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Introduction

Plateau for perpendicular stretch

The stress-strain data points of Urayama et al.1 in the representation
of the nominal stress as a function of the true strain.

1K. Urayama, R. Mashita, I. Kobayashi, and T. Takigawa, Macromol. 40 (2007) 7665.
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Introduction

Monodomain side-chain nematic elastomers

experimental results for the usual twice cross-linked elastomers:
3 regimes

1 (ordinary) linear anisotropic elasticity
director is clamped by the network and does not reorient
soft elasticity? Goldstone mode?

2 nonlinear stress-strain ’plateau’ for perpendicular stretching
accompanied by a complete director reorientation
where does it come from and what happens at the beginning/end?

3 above a second threshold (ordinary) nonlinear anisotropic
elasticity without director reorientation

Pleiner (MPI-P Mainz) Nematic Elastomer Elasticity Lisboa, September 7, 2011 4 / 35



Introduction Linear Elasticity

No soft elasticity (linear)

Warner & Terentjev2: "soft elasticity"↔ c̃44 = 0 (CR
5 = 0)

corresponds to a Goldstone mode due to spontaneous shape
change3

however, experimentally no vanishing linear shear modulus
semisoft (almost soft): small imperfections prevent c̃44 from being
exactly zero,
instead c̃44 = µα r

r−1 small,4 since the semisoftness parameter
α ≈ 0.1 is small

2M. Warner and E. Terentjev, Liquid Crystal Elastomers, Oxford University Press
2003, Chap. 7.1 - 7.3

3L. Golubovic and T.C. Lubensky, Phys. Rev. Lett. 63 (1989) 1082.
4Warner and Terentjev, cit. op., Chap. 7.4 and 7.5
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Introduction Linear Elasticity

No semisoft elasticity (linear)

however, experimentally the linear shear modulus is of the same
order as in the isotropic phase5

G ′ ∼ c̃44 as a function of
temperature

small dip explained by P.G. de
Gennes in Liquid Crystals of One-
and Two-Dimensional Order, eds. W.
Helfrich and G. Heppke, Springer,
New York, p. 231 (1980). -20 0 20 40 60 80 100 120
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ordinary, linear Hookean elasticity of uniaxial anisotropic type
5P. Martinoty, P. Stein, H. Finkelmann, H. P., and H.R. Brand, Eur. Phys. J. E, 14

(2004) 311.
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Introduction Nonlinear Elasticity

Semisoftness (nonlinear)

the general scenario of semisoftness – ideal softness plus some
disturbance – has been used to describe the elastic plateau (in
the nonlinear domain)6

as a result, the effective, or apparent linear elastic coefficient
vanishes at the beginning and end of the plateau
at the same points, director orientational fluctuations diverge
general symmetry arguments are used to show that ’ideal softness
plus some disturbance’ always leads to this soft mode behavior7

does this mean ’semisoftness’ is the reason for the plateau and
the soft mode behavior?

6J. S. Biggins, E. M. Terentjev, and M. Warner, Phys. Rev. E 78 (2008) 041704
7F. F. Ye and T. C. Lubensky, J. Phys. Chem. B 113 (2009) 3853.
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Introduction Nonlinear Elasticity

Different viewpoint

first, one should differentiate between the linear semisoftness
(small linear elastic coefficient) and the nonlinear plateau behavior
the latter is a genuine nonlinear feature independent of the linear
behavior
it is unfortunate to give two separate phenomena the same name
the linear (semi-)softness describes an (almost) Goldstone mode
related to a broken symmetry [not present in nematic LC
elastomers], while the nonlinear semisoftness gives a soft mode,
a phase transition-type phenomena based on the special free
energy
Goldstone mode and soft mode are completely independent
objects (cf. smectic C liquid crystals)
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Introduction Nonlinear Elasticity

Different viewpoint (cont.)

our viewpoint:
the soft mode behavior at the beginning and end of the elastic
plateau can be obtained without the assumption of the existence
of semisoftness
it can be obtained by, and is based on the coupling between
elasticity and director reorientation via ’relative rotations’
there is no small parameter involved (no linear semisoftness)

our description (de Gennes approach):
nematic LC elastomers are solid, elastic bodies with relative
rotations between director and network
all ingredients are highly nonlinear
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Introduction Nonlinear Elasticity

Experiments

there are basically two experiments:
1 light scattering experiments probing the nematic director

fluctuations

(almost) critical
slowing down

A. Petelin and M. Čopič, Phys. Rev. Lett. 103, 077801 (2009)
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Introduction Nonlinear Elasticity

Experiments (cont.)

2 direct rheological measurements of the effective shear modulus

no sign of a
vanishing effective
shear elastic
coefficient

D. Rogez and P. Martinoty, Eur. Phys. J. E, 34, 69 (2011)

conflicting outcome !!!
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Elasticity Including Nonlinear Relative Rotations Energetics

Elastic and orientational degrees of freedom

This description of the nematic elastomer elasticity has been done
together with A. Menzel8,9

Network: daα = Rαj Ξjk dr k

Eulerian strain tensor
εik = 1

2 [δik − ΞijΞik ]

= 1
2 [δik − (∂aα/∂rk )(∂aα/∂ri)]

= 1
2 [∂ui/∂rk + ∂uk/∂ri − (∂uj/∂ri)(∂uj/∂rk )]

Nematic: Director
n̂ = S · n̂0 and textures (∇jni )

8A. Menzel, H.P., H.R. Brand, J. Appl. Phys. 105, 013503 (2009)
and Eur. Phys. J. E 30, 371 (2009)

9address starting October 1, 2011: Inst. Theor. Phys., Univ. Düsseldorf, Germany
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Elasticity Including Nonlinear Relative Rotations Energetics

Relative rotations

Coupling:

rotations of the anisotropic network n̂nw = R−1 · n̂nw
0

(there is no closed expression for R−1 in terms of ∂uj/∂ri )

rotations of the nematic director n̂ = S · n̂0

relative rotations (projections)10

Ω̃ ≡ n̂ − γ n̂nw

Ω̃nw ≡ −n̂nw + γ n̂

with γ ≡ n̂ · n̂nw resulting in Ω̃ · n̂nw = 0 = Ω̃nw · n̂

10A. M. Menzel, H. Pleiner and H. R. Brand, J. Chem. Phys. 126 (2007) 234901.
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Elasticity Including Nonlinear Relative Rotations Energetics

Free energy
Power series expansion in εij , Ω̃i , Ω̃nw

j , and ni and all its couplings up to third
order (reduces to de Gennes’ expression in the linear theory11)
here: simplified model (analytical treatment) - elastic nonlinearities neglected

F = 1
2 c44 εijεij + . . .

+ 1
2 D1 Ω̃i Ω̃i + D(2)

1 (Ω̃i Ω̃i )
2 + D(3)

1 (Ω̃i Ω̃i )
3

+ D2 niεij Ω̃j + Dnw
2 nnw

i εij Ω̃
nw
j

+ D(2)
2 niεijεjk Ω̃k + Dnw,(2)

2 nnw
i εijεjk Ω̃nw

k

− 1
2εa (niEi )

2

with the nonlinear rotation matrix to cubic order

Rij =δij + εij + 3
2εikεkj + 5

2εikεklεlj − (∂iuj )− εik (∂k uj )− 3
2εikεkl (∂luj ) + . . .

11P.G. de Gennes, in Liquid Crystals of One- and Two-Dimensional Order, eds. W.
Helfrich and G. Heppke, Springer, New York, p. 231 (1980).
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Plateau for perpendicular stretch

The stress-strain data points of Urayama et al. and the theoretical line
obtained by the present model in the representation of the nominal
stress as a function of the true strain.
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Director reorientation

A

ϑ [◦]

Theoretical curves of the director reorientation during stretch (A) for
different stretch directions. For ϑ0 = 0◦ (perpendicular stretch) a
singular threshold behavior is found.
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Forward bifurcation

the curve ϑ(A) as before,
but with the area around
Ac enlarged

In the vicinity of Ac an amplitude equation can be derived analytically for the
case ϑ0 = 0 (perpendicular stretch)

0 = ϑ
{

a(Ac − A) + gϑ2} +O(ϑ5).

−→ forward bifurcation with exchange of stability between
ϑ = 0 for A < Ac and ϑ ∼

√
A− Ac for A > Ac

for ϑ0 > 0 (oblique stretch) an imperfect bifurcation is obtained
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Linear Response under Pre-Strain Effective Linear Shear Modulus

Shear response

For a given pre-strain A – that results in a given compression B, shear
S, and tilt angle ϑ,
a small shear δS is added and the effective shear modulus is
calculated

Homeotropic geometry with a small shear δS added
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Linear Response under Pre-Strain Effective Linear Shear Modulus

Effective linear shear modulus
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Effective shear modulus
∂2F/∂(δS)2|δS=0 as a
function of the
pre-stretching amplitude A

The system is pre-stretched in a direction perfectly perpendicular to the
initial director orientation n̂0. The zeroes of the effective shear modulus
at the beginning and end of the plateau denote diverging fluctuations.
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Linear Response under Pre-Strain Effective Linear Shear Modulus

Electric field response

For a given prestrain A – that results in a given compression B, shear
S, and tilt angle ϑ,
an external field E is applied (‖ and ⊥ to n̂0) and the reorientability of
the director is calculated

Homeotropic geometry with an external field applied
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Linear Response under Pre-Strain Director Reorientability

Director reorientability
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function of the pre-stretching
amplitude A, where the divergencies
take place at the beginning and end
of the plateau (E ⊥ n̂0)
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Same theoretical data fitted in the
region ϑ & 0 by a curve ∝ (A− Ac)x

with x ≈ −1/2, thus
clearly indicating a soft mode
behavior in mean field description
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Linear Response under Pre-Strain Director Reorientability

Oblique pre-strain
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Effective shear modulus ∂2F/∂(δS)2|δS=0 (left) and reorientability
∂2ϑ/∂E2|E=0 (right) as a function of the pre-stretching amplitude A.
Here, the initial director orientation n̂0 slightly deviates from the
perfectly perpendicular orientation by an angle of 0.01 rad (0.57◦).

imperfect bifurcation: no divergent fluctuations
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Interpretation

Our interpretation

Stretching a mono-domain nematic elastomer perpendicularly,
the resulting elastic plateau at finite strains

comes with a vanishing effective linear modulus and a divergent
director reorientability at its beginning and end (soft mode or
forward bifurcation similar to a second order phase transition)

the critical behavior is related to the kink in the director
reorientation

this bifurcation-type behavior is a genuine manifestation of the role
of nonlinear relative rotations

it requires two independent preferred directions and discriminates
nematic LSCEs from simple anisotropic solids
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Interpretation

Our interpretation (contin.)

although this soft mode behavior is the same as found by the
(nonlinear) semisoft approach, our description does not make use
of any linear ideal soft-elastic behavior Nambu-Goldstone mode
("soft-elasticity"), nor of any closeness to an ideal soft-elastic
behavior ("semisoft elasticity")
we find this soft-mode scenario also for cases, where the plateau
starts at very large applied strains

Soft mode behavior for
large pre-strain Ac ≈ 0.56
(or λ ≈ 2.3)
– in the semisoftness
picture this corresponds to
α ≈ 1.3
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Interpretation

Theory vs. experiment

both types of theory show the soft mode behavior
fitting to the light scattering measurements, but contradicting the
rheological shear elastic measurements
our description cannot exclude the possibility of plateaus without a
soft mode behavior, since we cannot explore the complete
parameter space
– however, the soft mode behavior seems to be related to the kink
behavior of the director reorientation
the semisoft description makes a strong statement that there must
always be a soft mode due to symmetry arguments
therefore the rheological shear elastic measurements must be
wrong
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Symmetry Argument Failure Example

Lehmann effect

Lehmann: director rotations when a temperature gradient is applied

n × ∂

∂t
n = ψ′∇⊥Θ

works also for concentration gradients and electric fields
there are inverse effects12

these effects are dissipative
(although there are contributions originating from the statics)
these effects are chiral: ψ′ = q ψ (de Gennes’ symmetry
argument), where q is the helical pitch

12D. Svenšek, H. Pleiner, and H.R. Brand, Phys. Rev. E 78, 021703 (2008)
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Symmetry Argument Failure Example

Chirality at the compensation point

what happens at the compensation point?

some mixtures of chiral molecules and at least one pure
compound show a compensation point (no helix or q = 0)
therefore, Lehmann has to vanish due to symmetry arguments,13

however, experiments show non-vanishing Lehmann effects14,15

13P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford)
1995.

14P. Oswald and A. Dequidt, Europhys. Lett., 83 (2008) 16005; 80 (2007) 26001;
Phys. Rev. Lett. 100 (2008) 217802.

15N. Éber and I. Jánossy, Mol. Cryst. Liq. Cryst., 72 (1982) 233; 102 (1984) 311;
and Mol. Cryst. Liq. Cryst. Lett., 5 (1988) 81.
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Symmetry Argument Failure Example

Lehmann effect experiments

experiments show a non-vanishing Lehmann coefficient

experiment wrong,
since it violates a
symmetry argument?

answer: not necessarily, since the symmetry argument is not
applicable
- it starts from a description that is not general enough!16

16H. Pleiner and H.R. Brand, Europhys. Lett. 89, 26003 (2010)
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Symmetry Argument Failure Generalization of the Free Energy

Free energy

(achiral) nematics: fnema = 1
2K1S2 + 1

2K3B2 + 1
2K2T 2 with

splay S = divn - scalar
bend B = n × curln - vector
twist T = n · curln - pseudoscalar

equilibrium state: S = B = T = 0, homogeneous n = const ., f eq
nema = 0

(chiral) cholesterics: fchol = fnema + K ′2T
a linear twist term ∼T is allowed17,18

K ′2 has to be a pseudoscalar

17K ′2 is called k2 in F.C. Frank, Discuss. Faraday Soc., 25 (1958) 19.
18in addition, bilinear terms ∼Tδσ, ∼Tδρ, and ∼Tδc are possible
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Symmetry Argument Failure Generalization of the Free Energy

Helix

fchol = 1
2K1S2 + 1

2K3B2 + 1
2K2T 2 + K ′2T

is minimized by a helix with the (pseudoscalar) coefficient q

n = ex cos qz + ey sin qz

(implying S = B = 0 and T = −q), if

q → qeq = K ′2/K2

leading to the maximum energy reduction

f eq = −1
2(K ′2)2/K2
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Symmetry Argument Failure Generalization of the Free Energy

Symmetry

since K ′2 is a pseudoscalar, it has to vanish in an achiral system,

−→ K ′2 ∼ q

A) de Gennes’ choice: K ′
2 = qK2, resulting in qeq = q

(only one pseudoscalar quantity)

fchol = 1
2 K2(n · curln + q)2 + . . .

B) generally: K ′
2 = qL2, resulting in qeq = q L2

K2
(qeq and q are not identical)

fchol = 1
2 K2(n · curln + qeq)2 + . . .

Pleiner (MPI-P Mainz) Nematic Elastomer Elasticity Lisboa, September 7, 2011 31 / 35



Symmetry Argument Failure Generalization of the Free Energy

Symmetry

since K ′2 is a pseudoscalar, it has to vanish in an achiral system,

−→ K ′2 ∼ q

A) de Gennes’ choice: K ′
2 = qK2, resulting in qeq = q

(only one pseudoscalar quantity)

fchol = 1
2 K2(n · curln + q)2 + . . .

B) generally: K ′
2 = qL2, resulting in qeq = q L2

K2
(qeq and q are not identical)

fchol = 1
2 K2(n · curln + qeq)2 + . . .

Pleiner (MPI-P Mainz) Nematic Elastomer Elasticity Lisboa, September 7, 2011 31 / 35



Symmetry Argument Failure Generalization of the Free Energy

Resolution

A) if the vanishing helix at the compensation point means q = 0
−→ there is no Lehmann effect, since ψ′ = q ψ = 0

B) if the vanishing helix at the compensation point means qeq = 0,
this can be obtained by L2 = 0, with q still being finite
−→ there is a Lehmann effect possible and there is no
contradiction between experiment and theory19

starting from a more general description resolves the
contradiction between experiment and symmetry argument

19A non-vanishing q at the compensation point means the system is still chiral, i.e.
can show optical rotatory power.
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Final Remarks

Resolution in the LCE case?

Is ideal softness, the starting point of the (nonlinear) semisoft
description, general enough?
if not, the symmetry arguments were not applicable and there
were no contradiction with the rheological shear elastic
measurements
(semi-)softness approach assumes Gaussian properties of the
network - not present for the twice crosslinked elastomers (cf. talk
by P. Martinoty)
(semi-)softness approach assumes affine deformations - not
present for realistic polymer networks (cf. next page)
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Final Remarks

No affine deformations
no affine deformations under stretch
(simulations by R. Everaers and K. Kremer)

this might also be the reason for intrinsic inhomogeneities, even in
the single domain samples
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Final Remarks

Announcement

Welcome to the
24th International Liquid Crystal Conference

ILCC2012
August 19 - 24, Mainz, Germany

http://www.ilcc2012.de
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