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Abstract
We present the macroscopic dynamics of nematic liquid crystals in a two-fluid context. We investigate the case of a nematic 
in a chiral solvent as well as of a cholesteric in a non-chiral solvent. In addition, we analyze how the incorporation of a strain 
field for nematic gels and elastomers in a chiral solvent modifies the macroscopic dynamics. It turns out that the relative 
velocity between the nematic subsystem and the chiral solvent gives rise to a number of cross-coupling terms, reversible 
as well as irreversible, unknown from other two-fluid systems considered so far. Possible experiments to study those novel 
dynamic cross-coupling terms are suggested. As examples we just mention that gradients of the relative velocity lead, in 
cholesterics to heat currents. We also find that in cholesterics shear flows give rise to a temporal variation in the velocity 
difference perpendicular to the shear plane, and in cholesteric gels uniaxial stresses or strains generate temporal variations 
of the velocity difference. Finally, the exotic chiral Q phase of tetragonal ( D

4
 ) symmetry is analyzed for an isotropic non-

chiral solvent in a two-fluid scenario.

Keywords  Macroscopic dynamics · Cholesteric liquid crystals · Two-fluid model · Fluids and gels

1  Introduction

The physical properties of cholesteric liquid crystals, which 
are known for over 100 years [1, 2], have been investigated 
in detail [3, 4]. Their chirality is manifest on the macroscopic 
level by a helical superstructure as the ground state, which 
breaks parity symmetry. Very often immiscible or only partly 
miscible mixtures involving a cholesteric phase have been 
prepared to optimize material properties [5, 6]. In other cases 
two phase regions involving a cholesteric phase and an iso-
tropic liquid phase were studied to bring out effects specific 
for systems with macroscopic handedness such as Lehmann-
type effects [2, 3]. When studying those an external force 

such as temperature and concentration gradients or electric 
fields give rise to rotations of the director field in suitably 
chosen geometries, for example, with the helical axis in the 
cholesteric drops perpendicular to the bounding plates of the 
sample [7–11]. We note that the inverse effect [12] has also 
been observed [13]. For both types of systems, cholesteric 
mixtures as well as two-phase regions, a natural question 
arises: are there two-fluid effects in such systems and how 
could their consequences be detected?

There is a large body of materials for which two-fluid 
effects turn out to be of considerable physical interest includ-
ing, as examples, fluid emulsions [14], colloidal suspensions 
[15], polymer solutions and mixtures [16], fiber networks in 
a matrix [17], and microtubuli coupled to the cytoskeleton 
in cells [18].

More recently macroscopic dynamic two-fluid descrip-
tions have been given for a number of soft matter materials 
and complex fluids starting with immiscible liquids [19, 20] 
and combinations of ordinary or viscoelastic liquids with 
nematic liquid crystals [19]. More recently, this approach has 
been applied to a number of other two-fluid systems including 
immiscible compound materials in solids and gels [21], bioin-
spired complex fluids [22, 23], and materials characterized by 
the formation of clusters, for example of smectic clusters above 
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the nematic to smectic A transition [24] and of clusters above 
the glass transition [25].

Here, we investigate how two-fluid effects can show up in a 
system with macroscopic chirality. Specifically, we have in mind 
two possibilities, which are equivalent for a macroscopic descrip-
tion: a nematic phase in a chiral solvent or a cholesteric phase in 
a non-chiral solvent. In both cases, one has a ground state that 
breaks inversion symmetry. Furthermore, we have two additional 
macroscopic variables: the velocity difference between the two 
subsystems, wi , which is a slowly relaxing variable, and the con-
centration of one component, � , which will be considered here 
to be a conserved quantity. Generally, depending on the material 
of interest, it could relax on a finite time scale [19].

In macroscopic dynamics, one keeps, in addition to the 
locally conserved variables (e.g., mass density, density of 
momentum and energy density) and the variables associated 
with spontaneously broken continuous symmetries [26–29], 
also macroscopic variables that relax on a sufficiently long, but 
finite time scale to be of interest for the macroscopic behavior 
of the system [29].

Since the two subsystems move relative to each other, two 
different velocities are needed for a complete macroscopic 
description. The barycentric velocity is related to the momen-
tum conservation and the total momentum density is a con-
venient hydrodynamic variable, just as in the single-fluid case. 
As the additional variable, it is customary to use the relative 
velocity, wi , which generally is not related to any conservation 
law or broken symmetry and therefore is a (slowly) relaxing 
quantity. Only for superfluids the superfluid velocity is related 
to broken gauge invariance and is truly hydrodynamic [30]. 
This is manifest in the propagation of second sound in the 
bulk in the long wavelength limit in the superfluid phase of 
4 He [30, 31].

In the bulk of this paper, we deal with the two-fluid descrip-
tion of nematic fluids with a chiral solvent or, equivalently, of 
cholesterics with a non-chiral solvent in detail. In Sect. 3, we 
analyze how for nematic gels and elastomers the elastic strain 
field can be incorporated in a two-fluid description. In addi-
tion, relative rotations of the preferred direction with respect to  
the elastic network are considered. In Sect. 4, we discuss some 
possible dynamic experiments involving the relative velocity. A 
brief summary and perspective in Sect. 5 concludes the main  
part of the paper. In a last section, two-fluid effects for the chiral 
Q (D

4
) phase in a non-chiral solvent are briefly discussed.

2 � Two‑Fluid Model for Nematics in a Chiral 
Solvent

2.1 � Variables

In this paper, we study a chiral two-fluid system with ori-
entational order, namely either a nematic with a chiral 

liquid as the second, “solvent” fluid or a cholesteric in 
an isotropic solvent as long as the bulk of the phase is 
considered. For the nematic order parameter, Qij in three 
dimensions we have Qij = (S∕2)(n̂in̂j − (1∕3)𝛿ij) , where the 
nematic director n̂i describes the broken rotational sym-
metry [32]. A director is part of the nematic order param-
eter and is therefore subject to n̂i → −n̂i invariance. The 
additional feature of a cholesteric compared to a nematic 
is the existence of macroscopic chirality. The latter is 
described by a pseudoscalar quantity, q

0
 , that is invariant 

under proper rotations, but changes sign if a spatial inver-
sion is involved, thus breaking inversion symmetry. Since 
the 2-fluid system is mixed on the microscopic level, chi-
rality applies to all degrees of freedom, even those of the 
non-chiral subsystem. That means, we will use the ’local 
description’ [3, 33], starting from a homogeneous ground 
state and describe the chiral effects by adding all possible 
contributions, linear in q

0
 , to the energy density (statics) 

and the phenomenological currents (reversible and irre-
versible dynamics).

The two-fluid character is manifest by the additional 
macroscopic variables, velocity difference wi and concen-
tration � of the solvent component [19, 20]. The other 
variables are the entropy density, � , the density, � , the 
density of linear momentum, gi , the director field, n̂i and 
the modulus of the nematic order parameter, S.

The first law of thermodynamics relates changes of the 
variables to changes of the energy density � by the Gibbs 
relation [29, 34].

The Gibbs relation contains the entropy density � , rep-
resenting the thermal degree of freedom, with its ther-
modynamic conjugate, the temperature T. Other conju-
gates are the chemical potential � , the osmotic pressure 
Π , the mean velocity vi = gi∕� , mi , the conjugate field to 
the velocity difference, wi , the molecular field associated 
with the director n̂i , hni  , and the molecular field hS asso-
ciated the magnitude of the nematic order parameter, S. 
The contribution EidDi guarantees that we can describe 
Maxwell stresses as well as field-induced pressure changes 
[29]. The conjugate Ei is the local electric field containing 
internal and external contributions. Our notation follows 
closely that of refs. [24].

2.2 � Statics

The static behavior of a macroscopic system can be derived 
from an energy functional. In harmonic approximation and 
including the kinetic energy densities, it reads in the present 
case

(1)
d𝜀 =T d𝜎 + 𝜇 d𝜌 + Π d𝜙 + vidgi + midwi

+ hn
i
dn̂i + hSdS + EidDi
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where � denotes deviations from the equilibrium value, in 
particular �S = S − S

0
 , 𝛿n̂i = n̂i − n̂0

i
 , �� = � − �

0
.

The orientation energy due to an external field is gov-
erned by the dielectric anisotropy, 𝜖a = 𝜖∥ − 𝜖⊥ [3] and the 
stiffness of order parameter variations is given by 1∕�S) . 
Although the energy density expression is given in harmonic 
approximation only, it can give rise to nonlinear effects, 
since all material parameters are still functions of the state 
variables, like temperature and pressure.

Spatially inhomogeneous variations of the nematic order 
parameter are described by various energy contributions. 
They comprise the Frank orientational elastic energy ( ∼ Kijkl 
with splay, bend and twist [3]), the energy associated with 
gradients of the modulus ( ∼ K

(2)

ij
 , of the standard uniaxial 

form) [29] and a cross-coupling term between gradients of 
the preferred direction to gradients of the order parameter 
modulus ( K(3)

ijk
= K(3)(𝛿⊥

ik
n̂j + 𝛿⊥

jk
n̂i) with 𝛿⊥

jk
≡ 𝛿jk − n̂jn̂k )) 

[35]. The flexoelectric contribution ∼ eijk(∇inj)Ek is not con-
sidered here.

In addition, there is the energy density of a fluid binary 
mixture in the third and fourth line. The kinetic energy 
(1∕2�n)(g

n)2 + (1∕2�s)(g
s)2 expressed by the momentum 

densities for the nematic and the solvent subsystem, respec-
tively, leads to � = �(1 − �)� , since gn + g

s = g . In line 5 
there is the linear twist term ( K̃

2
 ) well known from chiral 

nematics, that gives rise to a helical equilibrium structure 
(n̂ ⋅ curl n̂)

0
= q

0
K̃
2
∕K

2
 , with K

2
 the Frank-like modulus for 

the quadratic, non-chiral twist energy. Very often K̃
2
= K

2
 

is assumed, although there is no a priori reason to do so and 
in the early discussions the two moduli are indeed discrimi-
nated [36, 37]. The last line ( ∼ �

1,2,3,4
 ) describes couplings 

between twist and variations of the scalar variables giving 
rise to the static Lehmann effects [33].

In the following we list the expressions for the conjugated 
variables in terms of the hydrodynamic and macroscopic vari-
ables. They are defined as partial derivatives with respect to 
the appropriate variable, while all the other variables are kept 
constant, denoted by ellipses in the following

(2)

𝜀 =
1

2
𝜖−1
ij
DiDj +

1

2𝜒S

(𝛿S)2 +
1

2
K

(2)

ij
(∇iS)(∇jS)

+
1

2
Kijkl(∇in̂j)(∇kn̂l) + K

(3)

ijk
(∇iS)(∇jn̂k)

+
1

2
c𝜌𝜌(𝛿𝜌)

2 +
1

2
c𝜎𝜎(𝛿𝜎)

2 +
1

2
c𝜙𝜙(𝛿𝜙)

2

+c𝜌𝜙(𝛿𝜌)(𝛿𝜙) + c𝜌𝜎(𝛿𝜌)(𝛿𝜎) + c𝜎𝜙(𝛿𝜎)(𝛿𝜙)

+
1

2𝜌
g
2 +

1

2
𝛼w2 + K̃

2
q
0
(𝐧̂ ⋅ curl 𝐧̂)

+q
0
(𝛼

1
𝛿𝜌 + 𝛼

2
𝛿𝜎 + 𝛼

3
𝛿𝜙 + 𝛼

4
𝛿S)(𝐧̂ ⋅ curl 𝐧̂)

(3)Ei =
��

�Di

|… = �−1
ij
Dj

from which the total molecular fields, used in Eq.  (1), 
hS = h

�S − ∇jΦ
S
j
 and hn

i
= h

�n
i
− ∇jΦ

n
ij
 follow immediately. 

The wi-dependence of the chemical potential and the osmotic 
pressure are due to the � - and �-dependence of �.

2.3 � Dynamics

The dynamic equations have the form

(4)h
�S =

��

�S
|… =

1

�S

�S + q
0
�
4
n̂⋅ (� × n̂)

(5)ΦS
i
=

𝜕𝜀

𝜕(∇iS)
|… = K

(2)

ij
∇jS + K

(3)

ijk
∇jn̂k

(6)

h
�n
i
=
𝜕𝜀

𝜕n̂i
|… = 𝜖aEiEjn̂j + q

0
K̃
2
𝛿⊥
ij
(� × n̂)j

+ q
0
n̂k𝜖kji(𝛼1∇j𝜌 + 𝛼

2
∇j𝜎)

+ q
0
n̂k𝜖kji(𝛼3∇j𝜙 + 𝛼

4
∇jS)

(7)Φn
ij
=

𝜕𝜀

𝜕(∇jn̂i)
|… = Kjikl∇kn̂l + K

(3)

kji
∇kS

(8)

�� =
��

���
|… = c���� + c���� + c����

+ w2

i
�(1 − �)

+ q
0
�
1
n̂⋅ (� × n̂)

(9)
�T =

��

���
|… = c���� + c���� + c����

+ q
0
�
2
n̂⋅ (� × n̂)

(10)

�Π =
��

���
|… = c���� + c���� + c����

+ wigi + �w2

i
(1 − 2�)

+ q
0
�
3
n̂⋅ (� × n̂)

(11)mi =
��

�wi

|… = �(1 − �)�wi ≡ � wi

(12)𝜀̇ + ∇i(𝜀 + p)vi + ∇i

(
j 𝜀R
i

+ j 𝜀D
i

)
=0,

(13)𝜎̇ + ∇i(𝜎vi + j 𝜎R
i

+ j 𝜎D
i

) =
2R

T
,

(14)𝜌̇ + ∇i(𝜌vi) =0,
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where the electric charge density is related to Di by 
�e = ∇iDi . The electric current density is jeR

i
+ jeD

i
 . The pres-

sure p contains the electric field contributions

and �th
ij

 contains the Maxwell and the Ericksen-type stresses

where the Maxwell stress has been symmetrized with the 
help of the requirement that the energy density should be 
invariant under rigid rotations [29].

The source term of Eq. (13) contains R, the dissipation 
function, which represents the energy dissipation of the 
system. Due to the second law of thermodynamics R must 
satisfy R ≥ 0 : For reversible processes, this dissipation func-
tion is equal to zero, while for irreversible processes it must 
be positive

The phenomenological currents and quasi-currents with 
the superscripts ∗ ∈ {R, D} consist of two parts, a reversible 
and a dissipative one, respectively. The various transport 
contributions in Eqs. (12)–(19) (as well as p and �th

ij
 ) are 

reversible and add up to zero in the entropy production.
These phenomenological currents and quasicurrents are 

treated in the following subsections within ’linear irreversible 
thermodynamics’ (guaranteeing general Onsager relations), 
i.e., as linear relations between currents and thermodynamic 
forces. The resulting expressions are nevertheless nonlinear, 

(15)ġi + ∇j(givj + p 𝛿ij + 𝜎th
ij
+ 𝜎 R

ij
+ 𝜎 D

ij
) =0,

(16)𝜙̇ + vj∇j𝜙 +
1

𝜌
∇imi + ∇i(j

𝜙R

i
+ j

𝜙D

i
) =0,

(17)
ẇi + vj∇jwi + ∇i(𝜌

−1Π)

+XWR
i

+ XWD
i

=0,

(18)Ṡ + vi∇iS + XSR + XSD =0,

(19)̇̂ni + vj∇jn̂i + +YR
i
+ YD

i
=0

(20)𝜌̇e + ∇j(𝜌evj) + ∇ij
eR
i

+ jeD
i
) =0,

(21)p =
� (∫ �dV)

�V
= −� + �� + T� + v ⋅ g + DiEi

(22)

2𝜎th
ij
= −

(
EiDj + DiEj

)
+ ΦS

j
∇iS + ΦS

i
∇jS

+Φn
kj
∇in̂k + Φn

ki
∇jn̂k

+∇k(n̂jΦ
n
ik
− n̂iΦ

n
jk
)

(23)
R = − j𝜎∗

i
∇iT − j

𝜙∗

i
∇iΠ − 𝜎∗

ij
∇jvi − je∗

i
Ei

+ mi X
W∗
i

+ hn
i
𝛿⊥
ik
Y∗
k
+ hSXS∗ ≥ 0

since all material parameters can be functions of the scalar 
state variables (e.g., p, T, P, �).

The form of Eq. (16) reflects the fact that both densities, �n 
and �s , are conserved individually, and Eq. (18) describes the 
order parameter modulus S as a slowly relaxing quantity [32] 
(similar to, e.g., the superfluid order [31, 38]).

In a single-fluid description, the transport and convec-
tive dynamic contributions are fixed, while in a 2-fluid the-
ory it is a priori not given, which velocity should be used. 
In Eqs. (12)–(19), the mean velocity, vi , is employed, since 
this guarantees zero entropy production. However, there are 
additional contributions of the transport and convective type 
in the reversible phenomenological currents involving the rela-
tive velocity. By assigning special values to the appropriate 
reversible transport coefficients, specific models can be real-
ized, where, e.g., variables of the first (second) subsystem are 
transported and convected with the first (second) velocity. In 
this manuscript, we will not dwell on this point and refer to 
appropriate previous discussions [19, 21, 24].

2.4 � Reversible Currents

For the reversible dynamic behavior of our two fluid cho-
lesteric macroscopic system, we focus on the chiral terms con-
taining phenomenological parameters, since the terms present 
in for a two fluid nematic have been discussed in detail in refs. 
[19, 24]. We obtain

with sijk = n̂in̂m𝜖mjk and where … indicate all the terms 
already discussed in [19, 24]. There are no chiral additions 
to YR

i
 and XSR.

(24)
j�R
i

=⋯ + Γ
2
q
0
(sjik + skij)Ajk

+ Γ
4
q
0
(sjik + skij)∇jmk,

(25)

� R
ij
=⋯ − Γ

2
q
0
(sikj + sjki)∇kT

− Γ
3
q
0
(sikj + sjki)∇kΠ

− Γ
1
q
0
(sikj + sjki)Ek

(26)

XWR
i

=⋯ + Γ
4
q
0
(sjik + skij)∇j∇kT

+ Γ
5
q
0
(sjik + skij)∇j∇kΠ

+ q
0
(Γ

6asjik + Γ
6bskij)∇jEk

(27)
j
�R

i
=⋯ + Γ

3
q
0
(sjik + skij)Ajk

+ Γ
5
q
0
(sjik + skij)∇k∇jmi

(28)
jeR
i

=⋯ + Γ
1
q
0
(sjik + skij)Ajk

+ q
0
(Γ

6asjik + Γ
6bskij)∇jmk
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2.5 � Dissipative Currents

The dissipative dynamic behavior of our macroscopic sys-
tem is characterized by the dissipation function R

with sijk = n̂in̂p𝜖pjk . The tensors �ij , D
T�

ij
 , Dij , �ij , �E

ij
 , DE

ij
 , �E

ij
 

as well as �ijkl , and �w
ijkl

 are of the standard uniaxial form for 
second and fourth rank tensors [29, 39], while the mixed 
one, �c

ijkl
 , contains six parameters, due to the lack of the 

�c
ijkl

= �c
klij

 symmetry [19, 39].
The contribution ∼ b|| in the entropy production describes 

the relaxation of the order parameter modulus S, while the 
contribution associated with b⊥ corresponds to the diffusion 
of director rotations (often called �−1

1
 ). The third rank tensor 

associated with the dynamic flexoelectric effect ∼ �E
ijk

 is of 
the form 𝜁E

ijk
= 𝜁E(𝛿⊥

ij
n̂k + 𝛿⊥

ik
n̂j ). Those terms exist already 

in single-fluid, achiral nematics.
The most interesting dissipative cross-coupling is 

clearly the contribution ∼ Σchol describing a direct cross-
coupling between relative velocities and symmetrized gra-
dients of the mean velocity. It does not exist for non-chiral 
nematics and requires for its existence a pseudoscalar as 
well as a preferred direction.

There are further dissipative coupling terms between 
the molecular field of the director, hn

i
 , and temperature 

and concentration gradients, electric fields, as well as the 
force associated with the order modulus, hS . They are the 
dissipative parts of the Lehmann effect for cholesterics 
[12, 33, 40–42]—familiar also from chiral smectic liquid 
crystals [12, 33, 41, 42].

To obtain the dissipative parts of the currents and quasicur-
rents, we take the partial derivatives of R with respect to the 
appropriate thermodynamic force

(29)

2R =𝜅ij(∇iT)(∇jT) + Dij(∇iΠ)(∇jΠ)

+ 2D
T𝜙

ij
(∇iT)(∇jΠ) + 𝜎E

ij
EiEj

+ 2D
E𝜙

ij
Ei∇jΠ + 2𝜅E

ij
Ei∇jT − 2𝜁E

ijk
hn
i
∇jEk

+ 𝜉ijmimj + 𝜈ijklAijAkl

+ 2𝜈 c
ijkl
Aij∇lmk + 𝜈 w

ijkl
(∇jmi)(∇lmk)

+ b⊥h
n
i
hn
i
+ b||h

ShS

+ 2Σchol q
0
(sjik + skij)miAjk

+ 2q
0
(ΨT∇iT + ΨEEi)𝜖ijkn̂kh

n
j

+ 2q
0
(Ψ𝜙∇iΠ + ΨS∇ih

S)𝜖ijkn̂kh
n
j

(30)

j𝜎D
i

= −
𝜕R

𝜕∇iT
|…

= − 𝜅ij∇jT − D
T𝜙

ij
∇jΠ

− 𝜅E
ij
Ej − q

0
ΨT𝜖ijk n̂kh

n
j

3 � Incorporation of a Strain Field for Nematic 
Gels and Elastomers in a Chiral Solvent

In this section, we discuss how the two-fluid macroscopic 
dynamics has to be modified for nematic gels and elasto-
mers in a chiral solvent. One needs a strain field uij to deal 
with elasticity and a special vector Ω̃i to describe relative 
rotations. We will make extensive use of the macroscopic 
dynamics for single-fluid cholesteric gels and elastomers 
[43].

The strain tensor can be written in linearized form as 
uij =

1

2
(∇iuj + ∇jui) with the displacement field ui . For a 

nonlinear generalization cf. [44]. Since we will deal with 
the case of a permanently cross-linked gel or elastomer, uij 
does not relax, but can only diffuse.

(31)

jeD
i

=
𝜕R

𝜕Ei

|…

= + 𝜎E
ij
Ej + D

E𝜙

ij
∇jΠ + 𝜅E

ij
∇jT

+∇j(𝜁
E
kji
hn
k
) − q

0
ΨE𝜖ijk n̂kh

n
j

(32)

j
𝜙D

i
= −

𝜕R

𝜕(∇jΠ)
|…

= − Dij∇jΠ − D
T𝜙

ij
∇jT

− D
E𝜙

ij
Ej − q

0
Ψ𝜙𝜖ijk n̂kh

n
j

(33)

�D
ij
= −

�R

�∇jvi
|…

= − �ijklAkl − �c
ijkl
∇lmk

− Σchol q
0
(sikj + sjki)mk

(34)

XWD
i

=
�R

�mi

|…

=�ijmj − ∇j(�
w
ijkl
∇lmk + �c

ijkl
Akl)

+ Σcholq
0
(sjik + skij)Ajk

(35)

YD
i
=
𝜕R

𝜕hn
i

|…

=b⊥h
n
i
− 𝜁E

ijk
∇jEk

+ q
0
𝜖jik n̂k(Ψ

T∇jT + ΨEEi)

+ q
0
𝜖jik n̂k(Ψ

𝜙∇jΠ + ΨS∇jh
S)

(36)
XSD =

𝜕R

𝜕hS
|…

=b||h
S − q

0
ΨS𝜖ijk n̂k∇ih

n
j
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As pointed out first by de Gennes [45], rotations of the 
director 𝛿n̂i relative to the elastic network are an important 
macroscopic variable. In linear approximation, it can be 
written as

 with Ωij =
1

2
(∇iuj − ∇iui) . For a nonlinear definition, cf. 

[46]. Relative rotations are perpendicular to the director, 
n̂in̂jΩ̃ij = 0 . They are not truly hydrodynamic variables, but 
relax due to the energy dissipation involved.

The Gibbs relation Eq. (1) has to be amended

where the dots denote all the contributions already given in 
Sect. 2. The additional thermodynamic conjugate quantities 
are the elastic stress �ij and the relative molecular field L⊥

i
 

associated with relative rotations.
The strain and the relative rotations bring a host of addi-

tional contributions to the energy, Eq. (2). However, none 
is related to the 2-fluid situation. Therefore, we can refer to 
the single-fluid expressions [47] without copying them here.

Here, we discuss the chiral part of the energy, which cou-
ples to strains and relative rotations

The contributions in Eq. (39) are specific for cholesteric 
elastic systems. The first one represents a coupling of twist 
to the strain tensor u, where �u

ij
 takes the form

Thus, this term gives rise to changes in the pitch due to uni-
axial mechanical stresses such as compression and dilatation. 
This effect has been studied for cholesteric sidechain elasto-
mers in detail experimentally [48, 49]. The second one ( ∼ �Ω ) 
relates static director deformations with relative rotations.

Other static effects specific for general cholesteric elastic 
systems are related to electric fields

and describe electric field-induced relative rotations (rotato-
electricity [50, 51]) and deformations with

Next, we give the additional chiral contributions to the 
thermodynamic conjugate quantities that arise from the chiral 
energy associated with strains and relative rotations by tak-
ing the variational derivative with respect to the appropriate 
variables

(37)Ω̃i = 𝛿n̂i − n̂jΩij

(38)d𝜀 =⋯ + 𝜓ijduij + L⊥
i
dΩ̃i

(39)
𝜀ch−q0𝜏

𝜀
ij
n̂⋅ (� × n̂) 𝛿uij

− q
0
𝜏Ω𝜖ikpn̂jn̂pΩ̃i∇jn̂k

(40)𝜏u
ij
= 𝜏u

1
n̂in̂j + 𝜏u

2
𝛿⊥
ij

(41)𝜀Dch = q
0
𝜁Ωn̂j𝜖ijkDiΩ̃k + q

0
𝜁
𝜓

ijk
Diujk

(42)𝜁
𝜓

ijk
= 𝜁𝜓 (𝜖ijpn̂pn̂k + 𝜖ikpn̂pn̂j)

For the dynamic equations, we have in addition

while the other dynamic equations are of the same form as 
discussed above.

Using the requirement of the rotational invariance of the 
energy, one can write [29, 44, 47]

where �th
ij

 is either symmetric or a divergence of an antisym-
metric part, which ensures angular momentum conservation. 
It can be brought into a manifestly symmetric form by some 
redefinitions [26].

For the reversible chiral currents, we have, in addition to 
the terms without phenomenological coefficients given above

where

This coupling between the elastic degree of freedom and 
the relative velocity is specific for a 2-fluid description.

Next, we focus on the dissipative part of the dynamics 
associated with strains and relative rotations in the pres-
ence of the pseudoscalar q

0
 , which can be discussed most 

succinctly in terms of the dissipation function R [26, 29].

where

(43)�ij = − q
0
�u
ij
n̂⋅ (� × n̂) + q

0
�
�

kij
Dk

(44)L⊥
i
= + q

0
n̂k𝜖jki(𝜁

ΩDj + 𝜏Ωn̂jn̂p∇p)

(45)Ei =q0𝜁
Ωn̂j𝜖ijkΩ̃k + q

0
𝜁
𝜓

ijk
ujk

(46)
hn
i
=q

0
𝜏Ωn̂jn̂p𝜖kip∇jΩ̃k

+q
0
𝜏u
kl
n̂p𝜖pji∇jukl

(47)̇̃Ωi + vj∇jΩ̃i + YΩR
i

+ YΩD
i

=0

(48)u̇ij + vj∇juij − Aij + XuR
ij

+ XuD
ij

=0

(49)

2𝜎th
ij
= − (DjEi + DiEj) + Φki∇jn̂k + Φkj∇in̂k

+∇k(n̂jΦik − n̂iΦjk) + (𝜓jk𝜀ki + 𝜓ik𝜀kj)

+ΦS
j
∇iS + ΦS

i
∇jS

(50)XWR
k

= − q
0
Ξ̃ijk 𝜓ij

(51)XuR
ij

=q
0
Ξ̃ijk mk

(52)Ξ̃ijk = Ξ̃(𝜖ikmn̂jn̂m + 𝜖jkmn̂in̂m)

(53)
RL =q

0
𝜖ijkn̂jL

⊥
k
(𝜓Ω

𝜙
∇iΠ + 𝜓Ω

𝜎
∇iT + 𝜓Ω

e
Ei)

+q
0
𝜓jk(𝜒

𝜙𝜓

ijk
∇iΠ + 𝜒

𝜎𝜓

ijk
∇iT + 𝜒

e𝜓

ijk
Ei)
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and � ∈ �,�, e . All terms in Eq. (53) describe dissipative 
couplings to elastic deformations and relative rotations.

We stress that these dissipative contributions occur for 
all gels and elastomers with macroscopic chirality including 
chiral smectic gels and elastomers.

The chiral parts of the dissipative currents then read

4 � Possible Dynamic Experiments

4.1 � Reversible Coupling Terms in Cholesterics

Inspecting the reversible coupling terms in Eqs. (24)–(28), 
some quite intuitive possibilities emerge to detect these con-
tributions. Taking the heat current as an example, we get

with sijk = n̂in̂m𝜖mjk
Taking the director n̂i parallel to the ẑ-direction, we have 

explicitly

meaning the symmetrized gradient of the velocity difference 
in the y − z-plane leads to a heat current in x−direction. A 
heat current of the same magnitude but of opposite sign in 
the y−direction is found for a symmetrized gradient of the 
velocity difference in the x − z-plane.

Similarly, concentration currents are found ∼ Γ
5
 from 

Eq. (27) and electric currents ∼ Γ
6a,6b from Eq. (28). If one 

considers gradients of the mean velocity ( Aij ), instead of the 

(54)𝜒
𝛼𝜓

ijk
= 𝜒𝛼𝜓 (𝜖ikmn̂jn̂m + 𝜖ijmn̂kn̂m)

(55)j𝜎D
i

= − q
0
(𝜖ijkn̂k𝜓

Ω
𝜎
L⊥
j
+ 𝜒

𝜎𝜓

ijk
𝜓jk)

(56)j
𝜙D

i
= − q

0
(𝜖ijkn̂k𝜓

Ω
𝜙
L⊥
j
+ 𝜒

𝜙𝜓

ijk
𝜓jk)

(57)jeD
i

= − q
0
(𝜖ijkn̂k𝜓

Ω
e
L⊥
j
+ 𝜒

e𝜓

ijk
𝜓jk)

(58)
YΩD
i

=q
0
𝜖kjin̂j(𝜓

Ω
𝜙
∇kΠ + 𝜓Ω

𝜎
∇kT)

+ q
0
𝜖kjin̂j𝜓

Ω
e
Ek

(59)
XuD
ij

=q
0
�
��

kji
∇kΠ + q

0
�
��

kji
∇kT

+ q
0
�
e�

kji
Ek

(60)j�R
i

= ⋯ + Γ
4
q
0
(sjik + skij)∇jmk.

(61)j�R
x

=⋯ + Γ
4
q
0
(∇zmy + ∇ymz)

(62)j�R
y

=⋯ − Γ
4
q
0
(∇zmx + ∇xmz)

relative velocity, appropriate effects are found, but they are 
not specific for a two-fluid description.

The counter terms in Eq. (26), necessary to have zero 
entropy production, lead to

for a bent temperature field, and similarly ∼ Γ
5
 for a bent 

concentration field, and ∼ Γ
6a,6b for a sheared electrical field. 

The bending or shear plane must contain the preferred direc-
tion n̂i . In all cases the resulting XWR

i
 is perpendicular to the 

bending or shear plane.
A nonzero XWR

i
 means that the relative velocity is time-

dependent. In the stationary state XWR
i

 is compensated by the 
relaxation � �ijwj . Thus, bent temperature and concentration 
fields, as well as shear electric fields trigger relative veloci-
ties in chiral nematic two-fluid systems.

4.2 � Dissipative Coupling Terms in Cholesterics

Inspecting the dissipation function for cholesterics there is a 
chiral term, Rchir , which has only one gradient

which gives rise to dissipative contributions to the stress 
tensor and the quasi-current associated with the velocity 
difference

This coupling between a relative velocity (or its time deriv-
ative) in the plane perpendicular to the preferred direction n̂i 
(taken as the z-direction) with shear flow (or shear stress) of 
the mean velocity, with the shear plane containing n̂i , reads 
explicitly

where we have added the relaxation of the relative velocity.
Taken together, Eqs.  (68)–(71) describe a diffusion-

like behavior of wx and wy (along the y− and x−direction, 

(63)XWR
x

=⋯ + 2Γ
4
q
0
∇y∇zT

(64)XWR
y

=⋯ − 2Γ
4
q
0
∇x∇zT

(65)Rchir = Σchol q
0
(sjik + skij)miAjk,

(66)�D
ij
= − Σchol q

0
(sikj + sjki)mk,

(67)XWD
i

=Σchol q
0
(sjik + skij)Ajk

(68)XWD
x

=2 q
0
ΣcholAzy + �

⟂
mx

(69)XWD
y

= − 2 q
0
ΣcholAzx + �

⟂
my

(70)�D
zx
= �D

xz
= − q

0
Σcholmy

(71)�D
zy
= �D

yz
= + q

0
Σcholmx
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respectively) with a diffusion coefficient q2
0
��−1(Σchol)2 that 

comes in addition to the relaxation with relaxation coefficient 
��

⟂
.

4.3 � Reversible Coupling Between Stresses 
and Relative Velocities

To analyze the consequences of Eqs. (50) and (51), we pro-
ceed as follows. For the reversible chiral currents, we take the 
preferred direction, n̂i , to be parallel to the ẑ-direction. Then, 
we obtain from Eq. (50)

Thus, an applied mechanical stress in the x − z-plane leads 
to a temporal variation of the velocity difference in y− direc-
tion and a mechanical stress applied in the y − z-plane results 
in a temporal variation for the velocity difference in the x− 
direction of the same magnitude, but the opposite sign. Con-
versely, velocity differences can drive temporal variations of 
strains and stresses. Using the same assumptions as above, 
we obtain

We emphasize that this coupling between the elastic degree 
of freedom and the relative velocity is specific for a 2-fluid 
description.

5 � Summary and Perspective

In this work, we have predominantly analyzed the macro-
scopic dynamics of two-fluid systems from the field of liq-
uid crystals: nematics in a chiral solvent and, equivalently, 
cholesterics in a non-chiral solvent. It turns out that there 
are a large number of reversible and dissipative dynamic 
cross-coupling terms between the velocity difference, on 
the one hand, and symmetrized velocity gradients and 
electric fields, temperature gradients, concentration gra-
dients and mechanical stresses, on the other. For several 
of these coupling terms, we have outlined experimental 
set-ups to detect these cross-coupling terms not investi-
gated before. These include, for example, the possibility 
that electric field gradients lead to temporal variations in 
the relative velocity field and that relative velocities gener-
ate oscillatory mechanical stresses in two-fluid cholesteric 
elastomers. In addition, we have also elucidated a number 

(72)XWR
y

=2q
0
Ξ̃𝜓xz

(73)XWR
x

= − 2q
0
Ξ̃𝜓yz

(74)XuR
xz

=2q
0
Ξ̃my

(75)XuR
yz

= − 2q
0
Ξ̃ijk mx

dynamic aspects of the rather exotic chiral Q phase of D
4
 

symmetry, thus complementing earlier static studies.
Throughout this manuscript, we have focused on the 

influence of a macroscopic chirality on the two-fluid 
macroscopic dynamic behavior. Systems of interest are 
mainly coming from liquid crystal physics, but also from 
biological applications. Many of the cross-coupling terms 
presented are intrinsically connected to their chiral nature 
giving rise to broken parity symmetry, while time reversal 
symmetry is maintained.

This observation opens up a natural perspective for 
the study of another class of two-fluid systems. If the 
preferred direction is odd under time reversal like in mag-
netically ordered systems in a solvent, a different class of 
dynamic cross-coupling terms involving the magnetiza-
tion will emerge. And this class of systems also already 
exists experimentally, namely ferromagnetic nematics 
[52–56] and ferromagnetic cholesterics [57–59]. Both 
classes of systems can we viewed as suspensions of mag-
netic platelets in a nematic or a cholesteric liquid crystal 
as a solvent. So far the focus experimentally and theo-
retically has been on the macroscopic dynamics of one 
component ferromagnetic nematics and ferromagnetic 
cholesterics [43, 60–63] generalizing earlier work on the 
macroscopic dynamics of ferronematics [64, 65]. As for 
the two-fluid aspects there appears to be no work on the 
dynamics of ferromagnetic nematics and ferromagnetic 
cholesterics, while some static experimental aspects of 
this type of behavior including converse magneto-electric 
effects and magneto-optic effects have been already exam-
ined for ferromagnetic nematics in the literature [53]. 
Only rather recently investigations of the macroscopic 
dynamic aspects of magnetic two-fluid systems have been 
started for magneto-rheological fluids [66].

Another class of two-fluid systems of interest that should be 
investigated in a next step are two-fluid systems with a polar 
preferred direction. Such a system can be ferroelectric. The 
macroscopic dynamics of polar nematics in a one compo-
nent system has been presented in ref.[67] and in ref.[68] the 
issue of phases with spontaneous splay was addressed. Quite 
recently polar nematic phases have been found experimentally, 
and their molecular foundations and the associated physical 
consequences have been elucidated [69–71]. Therefore, it 
appears natural to investigate the two-fluid behavior of these 
systems, all the more when defect phases are involved.

Macroscopic Two‑Fluid Effects for the Chiral 
Q ( D

4
 ) ‑ Phase in a Non‑Chiral Solvent

The chiral Q phase [72–75], which has been discussed and 
characterized recently in detail [72], has a tetragonal structure 
with chiral symmetry D

4
 [39, 76]. It can be viewed as a tetrag-

onal biaxial nematic liquid crystal with a director and 4-fold 



Brazilian Journal of Physics           (2022) 52:70 	

1 3

Page 9 of 11     70 

perpendicular preferred structure Qtr
ijkl

 , whose rotations are 
additional hydrodynamic variables. Chirality is provided by 
the existence of a pseudoscalar q

0
 . For one component systems 

various aspects of the macroscopic dynamics of this phase 
have been discussed recently [77].

Here, we focus on two-fluid aspects of a system consist-
ing of two subsystems: a D

4
-phase and an isotropic solvent. 

We restrict ourselves to the connection between the relative 
and the mean velocity with the thermal and solutal degree of 
freedom.

For the variables of interest, we have dynamic equations 
like in Sect. 2.3

For the reversible parts of the currents, we find, requiring 
vanishing entropy production, R,

with sijk = n̂in̂p𝜖pjk with n̂i symbolizing the preferred 4-fold 
axis of the D

4
 phase. We have also kept in Eqs. (80)–(83) 

the non-chiral contributions, since they have not been given 
before, neither for the non-chiral Q phase of D

4h symmetry 
nor for the chiral Q phase.

From inspection of Eqs. (80)–(83), we see that there are a 
number of reversible dynamic cross-coupling terms between 
the relative velocity and the scalar variables � and � (and 
similarly to electric fields Ei ). In addition, we notice that the 

(76)𝜎̇ + ∇i

(
𝜎vi + j𝜎R

i
+ j𝜎D

i

)
=
2R

T

(77)ġi + ∇j(givj + p 𝛿ij + 𝜎nl
ij
+ 𝜎R

ij
+ 𝜎D

ij
) =0,

(78)𝜙̇ + vj∇j𝜙 +
1

𝜌
∇imi + ∇i(j

𝜙R

i
+ j

𝜙D

i
) =0,

(79)ẇi + vj∇jwi + ∇i(Π∕𝜌) + X R
i
+ XD

i
=0,

(80)
j𝜎R
i

=𝛽ij mj + Γ
2
q
0
(sjik + skij)∇jvk

+Γ
4
q
0
(sjik + skij)∇jmk,

(81)
�R
ij
=2�

2
mi wj − Γ

2
q
0
(sikj + sjki)∇kT

−Γ
3
q
0
(sikj + sjki)∇kΠ

(82)

XR
i
=𝛽ij∇jT + 𝛾ij∇jΠ + 𝛽

2
wj(∇ivj + ∇jvi)

+𝛽
3
wj(∇jmi − ∇imj) + 𝛽

4
wj(∇jvi − ∇ivj)

+Γ
4
q
0
(sjik + skij)∇j∇kT

+Γ
5
q
0
(sjik + skij)∇j∇kΠ

(83)
j
�R

i
=�ijmj + Γ

3
q
0
(sjik + skij)Ajk,

+Γ
5
q
0
(sjik + skij)∇jmk,

cross-coupling terms ∼ Γ
2
 and ∼ Γ

3
 also exist already in the 

one component D
4
 phase.

For the dissipative aspects, we focus on the variables 
gi and the velocity difference wi . For the dissipative con-
tributions associated with the concentration � we refer to 
ref. [77], where we have discussed already Lehmann effects 
for the case of a concentration without a relative velocity.

where … stands for the dissipative contributions of all the 
other variables. The fourth rank tensors ∼ �ijkl , ∼ �w

ijkl
 and 

∼ �c
ijkl

 all contain six independent coefficients (as it is stand-
ard for tetragonal symmetry [39]) due to the existence of a 
constant Qtr

ijkl
 in equilibrium.

The most interesting dissipative cross-coupling is clearly 
the contribution ∼ ΣD4 describing a direct cross-coupling 
between relative velocities and symmetrized velocity gra-
dients. It does not exist for D

4h-symmetry and requires for 
its existence broken parity symmetry as well as a preferred 
direction.

From Eq. (84), we obtain the following dissipative 
currents

demonstrating that the coupling ΣD
4 between relative veloc-

ity and symmetrized velocity gradients indeed leads to a 
dissipative coupling to lowest order in the gradients.
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(84)

2R =⋯ + �mimi

+�ijkl(∇jvi)(∇lvk) + �w
ijkl
(∇jmi)(∇lmk)

+2�c
ijkl
(∇jvi)(∇lmk)

+2ΣD4 q
0
(sjik + skij)mi(∇jvk)

(85)

� D
ij
= − (�R)∕(�∇jvi)

= − �ijkl ∇lvk − � c
ijkl

∇lmk

− ΣD4 q
0
(sikj + sjki)mk,

(86)

XD
i
=(�R)∕(�mi)

=�mi + ΣD4 q
0
(sjik + skij)(∇jvk)

− ∇j

(
� w
ijkl

∇lmk + � c
klij

∇lvk
)
,
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