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Abstract. We discuss how slow relaxational degrees of freedom – arising from transient
internal structures – can influence the rheological behavior of complex fluids.

Introduction: Complex Fluids can be characterized as fluids that obey hydro-
dynamic equations more complicated than the usual Navier-Stokes equations. A
prominent example are polymers showing visco-elasticity, shear-thinning (or thick-
ening) and other non-Newtonian features. The origin of such a behavior is thought
to stem from transient mesoscopic structures, like entanglements, orientational cor-
relations etc. Although it is rather simple to incorporate linear visco-elasticity into
hydrodynamics, it is far from clear how a reasonable and physically valid description
of nonlinear effects should look like. As a first attempt nonlinear hydrodynamic
equations are given for polymers including transient elastic, orientational, and ro-
tational degrees of freedom described by εij , a symmetric second rank tensor [1],
by Qij the traceless mass quadrupolar momentum [2], and by Ωij an antisymmetric
tensor [3], respectively, in addition to the usual variables, energy density ε, mass
density ρ, and momentum density gi. This is a purely phenomenological treatment,
where the connection to a mesoscopic description and the identification of the ad-
ditional degrees of freedom still have to be done. Implications for shear flow are
sketched. A basic introduction to the hydrodynamic method is given in [4].

Basic Equations: The various hydrodynamic variables are linked to the entropy
density σ by the Gibbs relation thus defining the conjugate quantities (e.g. the
temperature T , the chemical potential µ, the velocity vi = gi/ρ)

Tdσ = dε− µdρ− vidgi −WijdQij −Ψijdεij − Lid∇jΩji (1)

Neglecting the thermal degree of freedom for lack of space the dynamic equations

ε̇ij + vk∇kεij − Aij + Ail(εjl + Ωjl) + Ajl(εil + Ωil) = −(1/τ)ijklΨkl (2)

Q̇ij + vk∇kQij + aijklAkl − ωilQlj − ωjlQil = −(1/γ)ijklWkl (3)

Ḣi + vk∇kHi −∇jωji = −(1/κ)ijLj (4)



together with mass ρ̇ + ∇ · ρv = 0 and momentum conservation ġi + ∇jσij =
0 describe the system. Some dissipative cross-couplings have been neglected on
the right hand sides of (2-4). We have used the abbreviations for elongational
flow 2Aij ≡ ∇jvi + ∇ivj and for the vorticity tensor 2ωij ≡ ∇jvi − ∇ivj. The
nonlinearities in (2) are chosen such that in the limit of permanent crosslinking
(τ → ∞) elasticity is described by the displacement vector (u) via 2εij ≡ ∇iuj +
∇jui − (∇kui)(∇kuj) [5]. Since the internal rotations Ωij occur in (2) we also
need their dynamic equations (4), which however enter hydrodynamics only in the
inhomogeneous case with Hi ≡ ∇jΩij . The nonlinearities in (3) are dictated by Qij

describing local orientations. Thermodynamics leads to the following form of the
stress tensor (p is the pressure), which can be brought into the required symmetric
form ∇jσij = ∇jσji by the standard procedure [6]

σij = δijp + vigj −Ψij + aijklWkl + (1/2)(∇iLj −∇jLi)−WjlQil + WilQjl

+Ψjl(εli + Ωli) + Ψil(εlj + Ωlj)− νijklAkl (5)

The system of equations is closed by the constitutive equations relating the conju-
gate quantities to the variables. Neglecting cross-couplings one finds Ψij = cijklεkl,
Wij = KijklQkl and Li = rij∇kΩkj.

Shear Flow: If an external shear flow is imposed, both Aij and ωij are non-zero
and as a consequence of (2,3) also εij and Qij. Then the stress tensor depends
strongly on the shear rate first directly through (5) and additionally by expanding
the viscosity tensor with respect to the variables

νijkl = ν
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Both effects lead to a complicated dependence of the ’effective’ viscosities and
moduli on the shear rate as well as on the frequency. In addition the flow profile
is no longer linear and thus Hi is non-zero and has therefore been inserted into the
expansion (6), too (while Ωij is not allowed there for thermodynamic reasons).
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