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Abstract

The question which macroscopic physical quantities are suitable to describe
the optically isotropic sponge (L3) phase, which occurs in many lyotropic sys-
tems, is still a matter of debate. In this paper we analyze recent experimental
results, which probed the response of sponge phases to jumps in applied pres-
sure, temperature and electric field. Data obtained from dynamic light scat-
tering are also incorporated into the discussion. As a result it emerges that the
experimental data are compatible with the simultaneous occurrence of tran-
sient positional and transient orientational order. Additional experiments to
further test the results of our analysis are suggested.

PACS: 61.30.St, 82.70.Uv, 05.70.Ln,

1 Introduction

The sponge [1] or L3 [2] phase is observed in many lyotropic systems [3–10], typically
between a lamellar Lα phase and an isotropic liquid phase. The sponge phase is opti-
cally isotropic, but shows strong linear flow birefringence [4]. Freeze fracture electron
microscopy has provided quite detailed structural informations [11]: it is a bicontinuous
phase for which the two continuous subphases are separated by bilayers. Locally iso-
morphic to a Lα phase, it can be transformed into the latter one by applying external
shear [12,13].

The question how one should describe the differences between an isotropic liquid phase
and the L3 phase attracted considerable attention. For the most part scalar order pa-
rameters to describe the static properties of the sponge phase were considered [1,14–16].
In 1991 [17] we analyzed the question of the order in the framework of a macroscopic
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description. Based on the observation of strong, linear flow birefringence [4] in the op-
tically isotropic phase, we investigated which types of order would be compatible with
these observations. It turned out that permanent orientational order as well as permanent
positional order could be ruled out [17]. In addition it was shown that a scalar order pa-
rameter was also not a candidate to explain the observed flow birefringence. We pointed
out that the macroscopic candidates remaining were transient positional and transient
orientational order and we suggested concrete experiments how to test the predictions
made [17].

Remarkably the number of dynamic experimental studies of the macroscopic properties
of the sponge phase has remained rather small. Several groups reported their results
of electric birefringence measurements on a number of systems varying the surfactant
volume fraction and the chain length of the alkyl-chain [18–20]. They all found that
their experimental results could be described by a single relaxation time. There was also
an investigation employing T jump measurements reporting three time constants [21], a
rather surprising result.

Last year Strey’s group presented the results of extensive dynamic measurements using
a number of different techniques [22]. It is the goal of this manuscript to analyze the
experimental results of dynamic measurements on the sponge phase in the framework of
macroscopic dynamics and to compare them critically with the expectations from our
early model [17].

2 Interpretation of recent experimental results on

the sponge phase

In [22] several techniques have been used to investigate the macroscopic dynamic proper-
ties of the sponge phase in the ternary H2O − C10E4 − n − decanol (C10E4) system.

A step change in temperature was followed up upon by light scattering. As a result
the authors [22] found a relaxation with one relaxation time, τT , which did not depend
on the wave vector q with q = |q|, that is τT ∼ q0. The relaxation time τT was found to
be in the range 1ms...1s.

The second type of experiments described in ref. [22] was a jump in pressure and the
associated dynamic detection method was the measurement of electric conductivity as a
function of time. Again it was found that there was only one relaxation time τP . As
already for the case of the relaxation following a temperature jump, the relaxation time
τP following a pressure jump was found to be in the range 1ms...1s. And - as noted by the
authors of ref. [22] - the two time scales were the same. From this observation it follows
that the relaxation was independent of the wave vector and thus that the relaxation time
τP following a pressure jump behaves as τP ∼ q0. It seems also important to mention in
this connection that the temperature dependence as well as the dependence on surfactant
volume fraction Φ were the same for the relaxation times τT and τP , where the temperature
dependence showed an Arrhenian behavior. In addition, the Φ-dependence of τP and τT

was the strongest among all the processes studied.
The third technique used [22] was a jump in the electric field E followed along by

detection of the electric current and the electric birefringence. The time scales for the
associated relaxation time τE were in the range τE ∼ 2...200µs and thus much shorter
than the relaxation times measured after a p−jump and a T−jump. The birefringence
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signal measured was ∼ E2 as expected.
The last technique used was dynamic light scattering. It was found [22] that the time

scale associated with dynamic light scattering, τDLS, depends quadratically on the wave
vector: τ−1

DLS ∼ q2. The Φ-dependence was also found to be much weaker that that for
the relaxation times measured using the other three techniques.

To sum up, in the most extensive experimental investigations on the dynamic prop-
erties of the sponge phase reported so far [22], two types of relaxation and one diffusive
mode were detected using four techniques (jumps in pressure, temperature and electric
field as well as dynamic light scattering).

3 Transient positional and orientational order: an

analysis of recent experimental results on the sponge

phase

Now we are prepared to analyze the description of the experimental results given in the
last section. To do this we use the approach of macroscopic dynamics, which we have used
before to find out with which type of order early experiments on flow birefringence were
compatible with [17]. At that time it turned out that only transient orientational order
and transient positional order were compatible with the flow birefringence data, while
permanent orientational order and permanent positional order as well as scalar variables
were ruled out as candidates to characterize the order in the sponge phase [17].

It is straightforward to interpret the results of the dynamic light scattering data macro-
scopically. The observed diffusive mode corresponds to a dispersion relation of the form

ω = iDq2 (1)

which is characteristic of a pure diffusion process. Such processes are associated with those
hydrodynamic variables that do not lead to propagating modes, such as sound waves,
spin waves in antiferromagnets, or transverse acoustic phonons in solids. Examples for
purely diffusive processes include heat diffusion and vorticity diffusion in simple fluids
and concentration diffusion in mixtures [23–25]. Neglecting cross coupling terms to other
variables such diffusive modes arise from a Fourier transform of the linearized conservation
law. For a concentration c the latter takes the form

ċ + ∇ij
c
i = 0 (2)

with jc
i , the concentration current. Assuming a linear relation between the concentration

current jc
i and the thermodynamic force,

jc
i = −Dc∇iµ

c (3)

where µc is the chemical potential associated with the concentration c. Inserting eq.(3)
into eq.(2), a Fourier transform of the resulting equation leads immediately to an expres-
sion of the form (1) with D = γDc, where γ is the static susceptibility ∂µc/∂c.

Next we analyze the T−jump and p−jump experiments in the framework of a macro-
scopic description. We take the strain tensor εij to characterize the transient positional
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order [17] - a concept well known for polymer solutions and melts [26] - and the trace-
less symmetric tensor Qij [27, 28] to describe transient orientational order [17]. For the
dynamic equations for those quantities we have

∂

∂t
Qij + Yij = −ξ1Pij (4)

∂

∂t
εij + Xij = −ξ2Φij (5)

where the relaxational character of Qij and εij is obvious due to the source terms on
the right hand side, which contains two dissipative transport parameters ξ1,2. In eqs.(4)
and (5) we have neglected the dissipative crosscouplings (ξ3Φij and ξ3Pij in (4) and (5),
respectively), which are generally assumed to be negligible. The conjugate quantities
Pij and Φij will be discussed below. Yij and Xij are the quasi-currents associated with
transient orientational order and transient positional order, respectively. They contain
mainly crosscouplings to flow, which we will not consider in the following.

To further elucidate the macroscopic consequences of changes in temperature T and
pressure p or, equivalently, in density, ρ and entropy density σ, we write down the free
energy density expression including Qij and εij

f = f0 +
1

2
αQijQij +

1

2
Cijklεijεkl + (χρδρ + χσδσ)εii

+ ζσ(∇iσ)(∇jQij) + ζρ(∇iρ)(∇jQij) (6)

where f0 contains all the terms familiar from the hydrodynamics of simple fluids [23–
25]. Eq.(6) is obtained by an expansion up to second order in Qij and εij including all
contributions allowed by symmetry; in writing down eq.(6) we have neglected a possible
static cross-coupling term UQijεij between (transient) rotational and positional order.

Inspecting eq.(6), one sees immediately that there is a qualitative difference in the way
the strain εij and the orientational order parameter Qij couple to variations of conserved
variables such as density and entropy density - and therefore also to temperature T and
pressure p. While there are spatially homogeneous coupling terms to transient positional
order, such terms do not exist for the orientational order parameter Qij to quadratic order
in the variables in the density of the free energy f , because Qij is traceless. The contri-
butions in the second line of eq.(6) describe coupling terms between spatial variations of
transient orientational order and spatial variations of the conserved variables. We also
note that an expression of the form of eq.(6) has - to our knowledge - not been presented
before for the sponge phase or related isotropic phases with transient orientational and/or
positional order.

As usual the thermodynamic forces are obtained from the free energy by partial dif-
ferentiation. We note that the the T−jump and p−jump experiments showed a purely
relaxational behavior, meaning that gradient terms are not important when describing
the experimental data.

Pij ≡ ∂f

∂Qij

= αQij (7)

Φij ≡ ∂f

∂εij

= Cijklεkl + (χρδρ + χσδσ) δij (8)
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where Cijkl is the elastic tensor (containing 2 elastic moduli, C‖ and C⊥), α describes the
stiffness of orientational order and χρ and χσ denote the coupling strength to density and
entropy density. In addition we have for temperature T and pressure p

δT ≡ ∂f

∂σ
=

T

CV

δσ +
1

ραs

δρ + χσεii (9)

δµ ≡ ∂f

∂ρ
=

1

ρ2κs

δρ +
1

ραs

δσ + χρεii (10)

where the additional static susceptibilities contained in (9) and (10) are the specific heat
(at constant density) CV , the isentropic compressibility κs and the adiabatic volume
expansion coefficient αs.

Inspecting eqs.(8-10) we see immediately that pressure and temperature variations
drive transient positional order giving rise to a transient network. After the jump, this
network decays with the relaxation time (5,8) τε ≡ 1/(ξ2C‖), which has to be identified
with the experimental times τP and τT .

Due to the static crosscoupling neglected above, also transient orientational order is
generated, but only to a small amount (∼ U2), giving rise to a second relaxation, which
was, however, not observed.

Next we turn to the discussion of the experimental result for the electric field. An
electric field couples to (transient) orientational and positional order via two contributions
to the free energy density

fE = ε1QijEiEj + ε2εijEiEj

which has to be added to (6). For the associated forces we then obtain

Pij ≡ ∂f

∂Qij

= ε1EiEj + αQij (11)

Φij ≡ ∂f

∂εij

= ε2EiEj + Cijklεkl (12)

Thus, an external electric field in principle creates orientational as well as positional order.
The latter effect, however, is usually not detectable and is therefore neglected here. The
observed single relaxation time τE after removing the field can then be identified with the
relaxation time of the orientational order, τQ ≡ 1/(ξ1α) according to eqs.(4,11).

For the associated change in the index of refraction for the case of electric birefringence
we find, along the lines of [27],

∆n =
1

2n̄

(
ε1

α
+

ε2

C‖

)
E2 (13)

the experimentally observed quadratic field dependence, where the coefficient n̄ contains
the average index of refraction. Again we expect the contribution from the transient
orientational order to be the important one (ε1/α À ε2/C‖).

Thus we arrive at the conclusion that with p−jump and T−jump experiments one
observes - as already discussed above - predominantly the effects of an induced transient
network, while with E−jump experiments one probes mainly transient orientational order.

We therefore conclude that in the dynamic experiments described in ref. [22] one has
observed both, transient positional as well as transient orientational order. This result
is thus compatible with the conclusions of our analysis based on the results of early flow
birefringence experiments published about a decade ago [17].
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4 Conclusions and perspective

In the last section we have analyzed recent experimental results on the sponge phase and
we have shown that they can be interpreted macroscopically in terms of the simultaneous
presence of transient orientational and transient positional order. Naturally the question
arises how this type of order for the sponge phase could be tested further experimentally.
One option has already been pointed out a while ago [17], namely to investigate transverse
sound waves, which would propagate above a certain frequency τ−1

Φ characteristic for the
transient nature of the positional order in the sponge phase in the presence of transient
positional order, ω >> τ−1

Φ , while it would still be overdamped in the low frequency regime
ω << τ−1

Φ . To detect this cross-over one could either use classical sound techniques or a
piezo-rheometer set-up, which has turned out to be very useful to investigate the small
amplitude response of various complex fluids under small shear strains including liquid
crystalline elastomers [29–32] and liquid crystalline [33] as well as ordinary polymers [34].
We also note, that the three relaxation times observed in T-jump experiments by Waton
and Porte [21] cannot be understood in the framework of the picture presented here. But
it has been noticed before [22] that there appear to be also experimental problems in
confirming this earlier result.

To further clarify and/or confirm the nature of the order parameter of the sponge
phase, it would be very useful to perform more detailed measurements as the phase
transitions from the sponge phase to the neighboring isotropic and lamellar phases are
approached. This would be most worthwhile for materials for which these two phase
transitions are only weakly first order so that one can detect significant changes in the
amount of order and thus get a better handle on the modeling of these two transitions.
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