the very special layers,

where k, l, and n are accidentally coplanar. Here the C1 symmetry degenerates into C2
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(with the 2-axis perpendicular to k) and no longitudinal component of the polarization is

possible [17]. These special layers repeat every half pitch leading to an antiferroelectric

structure of the longitudinal component. The general structure of the polarization is more

complicated and can be described by the following possible contributions:

P0 = k× n = sin θ (−ex sin q0z + ey cos q0z) (2a)

P1 = (n× l)× (k× l) = sin qoz sin θ sin θl (ex sin θl + ez cos θl) (2b)

P2 = (l× k)(n · l) = −ey sin θl (cos θ cos θl + sin θ sin θl cos q0z) (2c)

P3 = (l · n)(li~∇ni) = −q0ez sin q0z sin θ sin θl (cos θ cos θl + sin θ sin θl cos q0z) (2d)

where k is along the z-axis and l is in the x − z plane. The angles θ and θl are the tilt

angles of n and l with respect to the layer normal k and q0 is the helical wave vector.

The first contribution (2a) is the usual helical in-plane polarization that vanishes after

averaging over many pitch lengths. The second one (2b) contains (for θl 6= π/2) an out-of-

plane (i.e. longitudinal) antiferroelectric polarization that changes sign every half pitch.

The third one (2c) shows a non-helical in-plane part that does not vanish by averaging

over many pitch lengths and thus, denotes a true ferroelectric contribution (perpendicular

to both, l and k). The last one (2d) is helix induced, i.e. it is proportional to the

helical wave vector and vanishes upon unwinding, it is longitudinal and antiferroelectric (a

superposition of wavelength modulations of a pitch and a half pitch, respectively). There

are other contributions (e.g. (l× n)(p · l) etc.), which however are not independent from

the terms already kept.

The total polarization is then the sum P = P0P0 + P1P1 + P2P2 + P3P3, where

the relative weight factors, Pi, of the various contributions are material dependent and for

i = 1, 2, 3 also Sl dependent, with Sl the strength of the orientational backbone order. Here
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P0 is the saturation polarization of usual low molecular weight smectic C∗ phases [18]. If the

helix is destroyed by a surface perpendicular to the smectic layers (bookshelf geometry),

which forces n to lie within the surface, there are two states possible differing in their

polarization, which are used in applications to switch between them. In low molecular

weight systems the two states have opposite polarizations perpendicular to the surface.

In polymeric systems the polarization of the two unwound states depends on the surface

conditions for l. If l also lies within the surface, the polarizations are still orthogonal to the

surface, but unequal in length, while for l perpendicular to the surface, the polarizations

of the two states are neither orthogonal to the surface, nor antiparallel to themselves,

nor equal in length. However, we would like to emphasize that, as discussed above, helix

unwinding is unnecessary in polymeric systems to obtain a ferroelectric polarization .

3. Local Oblique Backbone Order

In Sec. 2 we have discussed the influence of a possible global anisotropy of the back-

bone conformation on the overall symmetry of a polymeric chiral smectic phase. Now we

want to investigate the implications of the presence of the backbone on a local scale. This

will become relevant, if the local interaction between side-chains and backbone segments

is strong and leads to a preferred relative angle between the orientation of the side-chains

and the backbone segments to which the former are attached. This relative angle, ψ, is

often found to be near π/2, although its precise value is not important for the following

discussion. In untilted smectic A phases the backbone lies predominantly in the layers

keeping complete orientational randomness of its segments within these layers. This is still

possible, if there is a fixed relative angle ψ of order π/2. However, for tilted smectic phases

(angle θ 6= 0 between n and k) such a fixed relative angle forces the backbone segments
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to be also tilted out of the smectic planes, since otherwise the orientational freedom of

the backbone segments would be completely destroyed, which is incompatible with the

entropic behaviour of the chain and with the fact that the backbone segments are con-

nected in the form of a chain. In addition, the orientation of the backbone segments is

not completely random, but shows a preferred direction. This is demonstrated by using

a Ginzburg-Landau free energy expansion for an orientational backbone segment order

parameter Mij = M(mimj − (1/3)δij), where M denotes the strength of this order and m

the preferred direction,

f = a QijMij + b MijMij + c QijMikMjk + d QijQklMikMjl + fg (3)

Here Qij is the nematic order parameter of the side-chains, which is assumed to be un-

changed by the existence of Mij , i.e. Qij = S(ninj − (1/3)δij) with the director n of the

conic helical form. The (very many) terms containing gradients (of Mij as well as Qij) are

abbreviated by fg. Due to the existence of the nematic side-chain order there are various

contributions to (3), which are linear in Mij . Thus, minimizing (3) with respect to M

always gives a non-zero value for M . Taking ψ = π/2 for definiteness the preferred direc-

tion m still has one degree of freedom, the angle χ denoting the orientation of m in the

plane perpendicular to n. It is related to the tilt angle of m, θm, by sin θ cosχ = cos θm

(m = − [(êx cos q0z + êy sin q0z) cos θ − êz sin θ] cosχ+(êx sin q0z − êy cos q0z) sinχ). Fur-

ther minimizing eq. (3) with respect to χ gives a finite tilt depending on the Ginzburg-

Landau parameters [19]. Of course, due to their entropic behaviour the backbone segments

are only weakly oriented.

Clearly the biaxial conic helical structure of n and m is of C1 symmetry except for

the limiting case, where n, m and k are coplanar (θm + θ = π/2). Thus, the following
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contributions to the polarization are possible P = P0P0 + P4P4 + P5P5 with

P0 = k× n = sin θ (−ex sin q0z + ey cos q0z) (4a)

P4 = sin θ cos θ sinχ cosχ(ex cos q0z + ey sin q0z) (4b)

P5 = ez sin2 θ sinχ cosχ (4c)

where P4 and P5 result from expressions like (n×m) × (k×m), (k ·m)(m× n),

(k ·m)(mi
~∇ni) or (m · ~∇)m× (n · ~∇)n. Obviously the in-plane polarization is no longer

perpendicular to n (due to P4), but is still helical, i.e. vanishes by averaging over many

pitch lengths. In addition, there is a non helical (ferroelectric) contribution along the layer

normal k. If the helix is unwound by a surface, the polarizations of the two different pos-

sible states are neither orthogonal to that surface, nor are they antiparallel to each other

nor of equal absolute value.

4. Summary

In the preceding two sections we have discussed the possible structural differences

between polymeric and low molecular weight chiral smectic liquid crystals. First we looked

at the change of the symmetry of the system due to a global, conformational ordering of

the backbone chains, while in the second part we focused on the impact of the local

ordering of backbone segments. In nature one can expect that both effects occur together

and that they are thus mixed. The point we want to stress is that the presence of the

backbone chain can lead to qualitative structural differences between polymeric and low

molecular weight systems, where the former are generally of lower symmetry than the

latter. One implication of this difference is the existence of non-helical contributions to

the polarization, i.e. to true ferroelectricity. This in turn leads to a more complicated

hydrodynamics of such systems [20, 21] including e.g. longitudinal piezoelectricity.
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