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Abstract. We discuss changes in the symmetry and physical properties of an isotropic phase which has
initially tetrahedral symmetry characterized by four unit vectors. In its undeformed state, these four vectors
are at the tetrahedral angle (109.47o) to each other. We find that this optically isotropic phase becomes
uniaxial under the influence of an external electric field, E, resulting in a phase with C3v-symmetry. For
an applied simple shear flow, the system becomes biaxial and a time-dependent state with C1 symmetry
arises. We discuss to what extent deformations induced by external forces and flows on this optically
isotropic phase, which we call a ”deformable tetrahedratic phase”, are consistent with observations at the
isotropic-B7 transition found recently in compounds composed of banana-shaped molecules and suggest a
number of experiments to test the conclusions of this model.

PACS. 61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order –
64.70.Md Transitions in liquid crystals – 05.70.Ln Nonequilibrium irreversible thermodynamics

1 Introduction

In 3D, the tetrahedratic phase, T , is depicted by four
unit vectors (Fig. 1a), n1 to n4, oriented along the
four tetrahedral corners of a cube with the property
that Td(−nα) = −Td(nα) (no inversion symmetry) and
α = 1, 2, 3, 4. One of the reasons for increasing interest in
the optically isotropic tetrahedratic phase is its unusual
property that it can spontaneously flow in the presence of
a static external force such as an electric field or a tem-
perature gradient [1]. This unusual feature arises because
a third rank tensor, Tijk =

∑
α nα

i nα
j nα

k , is required as an
order parameter to characterize tetrahedratics [1–4]. Tijk

can couple to physical properties described by first (e.g.
electric fields, Ei) and second rank (e.g. orientational or-
der, Qij), tensors [5].

For example, with an electric field, E, parallel to n1,
say, the coupling, ±ςEiTijk, gives rise to the second rank
tensor, Qjk, which is just the order parameter for rod-like
(−) or for disc-like (+) orientational order as shown in
Fig.1b.

In an electric field then, tetrahedratics can give rise to
lamellar and/or columnar mesophases equally well. Ap-
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plying a field parallel to a cube face, gives symmetric off-
diagonal components that describe biaxial orientational
order. As this coupling term, ±ςEiTijk, is linear in T , su-
perposition of states applies leading to novel states where
an optically isotropic tetrahedratic phase and an optically
anisotropic state with orientational order effectively coex-
ist in the presence of external force fields e.g. electric field:
the deformable tetrahedratic. When the field is turned off,
the optically anisotropic states fade away.

We also point out that there are terms linear in the
gradient coupling Qij and Tijk [5]. These terms have
a form similar to the term familiar from cholesterics:
εijkQi`∂kQj`. However, while this term is odd under par-
ity in cholesterics because of the chirality of the molecules
- i.e. cholesterics have only one hand, this is not the case
for deformable tetrahedratics where both hands are possi-
ble (ambidextrous chirality, [3]). The novel gradient terms
and their further physical implications will be discussed in
detail in ref. [5].

Tetrahedratics are thus interesting as a model system
to study frustrated lamellar and columnar liquid crystal
phases with many different condensed states that are en-
ergetically very close together [6–11].
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Fig. 1. a) The four tetrahedral vectors of the optically
isotropic tetrahedratic phase: n1, n2, n3 and n4. Td(−nα) =
−Td(nα): no inversion symmetry where α = 1, 2, 3, 4. b) The
four unit vectors are rotated so that n1 is parallel to an elec-
tric field, E. Then, depending on the sign of this term, either
disc-like or rod-like orientational order may appear [5].

Recent work on tetrahedratics has covered phase tran-
sitions [2, 4], the behavior in an electric field [2] and the
hydrodynamic behavior [1]. Up to now, it has been as-
sumed that the symmetry of the tetrahedratic phase is
unchanged under the influence of external forces like flow,
temperature gradients and electric fields. Here we con-
sider possible changes when we allow the tetrahedral sym-
metry to be reduced by the action of external forces. That
is, we now assume that the tetrahedral angle can be mod-
ified by external fields and flow. We argue that this is
a possibility because of the linear nature of the coupling
terms available to Tijk.

The present investigation has been triggered by puz-
zling observations for liquid crystalline phases formed by
compounds composed of achiral banana-shaped molecules.
Indeed, the experimental evidence to date suggests that
compounds with banana-shaped molecular structure rep-

resent a new subfield of thermotropic liquid crystals [12].
When there are no mirror planes, for example when achi-
ral banana-shaped molecules are tilted in layers, they have
the novel property of ambidextrous chirality, i.e. both left-
handed and right-handed spirals are observed [8–11].

Here, we focus on the phase transition of achiral
banana-shaped compounds from an optically isotropic liq-
uid phase to a condensed state known as B7. Between
crossed polarizers, B7 exhibits a wide variety of patterns
on cooling from the isotropic liquid [12, 13] including spi-
rals of both hands growing into the isotropic phase [13],
myelin patterns and patterns showing spatial modula-
tions, sometimes regular, in a second direction. All these
optically anisotropic patterns grow vigorously when the
system is far from equilibrium e.g. after a temperature
decrease, then shrink once equilibrium is reached leaving
behind in many instances an isotropic liquid [14,15]. Fur-
thermore, there is a remarkable variety of transitions be-
tween growth forms with the result that none matures to
a mono-domain B7 which is essential for e.g. systematic
high resolution x-ray investigations.

B7 phases also have rich dynamics both with and with-
out applied fields. Recent experiments on the effect of
temperature variations and of an AC (30Hz and larger)
electric field have revealed the occurrence of flow close
to and in the isotropic phase near the B7-isotropic phase
transition. While the field untwisted some spirals and
coarsened the less mobile myelin textures, it stimulated
even more flow and an anisotropic B7 texture with vari-
able but exceedingly small length scales [15].

Very recently, in a step towards understanding these
features of the B7 phase, we found [1] that flow can oc-
cur in the isotropic tetrahedratic phase in the presence of
external forces such as electric fields and temperature gra-
dients. In this analysis, we assumed the symmetry of the
tetrahedratic phase is unchanged by the external forces i.e.
the tetrahedral angle is conserved and the system remains
isotropic.

X-ray diffraction finds some banana compounds with
ambidextrous spirals growing into the isotropic liquid are
simple layered structures [16,17]. For at least two others,
the original phase called B7 in a compound called NB8
[12,13] and a composite material that is ferroelectric [18],
x-ray investigations find many diffraction peaks that could
not be indexed by a standard smectic or columnar phase
known to form for many other low molecular weight liquid
crystalline compounds [13].

Because freely suspended films of B7 decompose into
strands [13, 19], the conclusion is that B7 is not a well-
formed smectic phase. This observation led us to investi-
gate very recently [20] possible symmetries of columnar
phases possessing a macroscopic polarization. It turns
out [20] that C1 symmetry (meaning no symmetry) re-
sults, as soon as the macroscopic polarization is inclined
to any of the preferred axes of the columnar structure.

In summary, neither the symmetry nor the physical
properties of the B7 ground state are understood. Indeed,
the evidence so far is that it does not have a simple ground
state. Consequently, there is a need to look for models to
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describe the B7 phase exhibited by achiral banana-shaped
liquid crystals and their transitions to the isotropic phase.

Here, we consider a new type of phase that we call
a deformable tetrahedratic phase. We assume that, in
the absence of external forces and flows, the 4 unit vec-
tors of the undeformed state include the tetrahedral angle
between each other. When external fields or forces are ap-
plied, we allow the initial tetrahedral angle between the 4
unit vectors to change.

The motivation for this model arises from experimen-
tal observations made for the B7 phase [12–15]. We argue
that this model is helpful to understand various unusual
features observed in the B7 phase: e.g. the appearance
then subsequent disappearance of the optically anisotropic
growth forms, the appearance of flows, even the transi-
tions between the many different growth forms of B7 and,
in the case of B7 grown in AC fields, a texture with vari-
able but exceedingly small length scales [15].

As we will show, our analysis allows an interpretation
of the isotropic-B7 transition as the phase transition from
the optically isotropic deformable tetrahedratic phase to a
variety of condensed states mediated by a deformed tetra-
hedratic phase. These condensed phases may be colum-
nar, lamellar and/or ambidextrously chiral.

The paper is organized as follows. In section 2 we ana-
lyze the deformations of a deformable tetrahedratic phase
in an external electric field. In section 3 we consider the
effects of an imposed shear flow and in section 4 we dis-
cuss how the deformations of a deformable tetrahedratic
phase could mediate the transition to the B7 phase ob-
served in a number of compounds as well as suggest some
experiments to test the conclusions of this model.

2 Distortions of a deformable tetrahedratic
phase by an electric field

In this section we consider how torques from an external
electric field, E, deform the tetrahedra. The starting point
is the free energy density in an electric field [1, 2]

fE = f0 −
ε1
2

TijkEiEjEk (1)

where f0 denotes the free energy density of an isotropic
fluid [1, 21] and Tijk = Σ4

α=1n
α
i nα

j nα
k is the tetrahedratic

order parameter that can be expressed by the 4 unit vec-
tors nα defining a tetrahedron [2] with α = 1, 2, 3 or 4)
(Fig. 1).

We note that, while this form of the field energy coin-
cides with what is known as the leading term for a truly
tetrahedratic phase, we use it here as a simple model for
the field behavior of a deformable tetrahedratic phase in
the spirit introduced above.

In terms of the unit vectors nα, eq.(1) takes the form
[2]

fE = f0 −
ε1
2

4∑
α=1

(E · nα)3 (2)

where we chose the following set of tetrahedral unit vectors

n1 =
1√
3
(1, 1,−1) (3)

n2 =
1√
3
(1,−1, 1) (4)

n3 =
1√
3
(−1, 1, 1) (5)

n4 =
1√
3
(−1,−1,−1). (6)

In the undistorted case, the nα are at an angle φ with
cos φ = −1/3 (φ = 109.47◦) to each other.

The electric part of the free energy has an orienting
effect on tetrahedratic order. It can be shown that the
orientation of one of the nα parallel (antiparallel) to the
field is the minimal energy state for ε1 > 0 (ε1 < 0), with

fE = f0 −
4
9
ε1E

3
0 . (7)

For definiteness, we consider the stable case where an elec-
tric field E is applied ‖ n1 i.e. E = E0n1, E0 ≥ 0 and
ε1 > 0.

It should be mentioned that an analogous orienting
effect of a magnetic field does not exist as the magnetic
field is an axial vector that is odd under time reversal
while an electric field is a polar vector that is even under
time reversal.

While there is no torque on n1 when it is parallel or
anti-parallel to E, there are non-zero electric torques on
n2,3,4 ”frustrating” the tetrahedral order:

n2 × ∂fE

∂n2
∼ (0, 1, 1) (8)

n3 × ∂fE

∂n3
∼ (−1, 0,−1) (9)

n4 × ∂fE

∂n4
∼ (1,−1, 0). (10)

These torques are perpendicular to n1 and tend to rotate
n2,3,4 with a given sense.

Assuming as an ansatz such a rotation of (yet undeter-
mined) finite amplitude b, the distorted set of unit vectors
is given by:

n1E =
1√
3
(1, 1,−1) (11)

n2E =
1√
3

1√
1 + 2b2

(1,−1 +
√

3b, 1 +
√

3b) (12)

n3E =
1√
3

1√
1 + 2b2

(−1−
√

3b, 1, 1−
√

3b) (13)

n4E =
1√
3

1√
1 + 2b2

(−1 +
√

3b,−1−
√

3b,−1). (14)

That these unit vectors represent a distorted tetrahedron
is easily seen from the scalar products

n1E · nαE = −1
3

1√
1 + 2b2

(15)
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for α = 2, 3, 4 and

n2E · n3E = n2E · n4E = n3E · n4E = −1
3

1 + 3b2

1 + 2b2
(16)

which is different from the undistorted case −1/3. The
only 3-fold axis left is n1. As n2E, n3E and n4E are not 3-
fold rotation axes when b 6= 0, the deformed tetrahedratic
has no 2-fold axes. Thus, from Eqs.(15,16), it follows that
the b 6= 0 distortions lead to an optically uniaxial system,
where the preferred direction, set by the external field, is
the 3-fold axis, n1: the Td symmetry of the undeformed
tetrahedratic has been reduced to C3v [22].

We now argue that this b 6= 0 distortion of the tetra-
hedra lowers the electric part of the free energy further, as
∆fE = fE(nαE)− fE(nα) where fE given in (2) is always
negative:

∆fE = −1
2
ε1E

3
0

(1 + 2b2)3/2 − 1
9

(1 + 2b2)3/2
+

4
9
ε1E

3
0 < 0. (17)

Of course, the distortion of the tetrahedral structure
costs deformation energy, which can be expressed in a har-
monic approximation by:

fdef =
B1

2

∑
α,β>α

(nαE
i nβE

i +
1
3
)2 (18)

=
B1

6

[
(1− 1√

1 + 2b2
)2 + (

b2

1 + 2b2
)2

]
. (19)

It is positive and vanishes for an undeformed tetrahedratic
structure (3-6) with b = 0. If the deformation energy is the
largest one in the system (B1 → ∞) no deformation will
take place. In case, however, this energy is comparable to
the electric part of the free energy, a finite deformation
can occur. Minimizing the total free energy

f = f0 + fdef + ∆fE −
4
9
ε1E

3
0 (20)

with respect to b2 the equilibrium deformation amplitude
b0 in the presence of an external field is obtained. The
condition is:√

1 + 2b2
0 (2 + 4b2

0 − α) = 2 + 2b2
0 (21)

with α = ε1E3
0

B1
. In the limit of low (α � 1) as well as of

high electric fields (α � 1) eq.(21) leads to

b2
0 =

α

4
=

ε1E
3
0

4B1
. (22)

which applies approximately also for intermediate values
of α. The total energy f from eq.(20) is

f = f0 −
4
9
ε1E

3
0 (1 +

3α

64
) (23)

for α << 1 and

f = f0 −
1
2
ε1E

3
0 (1− 5

12α
) (24)

Fig. 2. The free energy (20), ∆f = f − f0, in units of ε1E
3
0

normalized by the relative volume change, VT /V0 (25), as a
function of b0. In the limits b2

0 → 0, ∆f → − 4
9

and b2
0 → ∞,

∆f → − 16
27

.

for α >> 1. While f − f0 is symmetric in b0, it monoton-
ically decreases for E0 > 0 (while E0 < 0 is the unstable
case for ε > 0). The energy can be lowered by 12.5%
maximum.

In addition to the decrease in energy, there is a volume
change of the individual tetrahedra due to the deforma-
tions caused by the external field. Geometry leads to

VT

V0
=

1 + 9
4b2

0

1 + 2b2
0

1 + 3
√

1 + 2b2
0

4
√

1 + 2b2
0

(25)

with VT and V0 the volume of the deformed and the un-
deformed tetrahedra, respectively. The field dependence
is contained in b2

0, which is a function of α and given by
(21). The volume is reduced by ≈ 15.6% maximum. The
energy change normalized by the volume change is shown
in Fig.2. The energy reduction and the volume changes
are smooth functions of the electric field and no threshold
is found.

This is also manifest in the distortion (15) of the an-
gles between n1 and the others, which approaches 90◦ in
the high field limit, but is a smooth function everywhere
(Fig. 3). Similarly, the angle between n1 and the other
directions n2, n3 and n4 (16) increases to 120◦ for b or
E0 →∞ indicating the 3-fold rotational symmetry about
the external field. Interestingly, the rotation of n2E, n3E

and n4E with increasing external field into the plane per-
pendicular to E is accompanied by a rotation of the 3
vectors about the field. Thus, an electric field with slowly
varying field strength gives rise to a rotation of the tetra-
hedra about the field direction, a manifestation of the lack
of inversion symmetry of C3v.

For E0 →∞ the total rotation of the nα is 90◦ as can
be seen by projecting n2∞, n3∞ and n4∞ in the high field
limit onto the zero field limit:

n2,0 · n2∞ = n3,0 · n3∞ = n4,0 · n4∞ = 0. (26)

This analysis is summarized in Fig.4.
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Fig. 3. From Eq. 15, the angle (in degrees), ϕ = cos−1(nβE ·
n1) (β = 2, 3, 4) vs. b. As E0 → ∞, n2E, n3E and n4E spiral
clockwise (b > 0) to lie in the plane ⊥ n1 ‖ E.

We stress that the minimization of the free energy does
not fix the sign of b0: in (21) only b2

0 appears as a function
of the external field. Thus the system is free to choose
either sign for b0. The sign of b0, however, governs the
rotation sense of the tetrahedra in a field. As clockwise
and counterclockwise rotations cost the same energy, both
can occur in the same sample when a field is switched
on. This feature mimics “ambidextrous chirality” found
in those banana liquid crystal phases that exhibit both
left and right handed helix structures. The tetrahedra
deformed by an electric field have C3v symmetry which
has mirror planes and is achiral [22]. See Fig.5.

As the main result, we conclude that there is no
threshold for deformations of a spatially homogeneous de-
formable tetrahedratic phase when an electric field is ap-
plied parallel to one of the unit vectors nα. In this con-
nection, it is important to point out that Fel [2] found a
finite threshold for the Frederiksz transition in this geom-
etry assuming, however, that the tetrahedratic phase is
non-deformable.

The analysis given so far has taken into account the
effects of external electric fields only via the expression
given in eq.(1). Once the uniaxial deformation is estab-
lished, it could be necessary to take into account the clas-
sical orientational order parameter Qij [23] as well, where
the strength of uniaxial order S is proportional to the field
strength E2

0 .

The reduction in symmetry from Td to C3v has a num-
ber of important consequences for the macroscopic prop-
erties. As an external field effect, the deformed tetrahe-
dratic phase has induced pyroelectricity and an induced
macroscopic polarization. In addition, there are reversible
dynamic cross coupling terms between extensional flow on
the one hand, and electric fields as well as temperature and
concentration gradients, on the other.

Fig. 4. (a) View looking down n1 ‖ E, with increasing b
(200 points shown as 2) for nβ,0 → nβ∞ (β = 2, 3, 4). With
increasing E (or equivalently b), the nβE spiral clockwise to-
wards the tetrahedron center. n1 is unchanged and, in this
perspective, is a point at the tetrahedron apex shown here for
the case E0 = 0. The structure is C3v with the property that
C3v(−nα) = −C3v(nα). (b) Tetrahedron viewed with n1 ‖ E
in the plane of the figure for b = 0 and b → ∞. In the limit
b →∞, the nβ∞ are 120◦ apart and in the plane ⊥ n1.

3 Distortions of a deformable tetrahedratic
phase by shear flow

In [1] we have shown that a shear flow can couple to both,
the order parameter of the tetrahedratic phase as well as
to electric fields and temperature gradients. As we have
seen in the previous section electric fields have profound
effects on deformable tetrahedratics. Complementing the
investigation of field effects, we examine in this section
the consequences of an applied shear flow as well as of an
applied extensional flow.

First we analyze how the unit vectors nα of the de-
formable tetrahedratic phase couple to flow. The part of
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Fig. 5. When b > 0 (b < 0), the rotation sense is clockwise
(counterclockwise) whether the tetrahedra are viewed along n1

(n1 in) or against n1 (n1 out). As nβ , β = 2, 3, 4 rotate around
n1 into the plane ⊥ n1, the sense is right-handed (left-handed)
for b > 0 (b < 0) when viewed along n1 (n1 in) but of opposite
hand when viewed against n1 (n1 out).

the dynamic equations for nα

ṅα
i + Y αR

i + Y αD
i = 0 (27)

that describes these reversible contributions is:

Y α
i

R = vl∇ln
α
i + λα

ijkAjk + εijknα
j ωk (28)

with ωk = 1
2εklm∇lvm and Ajk = 1

2 (∇jvk + ∇jvk).
Eqs.(27) and (28) contain only three independent vari-
ables, since the nα are not linearly independent. The last
term in eq.(28) describes the behavior of the nα under
rigid rotations. The contribution ∼ λα

ijk represents the
analog of the coupling to extensional flow well known from
uniaxial and biaxial nematics. However, the contribution
∼ λα

ijk vanishes identically due to the high symmetry of
the tetrahedratic phase [24], Thus, we conclude that in a
non-deformable tetrahedratic phase, an applied shear flow
leads to a solid-body rotation of the tetrahedratic struc-
ture. This implies that there is no stationary state in the
presence of shear flow - unlike the flow-aligned state in
a usual nematic. In an extensional flow, which is irrota-
tional (ωi = 0), non-deformable tetrahedratics are unaf-
fected, i.e. they do not rotate.

For a deformable tetrahedratic, external fields such as
an electric field (cf. the preceding section) can lead to
changes in the structure and thus of the symmetry. For the
case of an external flow field, a similar possibility arises.

As noted, deformable tetrahedratic means that we still
have in equilibrium (no fields, no flows) the tetrahedratic

unit vectors as before, but that their relative angles are no
longer fixed to cos−1(−1/3) and they do not sum to zero,
Σ4

α=1n
α
i 6= 0 once the phase is driven out of equilibrium.

In that case the λ-tensor in (28) does not have to van-
ish and takes the usual nematic form

λα
ijk = λα(δtr,α

ij nα
k + δtr,α

ik nα
j ) (29)

(with δtr,α
ij = δij − nα

i nα
j ) describing the behavior of nα

i
under shear and elongational flow. Since without external
flow all nα are equivalent and the flow dependence of λα is
probably small, one can expect the λα to be equal, λα = λ.
In addition there is a relaxation towards the undeformed
equilibrium tetrahedratic structure, which is expressed by
the dissipative contribution

Y αD
i =

1
γ1

∂fdef

∂nα
j

δtr,α
ij (30)

with fdef the deformation energy (18). Again, the rota-
tional viscosity is the same for all unit vectors due to their
equivalence for vanishing fields.

In a shear flow, apart from the solid body rotation,
there is an additional response to flow of the individual
nα due to the existence of the λ-tensor. This response
depends on their orientation relative to the flow direction
and its gradient and leads to a deformation of the tetra-
hedral structure. However, this deformation is superim-
posed on the solid body rotation and might therefore be
difficult to detect experimentally. Therefore we investi-
gate how the relative angles between the unit vectors are
affected by shear flow. They are no longer preserved but
obey a relaxing dynamic equation. For α 6= β there are
six additional macroscopic variables Bαβ = nα · nβ whose
dynamic equations follow from that of the nα

i and read:

Ḃαβ + vl∇lB
αβ

+2λ
(
nα

i nβ
j + nα

j nβ
i −Bαβ(nα

i nα
j + nβ

i nβ
j )

)
Aij

+
1
τ

∑
γ 6=α

(Bαγ−Bαγ
0 )(Bβγ −BαβBαγ)

+
1
τ

∑
γ 6=β

(Bβγ−Bβγ
0 )(Bαγ−BβαBβγ) = 0 (31)

where Bαβ
0 = − 1

3 is the equilibrium value [2]. There is
no coupling to the vorticity ωk (rotational flow), since the
Bαβ are scalar quantities. The relaxation time τ = γ1/B1.
For non-deformable tetrahedratics λ = 0 and τ = 0.
Note that the system of equations (31) is not closed,
but still contains individual nα’s in the coupling term to
Aij . Therefore we will solve these equations only approx-
imately for two special cases.

First we study the effect of an external shear flow in
the x− y plane. Taking a velocity field of the form

v = S (0, x, 0) (32)

it is appropriate to choose one of the tetrahedratic unit
vectors, n1, to be parallel to the êz− direction in equi-
librium. To achieve this the equilibrium unit vectors in
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eqs.(3-6) are suitably rotated

n1 = (0, 0, 1) (33)

n2 =
1
3
(−
√

2,−
√

6,−1) (34)

n3 =
1
3
(−
√

2,
√

6,−1) (35)

n4 =
1
3
(2
√

2, 0,−1) (36)

Then to leading order (that is, discarding λα
ijk in (28))

n2,n3 and n4 rotate together about êz with a frequency
ω = S/2 and a phase difference of 2π/3 between them

n1s = (0, 0, 1) (37)

n2s =
1
3
(2
√

2 cos(S
2 t + 4π

3 ), 2
√

2 sin(S
2 t + 4π

3 ),−1) (38)

n3s =
1
3
(2
√

2 cos(S
2 t + 2π

3 ), 2
√

2 sin(S
2 t + 2π

3 ),−1) (39)

n4s =
1
3
(2
√

2 cos(S
2 t), 2

√
2 sin(S

2 t),−1) (40)

Using this as input in eq.(31) the λ term acts as driv-
ing force Fαβ for oscillations of Bαβ about the equilib-
rium value −1/3 describing oscillating deformations of the
tetrahedra. Since this driving force is quadratic in nαs it
oscillates with twice the frequency

Fαβ =
8
27

fαβλS sin(St + ϕαβ) (41)

with ϕαβ = 2π/3, 4π/3, 0, 0, 4π/3, 2π/3 and fαβ = 1, 1,
1, 5, 5, 5 for {αβ} = {12, 13, 14, 23, 24, and 34}, respec-
tively. Linearizing in the amplitude of the fluctuations
around the equilibrium value, we get (1 6= α 6= β 6= 1)

Bαβ +
1
3

= A(S) sin
(
St + ϕαβ + ϕ(S)

)
(42)

The shear dependent amplitude and phase shift are

A(S) =
2
3
λτS

(
1 +

(3τS

8
)2

)−1/2

(43)

ϕ(S) = − tan−1
(3τS

8
)

(44)

The angles B12, B13, and B14 oscillate around their equi-
librium value −1/3 with a smaller amplitude ∼ λ(τS)2.

Thus we find that an applied shear leads to an os-
cillatory distortion of the tetrahedratic structure with a
maximum amplitude ∼ Sλτ . At any given time, the de-
formations are such that no symmetry of the tetrahedron
is left and a distorted C1-symmetric structure is locally
present. However, when averaged over an oscillation pe-
riod, tetrahedratic symmetry is conserved (see Fig. 6).

A direct way to observe this deformation experimen-
tally is the following. In rotational shear, non-deformable
tetrahedratics stay optically isotropic as the nα, α =
2, 3, 4, rotate rigidly around n1 conserving the overall sym-
metry. Eq. 42 shows that the situation is different for

Fig. 6. Eq. (42) scaled by λ vs. St for {αβ} = {23} and
Sτ = 0, . . . 5.

deformable tetrahedratics. Due to the oscillating values
of the angles between the nα (see e.g. Fig. 6), the system
has a time dependent biaxiality and therefore an oscillat-
ing birefringence, ∆n:

∆n = (∆n)0 sin(2ωt + φ). (45)

The prediction is that if a shear with corresponding fre-
quency ω is applied, one should be able to detect the sys-
tem response blinking at frequency 2ω. Measuring the
amplitude and the phase shift of the response as a func-
tion of shear could lead to direct determinations of λ and
τ (cf Fig. 6).

In an extensional flow the tetrahedra do not rotate.
There is, however, a deformation due to the term propor-
tional to the λ tensor, which is balanced by the dissipa-
tive contribution associated with the elastic forces. We
now study the effect of steady extensional flow on the an-
gles Bαβ in a linear approximation. Linearizing (31) in
∆αβ = Bαβ −Bαβ

0 and in the flow field one finds (α 6= β)

∆̇αβ + 2λ
(
nα

i nβ
j + nα

j nβ
i + 1

3 (nα
i nα

j + nβ
i nβ

j )
)
Aij

+
16
9τ

(
∆αβ− 1

4

∑
γ 6=β
γ 6=α

(∆αγ + ∆βγ)
)

= 0 (46)

where the nα
i are to be taken at their equilibrium val-

ues. To obtain a consistent approximation in eq.(46), only
terms up to linear order in δnα

i are included in ∆αβ . We
also note that the ∆αβ are not linearly independent, as∑

α,β 6=α ∆αβ = 0. The structure of (46) preserves that
relation for all times.

The stationary deformations of the relative angles be-
tween the unit tetrahedral vectors can be obtained from
(46) by putting ∆̇αβ = 0. For definiteness, we assume a
flow of the form

v = S (y, x, 0) (47)
which is irrotational and in the x−y-plane. The symmet-
ric velocity gradient Aij then has only two non-vanishing
components Axy = Ayx = S while Aij ≡ 0 otherwise.

Using (47,33-36) and the condition
∑

α,β 6=α ∆αβ = 0
the five independent equations (46) give with τ = γ1/B1

∆12 = ∆13 = ∆14 = ∆23 = 0 (48)

∆24 = −∆34 =
2
√

3
3

Sλτ (49)
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demonstrating the stationary non-equilibrium deforma-
tion of the tetrahedra by extensional flow.

The interpretation of the deformations (49) is the fol-
lowing (See Fig. 7). The unit vectors n1 and n4 stay at

Fig. 7. The black arrows depict the stationary deformed state
for deformable tetrahedratics in elongational shear (viewed
against n1). n2 and n3 rigidly rotate δφ ≈ Sλτ while n1

and n4 remain fixed. Small grey arrows show the orientation
of n2 and n3 at equilibrium. Here, δφ = 0.25.

their equilibrium directions (thus conserving the relative
angle B14), while n2 and n3 rotate as a rigid entity (con-
serving the relative angle B23) about n1 (thus conserving
the relative angles B12 and B13) by an angle δφ ≈ Sλτ .
These skewed tetrahedra have lost all equilibrium tetrahe-
dral symmetries, such as the 2- and 3-fold symmetry axes
and the mirror planes, thus giving rise to C1 (i.e. no)
symmetry.

4 Does a deformed tetrahedratic phase
mediate the isotropic - B7 transition?

In the bulk of this paper we have discussed the influence
of an external electric field and of an external flow on a
deformable tetrahedratic phase. We found that both ex-
ternal forces lead to a reduction in symmetry: in the case
of an electric field to a static C3v-symmetry and for simple
shear, to a time dependent C1-symmetric local structure.

As we have investigated recently the flow properties of
a tetrahedratic phase [1] and the symmetry and macro-
scopic properties of columnar phases with a macroscopic
polarization [20], we combine these results with the ones
presented here and compare them with experimental ob-
servations in the vicinity of the isotropic - B7 phase tran-
sition observed in compounds made of banana-shaped

molecules [12, 13]. This leads us to suggest the following
scenario.

As temperature is lowered above an isotropic - B7
phase transition, one generates flow if an electric field
or temperature variations are applied, provided the op-
tically isotropic phase observed is tetrahedratic. For a
deformable tetrahedratic phase the symmetry is then re-
duced drastically to C1 in the presence of flow. Given the
fact that the heat of transition observed for this phase
transition is rather large [12, 13, 15] and comparable in
magnitude to that observed for isotropic - pyramidic tran-
sitions [25], this leads us to suggest that the B7 phase
could have locally a columnar structure with a macro-
scopic polarization [18]. This suggestion is further sup-
ported by the observation that in B7 freely suspended
films decompose into strands [13, 19] . We also note that
the same local C1 symmetry (or rather the absence of
any symmetry) will facilitate locally the transition from a
deformed tetrahedratic structure to a columnar structure
with an ‘oblique’ polarization.

To experimentally test the scenario outlined above a
few crucial experiments are important. First, the ques-
tion whether the B7 phase has a macroscopic polarization
must be addressed. At this time there is no clear-cut ex-
perimental result in the literature concerning this point.
Second, it would be important to study in detail the physi-
cal properties of the optically isotropic phase above the B7
phase. Key question: is its symmetry reduced drastically
when external forces are applied? Third, we predict in this
scenario a phase transition from a classical isotropic fluid
to a tetrahedratic or a deformable tetrahedratic phase. In
this general respect, it is important to measure the specific
heat of all the banana phases for anomalous temperature
dependence recently predicted for tetrahedral spin ice [26]
and first observed for water-ice [27], as it appears to be
a physical signature of condensed phases with frustrated
tetrahedral order.
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