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Abstract: Various electric field driven instabilities in smectic liquid crystal films
are discussed. Some of them resemble instabilities well-known from nematic liq-
uid crystals. These are, for instance, the orientational Frederiks transition and
electroconvection. However, the restriction of these two instabilities to two spatial
dimensions can only be studied in free-standing smectic films, because free stand-
ing nematic liquid crystals are unstable. In addition several instabilities, being
distinctive features of smectic liquid crystals are described. These are the undula-
tional instability of the smectic layer structure and film buckling. All these different
instability types are coupled in smectic C liquid crystals. For smectic C∗ liquid
crystals films, the polarization Frederiks transition and the subharmonic regime of
electroconvection are discussed. Electroconvection experiments with smectic C and
C∗ films are reported that show the surface charge dominated ’vortex mode’ and
convection of the Carr-Helfrich type, respectively.

1 Introduction

Investigations of instabilities in liquid crystals, especially in nematic liquid
crystals have become more and more a common subject of nonlinear science
[1, 2, 3, 4, 5]. For a few nematic substances not only qualitative understanding,
but also a quantitative agreement between theory and experiment of several
instabilities could be achieved during the recent decade. While in nematics
the hydrodynamic equations of motion are well established for a long time
and the required phenomenological parameters are known to some extent, the
situation for smectic liquid crystals is rather different.

Liquid crystals in general are an interesting class of systems to study
various aspects of pattern formation. They offer the opportunity to inves-
tigate for instance electrically (and magnetically) driven bifurcations, as is
well-known for nematic liquid crystals, also in various smectic phases under
different symmetry conditions. Additionally in smectic phases new types of
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instabilities occur as discussed below.
In the nematic, smectic A (SmA), smectic C (SmC), and smectic C∗

(SmC∗) liquid crystal phases there is an increasing molecular and macroscopic
order (fig. 1), which gives rise to additional internal degrees of freedom. In the
isotropic phase there is no preferred order of the ellipsoidal organic molecules.
In the nematic phase one has an orientational order of the molecules described
by a director n and its reorientation can be influenced by external fields. In
the smectic A phase (SmA) there is an additional positional order in one spa-
tial direction as indicated in fig. 1a). Layer deformations can be achieved by
external fields.

In the smectic C phase the molecules are in addition tilted with respect to
the smectic layers, cf. fig. 1a) and the projection of the director n onto the
smectic layer plane, the c director, again shows a nematic degree of freedom
in the plane of the smectic layers. Hence, the properties in the layer are
isomorphic to a two-dimensional nematic, if the layers are assumed to be
rigid. The azimuthal position of the tilt direction is not fixed.

In the chiral smectic C∗ phase there is an in-plane polarization P perpen-
dicular to the (conic helical) director field n . How the orientation of n and
P change gradually from layer to layer is indicated in fig. 1b) [1]. Accordingly
the polarization averages out in the bulk. When the formation of the helix
is suppressed by geometrical constraints or can be neglected (i.e. in very thin
films), it has similar transport properties as the SmC phase, e.g. an anisotropy
of the electric conductivity.
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Figure 1: Sketch of the molecular order in three different smectic liquid crystal
phases. The layered structure of the smectic A phase (SmA) and smectic C
phase (SmC) with the tilted order of molecules on the left and on the right
the smectic C∗ phase, where the tilt direction rotates gradually from layer to
layer, and where an in-plane polarization is rigidly coupled perpendicularly to
the director n.

One consequence of the orientational order in nematic liquid crystals are
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anisotropic material properties, such as anisotropic susceptibilities, orientation-
elastic moduli and viscosities. According to the anisotropic susceptibilities the
director can be switched in external fields. Most famous is the switching of
the orientational order in the common liquid crystal displays (see e.g. ref. [6]).
It has been observed first in experiments by Frederiks and Tsvetkov already
in 1934 [7]. In smectic liquid crystals the orientational order couples to the
layer structure which gives rise to additional instabilities such as the Helfrich-
Hurault instability (fig. 2), studied up to now in smectic A liquid crystals
[1, 8, 9] or general layer deformations [10, 11].

Instead of studying smectic materials in the bulk, freely suspended films
are a suitable alternative, which have been discovered about 20 years ago
[12, 13]. Like soap films, such smectic films with only a few nanometers
or micrometers in thickness can have lateral extensions of several centime-
ters. The smectic layers are perfectly stacked in the film plane. Figure 1a)
visualizes the geometry of freely suspended smectic A and C films. Such sta-
ble free standing films allow the design of experiments which are essentially
two–dimensional. In contrast, thin nematic or cholesteric films are usually
unstable.

Putting free standing smectic films in external fields the preferred orien-
tation can be changed [14], and according to the coupling of the mean orien-
tation of molecules to the orientation of the smectic layers, the smectic layers
are also deformed and they ultimately couple also to the shape of the film.
Therefore field induced buckling may arise in SmC as discussed in sec. 2.5. In
thin films the polarization in the SmC∗ gives rise to an additional coupling
and indeed a novel transition, the so-called polarization Frederiks transition,
has been predicted recently [15]. This is described in more detail in sec. 2.6.
These different field induced deformations in smectic liquid crystals are usu-
ally not independent from each other, but are coupled and give rise to hybrid
instabilities as discussed in sec. 2.4.

Electroconvection (EC) has an equally long history in nematic liquid crys-
tals. 30 years after the discovery of electric field effects in thin cells of nematic
liquid crystals [7] spatially periodic patterns have been observed by Williams
[16] and, at higher applied voltages, the so-called dynamic scattering mode by
Kapustin and Larionova [17]. Theoretical understanding of the basic mech-
anism of electroconvection has been achieved by Carr [18] and Helfrich [19].
The Helfrich theory was later extended by Dubois-Violette et al. [20] to finite
frequencies of the AC voltage and to two spatial dimensions in ref. [21]. A
number of three-dimensional phenomena have then been observed in experi-
ments as reviewed in refs. [2, 22]. The so-called oblique rolls observed as first
instability by Joets and Ribotta [23, 24] triggered an extension of previous
theoretical calculations to three dimensions [25, 26], at first linear and then
more and more into the nonlinear regime of electroconvection in nematic liq-
uid crystals. The further development in this field during the recent decade
has been described in several recent articles [27, 28, 29, 30, 31] and in this
volume [32].
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Research on electroconvection in smectic liquid crystals is less advanced.
The formation of a striped texture induced by electroconvection in smectic A
phase ([33, 34, 35] and references therein), in the smectic C phase [36, 37] and
in the smectic O phase [38] has been observed. Experiments with rotating
electric fields are reported in [39]. In contrast to nematics the possibility of
convection depends crucially on the orientation of the layers with respect to
the external field. Electric fields perpendicular to the smectic layers hardly
induce electroconvection because the layered structure strongly impedes flows
perpendicular to the layers. On the other hand electric fields parallel to
the smectic layers may induce convective motion essentially restricted to the
smectic layers, which enables studies on convection in ideally two-dimensional
systems. This has been shown recently for thin SmA films [40, 41], where the
convective motion in the thin film can be easily visualized by dust particles,
cf. sec. 4.2.

Thin films of smectic C liquid crystals are somewhat similar to two-
dimensional nematics (if the layers are fixed) and the convective motion can
be analyzed more precisely than in three dimensional nematic layers. Thin
films of smectic C∗ resemble two-dimensional nematics with an additional
polarization perpendicular to the director. For both systems there is a pre-
ferred direction in the plane of the film and one may expect that anisotropic
transport properties, typical for liquid crystals systems, play a crucial role for
electroconvection. Experimental and theoretical results on both systems are
described in secs. 3 and 4.3, 4.4.

2 Static Instabilities

In liquid crystals external electric and magnetic fields can induce various static
instabilities. In phases with nematic degrees of freedom (e.g. uniaxial nemat-
ics) there is an orientational transition of the director, the so-called Frederiks
transition [1, 7]. For layered systems (e.g. smectic A) the Helfrich–Hurault
effect is possible, where the smectic layers are undulated relatively to each
other. In (smectic) films the film can buckle as a whole (buckling instability).
In smectic C films all these possibilities are present simultaneously and the
instabilities never occur independently, but are always coupled. Nevertheless
we discuss them at first independently, and then look step by step how they
are coupled.

In this section we discuss static instabilities, which would mean, strictly
speaking, that no flow (or any other dissipative process) is induced and the
stability is governed by a free energy functional. Such purely static instabili-
ties are possible for very clean systems and geometries only, where charges do
not have to be considered. Thus, the instabilities discussed below are static
as an approximation only for dirty systems, insofar the flow and its effect
on other degrees of freedom are small and flow is not a relevant part of the
instability mechanism itself. The opposite case, where flow is a necessary part
of the mechanism, will be discussed in sec. 3.
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Figure 2: Sketch of the four instabilities discussed in this article: The ori-
entational transition (Frederiks transition), the buckling instability of smectic
layers, the undulation instability (Helfrich–Hurault) in section 2 and the elec-
trohydrodynamic instability (EC) in section 3.

2.1 Theoretical Formulation

In liquid crystals a few continuous symmetries are spontaneously broken and
the related hydrodynamic fields are introduced in the following. In the ne-
matic phase the rotational symmetry is spontaneously broken due to the or-
dering of the molecules. The preferred mean direction is described by the
director field n(r, t), with n2 = 1 and the constraint that n is equivalent to
−n in all equations.

The smectic layering is due to a small periodic modulation of the density
along one direction (the layer normal). This denotes a spontaneously broken
translational symmetry in one direction. Within the layers a smectic A phase
is isotropic and liquid. The layering is described by a scalar ’phase’ variable
φ(r, t), which can be thought of numbering all layers (it is integer in the
middle of each layer). The layer normal is then defined by [42]

k =
∇φ

|∇φ|
↔ k · δk = 0 . (1)

Generally the area φ(r, t) = const. can have any shape, although in the ther-
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Figure 3: Sketch of an experimental arrangement of a SmC film. The notation
is as introduced in the text.

modynamically stable case these are flat layers. Without restriction of gener-
ality one can choose

φ flat(r) = z , (2)

while deformations of this flat ground state are described by a displacement
vector u(r, t), which is the appropriate variable according to the broken trans-
lational symmetry,

φ = z − u · k . (3)

However, only displacements perpendicular to the layers are relevant, since
the layers themselves are fluid. Thus

k × u = 0 ↔ δk × u + k × δu = 0 . (4)

If the deformations of the flat layers are small (and we will assume that case in
the following), all expressions can be expanded into gradients of the relevant
variable u = u · êz and we have

∇φ = êz −∇u , (5)

|∇φ| − 1 =
√

1− 2∇zu+ (∇u)2 − 1 ≈ −∇zu+
1
2
(∇⊥ u)2 , (6)

where ∇⊥ = (∇x,∇y, 0) denotes gradients perpendicular to the (undistorted)
layer normal.

In the smectic C phase (SmC) the director is tilted with respect to the
layer normal

cos θ = k · n = const. ↔ k · δn− n · δk = 0. (7)

The (normalized) projection of n onto the layers is called the c director.
Thereby rotational symmetry within the layers is spontaneously broken and
SmC is biaxial. Thus SmC combines both, a smectic degree of freedom (u)
and one that is nematic-like [43],

n3 =
n× k

|n× k|
· δn , (8)
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and which describes rotations of the director about the layer normal (thus
conserving the tilt angle θ). In fig. 3 the geometry is illustrated. The external
electric field is applied perpendicular to both, the undistorted layer normal
and the director.

Static distortions of the SmC structure subject to an external field are
given by the free energy density [1, 44]

2ε̃ = −ε1 (E · n)2 − ε2 (E · k)2 − ε3 E2 − 2 ε4 (E · n)(E · k)

+B
(
∇zu−

1
2
(∇⊥u)2

)2

+ Tijkl (∇i∇ju)(∇l∇ku)

+Fij (∇in3)(∇jn3) + 2 Cijk(∇in3)(∇j∇ku) , (9)

where the first line describes the dielectric coupling of the field to both, the
layer normal and the director. The second line gives the elastic distortion
energy due to layer distortions, while the third one contains the orientational-
elastic energy due to director distortions and the static couplings between
director and layer distortions, respectively. The materials tensors Fij , Tijkl,
Cijk contain 4 (F11, F22, F33, F13), 6 (C1,...,C6), and 9 (T1,...,T9) coefficients,
respectively, according to the monoclinic symmetry of SmC [43].

The dynamics of such distortions is described by balance equations for the
director as well as for the layers. They are of the scalar form

d

dt
u+X =

∂

∂t
u+ v ·∇u+X = 0 , (10)

d

dt
n3 + Y =

∂

∂t
n3 + v ·∇n3 + Y = 0 , (11)

with v the velocity field. The quasi-currents X and Y contain the dynamic
couplings to the additional hydrodynamic degrees of freedom, like mass den-
sity, momentum density and energy density [43, 45, 46]. For static distortions
the explicit form of X and Y is not needed and we will discuss them in sec.
3 only.

2.2 Frederiks Transition

The most famous transition in liquid crystals is the Frederiks transition [1, 7],
which is an orientational transition of the director driven by an external field
via the anisotropies in the dielectric (and diamagnetic) susceptibilities. This
orientational transition is crucial for the functioning of the modern liquid
crystal displays [6].

In smectic C liquid crystals director rotations are described by n3. Ne-
glecting all (static and dynamic) cross-couplings to other variables the free
energy (9) has an extremum if(

F11
∂2

∂y2
+ F22

∂2

∂x2
+ F33

∂2

∂z2
+ 2F13

∂2

∂z ∂y
+ ε1Eo(t)2

)
n3 = 0 . (12)
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The Fij ’s are generalized Frank constants [44] and ε1 is one of the susceptibility
anisotropies. The symmetry of eq. (12), x → −x and (y, z) → (−y,−z),
reflects the reduced symmetry of the SmC phase. Stability of the ground
state (n3 = 0) is probed with respect to periodic distortions

n3 =
[
n3,c cos(kyπy) cos

(
zπ

dz

)
+ n3,s sin(kyπy) sin

(
zπ

dz

)]
cos(kxπx) . (13)

This simple ansatz does not fix n3 at the top and bottom of the film (z =
±dz/2); a z-dependence is assumed in order to describe the 3-dimensionality of
the system (layer undulations are taken into account more realistically below);
the y-direction is assumed to be infinite, so ky is continuous and has to be
determined by minimizing the threshold; since the electrodes are assumed to
be rigid boundaries for the director, the lowest possible value for kx is kx = 1
in dimensionless units. The threshold condition follows from inserting the
ansatz (13) into eq. (12) and reads [47]

E2
fred 1,2 =

(
F11k

2
y + F22k

2
x + F33

1
d2

z

± 2F13ky
1
dz

)
π2

ε1
. (14)

The critical wavelength is given by

50

100

150

200

-20 -10 0 10 20

Figure 4: Frederiks threshold in thin films with (Fii = 1, F13 = 0.75, kx = 1,
dz = 0.1) , cf. eq. (14) [47].

| kyc | =
| F13 |
F11

1
dz

(15)

In fig. 4 the threshold field strength is plotted against the wavelength ky. The
minimum at non-zero wavelength indicates that the variation of the director
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field depends on all three coordinates in contrast to nematics, where F13 is
zero and the director field varies only along the x-direction. Although the
simplified analytical treatment of this section cannot lead to quantitatively
correct results, the qualitative result of 3-dimensional patterns survives a more
complete treatment taking into account layer undulations, additionally.

2.3 Undulational Instability

We will now come to the opposite special case, where the director is kept
fixed but the layers can move. In this subsection we assume that the smectic
film stays flat on average, i.e. the layers undulate such that either the upper
and lower layer or the middle one is fixed. An overall buckling of the film is
considered in sec. 2.5.

An external field tends to reorient the layer normal according to the dielec-
tric anisotropy. Since the layers cannot rotate homogeneously, they undulate,
thus creating regions, where the layer normal is rotated. This happens if
the electric field is strong enough to overcome the elastic and bending-elastic
energy involved. Neglecting dynamic effects the state is determined by min-
imizing the free energy (9), while keeping only contributions involving the
layer distortion u

ε̄E2
o(t)

∂2u

∂x2
−B

∂2u

∂z2
+ 6T4

∂4u

∂x2∂z2
+ T3

∂4u

∂x4
+ T1

∂4u

∂z4
+ T2

∂4u

∂y4
+ 2T5

∂4u

∂y2 ∂x2

+12T7
∂4u

∂z ∂y ∂x2
+ 4T9

∂4u

∂z ∂y3
+ 2T6

∂4u

∂z2 ∂y2
+ 4T8

∂4u

∂z3 ∂y
= 0. (16)

with ε̄ = ε2 + 2 ε4 cosψ + ε1 cos2 ψ. For a simplified analytic discussion we
choose an ansatz for u
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Figure 5: Undulational threshold (18) for thin films dz = 0.1 with Ti = 1.
The undulation is periodic also in y-direction [47].

u =
[
us sin(kyπy) sin

(
z
π

dz

)
+ uc cos(kyπy) cos

(
z
π

dz

)]
cos(kxπx), (17)
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that allows 3-dimensional patterns, is compatible with the smectic C sym-
metry, and denotes no-slip conditions for the layers at the electrodes, but
cannot accommodate fixed boundary conditions for the first and last layers
(z = ±dz/2). For more realistic boundary conditions numerical methods are
necessary. This immediately leads to the threshold conditions

ε̄ d2
z k

2
xπ

−2E2
und 1,2 =Bπ−2 + T1 d

−2
z + T2 k

4
y d

2
z + 6T4 k

2
x + T3 k

4
x d

2
z (18)

+ 2T6 k
2
y + 2T5 k

2
y k

2
x d

2
z ± 4kydz(3T7 k

2
x + T8d

−2
z + T9 k

2
y)

for the two eigenvalues {us, uc}= {1,±1}. The true threshold is the minimum
of E2

und with respect to kx and ky (strictly speaking, kx = n + 1/2 with
n ≥ 1 is discrete). Analytically this leads to rather involved equations so we
present the graphical solution in fig. 5, where one can clearly see that the
lowest threshold value is obtained at a finite critical wave vector ky indicating
truly 3-dimensional patterns in contrast to the Helfrich-Hurault instability in
smectics A.

For thicker films, however, the critical ky decreases with the film thickness
and finally an almost 2-dimensional pattern is found (fig. 6). In that case the
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Figure 6: Undulational threshold (18) for thick films dz = 1. The wave vector
ky tends to zero, while kx remains finite, but small. (Ti = 1) [47].

threshold condition (18) can be simplified into

ε̄ d2
z k

2
xπ

−2E2
und 1,2 = Bπ−2 + T1 d

−2
z + 6T4 k

2
x + T3 k

4
x d

2
z (19)

Minimization of this expression with respect to kx leads to the critical value

k2
xc =

1
πd2

z

√
T1π2 +Bd2

z

T3
. (20)
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The film thickness dependence of the threshold field (fig. 7) is slightly different
from the E2 ∝ 1/dz behavior.
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Figure 7: Dependence of the undulational threshold on the (reciprocal) film
thickness for thick films. (Ti = 1; B = 105, ε1 = −0.072, ε2 = 1, ε4 = 0) [47].

2.4 Interaction between Instabilities

In the last two subsections we have discussed director and layer instabilities
separately by deliberately neglecting coupling terms. Here we will give an
example how the coupling terms can affect the instabilities. We could combine
the two types of ansatz (13) and (17) and look for combined layer and director
distortions. However, this is still too complicated for the analytical treatment,
since it leads to 4x4 matrix problem. Thus, we choose the even more simplified
mode ansatz

n3 = no cos(kxπx) cos(kyπy) cos(z
π

dz
) , (21)

u = uo sin(kxπx) cos(kyπy) cos(z
π

dz
) ,

which, however, is only sufficient, if we assume in addition

C1 = C4 = T7 = T8 = T9 = F13 = 0 . (22)

The conditions (22) mean that we have eliminated all contributions responsi-
ble for the 3-dimensionality of the resulting instability pattern. Indeed ky = 0
is found for the critical wave vector in y-direction. Of course, a more sophis-
ticated treatment would regain 3-dimensional structures.

The threshold condition is obtained by minimizing the free energy using
eq. (21) and can be written in the form det(Lij) = 0, where the elements of
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the 2x2 matrix are,

L11 = π2 [k2
yF11 + k2

xF22 + d−2
z F33]− ε1Eo(t)2, (23)

L12 = L21 = πkx[ε1 cosψEo(t)2 + ε4Eo(t)2

+π2k2
yC2 + π2d−2

z C3 + 2π2d−2
z C5 + k2

xπ
2C6],

L22 = π4 [k4
y T2 + 6 k2

xd
−2
z T4 + 2 k2

yd
−2
z T6 + k4

x T3 + d−4
z T1

+2 k2
xk

2
y T5] + π2 [d−2

z B − ε̄ k2
xEo(t)2].

The coupling of the layer and director instabilities is provided by the (remain-
ing) coupling coefficients Ci as well as by the dielectric anisotropy ε1,4. We
will not write down the analytical threshold condition, but give the graphical
representation of the neutral curve for different film thicknesses.

0

50

Figure 8: Neutral curves of the combined layer and director instabilities for
different film thicknesses (choosing 0.9, 3, 1 for the non-zero Ci, Fii, and Ti

parameters, respectively) [47].

In both cases two distinct instabilities are visible, the Frederiks-like one at
zero wave vector and the undulation-like one at finite kx. However, the unsta-
ble mode always contains both, layer and director distortions. Nevertheless
the qualitative nature (the basic mechanism) of the instabilities is still pre-
served. The reason for this “weak” coupling is the large difference of critical
wave vectors of the underlying decoupled instabilities. Note that the mini-
mum of the threshold switches from one instability to the other by changing
the film thickness.

In order to get a more realistic treatment one has to take into account,
firstly, all variables, e.g. the electrical potential φel, defined by E = E0 −
∇φel. Secondly, the full dynamics has to be considered and finally more
spatial modes (which obey realistic boundary conditions) have to be included
in order to get a better characterization of the patterns. In the case of external
AC fields (with frequency ω) also temporal modes are needed. Then only a
numerical treatment is possible. The basic procedure is described in the EC
section below.
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For the 3-dimensional smectic C case and for a special set of parameters,
the following neutral stability curves are obtained (fig. 9). For large Frank-like

1 2 3 4 5

20

40

60

crit

F

F

O

K
D

Figure 9: Numerical neutral curves for different values of the Frank-like con-
stants (Fii = 1, 5) and positive dielectric anisotropy (ε1 = +0.0724, dz = 1,
ω = 100, free boundary conditions) [47].

constants there are two minima (instabilities), which again can be character-
ized as Frederiks- (F) and undulation-like (O). The corresponding eigenvectors
are visualized in figs. 10 and 11, respectively. There, the contributions of the
variables (including the velocity components vx= vx, vz= vz and the electric
potential Phi= φel, which have been neglected before) to the eigenvector are
shown in a grey scale (white = zero), either in the x/y plane or the temporal
evolution along a line y = const. (t/x plane). Across the film suitable mean
values have been taken, i.e. u(x, y) = (

∫
| u(x, y, z) |2 dz)1/2.

For small Frank-like constants (Fii = 1) the undulation-type instability is
gone and two new ones (K and D) occur. They are related to electroconvec-
tion.

2.5 Buckling Instability

In the previous subsections we have assumed that the film as a whole stays
flat when subjected to an external field and only the layers inside the film are
undulated and compressed or dilated. Now we will consider the opposite case
that the film as a whole buckles and all layers inside follow homogeneously
(cf. fig. 2). Of course, one could think of a mixed case, where buckling and
undulations occur simultaneously, but it is hard to see, how the system could
gain from that.
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a)

b)

Figure 10: Frederiks-like instability with layer undulations (and flow), ky = 0,
corresponding to minimum F in fig. 9 (Fii = 5) [47].

a)

b)

Figure 11: Undulation-like instability with director reorientation (and flow),
ky 6= 0, corresponding to minimum O in fig. 9 (Fii = 5) [47].
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For the homogeneous buckling there is no z-dependence and the system
can be treated two-dimensionally. Because of that the cost in elastic energy
seem to be smaller for buckling than for undulations and one could infer
that the threshold field for layer buckling should always be lower than that
for undulations. However, there is another important point to be considered
with buckling. If the film is and stays flat, the electrostatics is trivial. The
electric field is homogeneous (like in a plate capacitor) inside and outside the
film (we always assume infinitely large electrodes). However, when the film
buckles this is no longer true and the electric potential will be distorted by the
curved boundary between the (dielectric) film and the air above and below.
Thus there is additional dielectric energy involved due to the buckling of the
film, which can drive the buckling threshold beyond that for undulations.

The proper treatment for the buckling instability would be to solve the
hydrodynamic equations together with the electric boundary problem. Since
the boundaries are moving according to the solution of the whole problem,
this is a very intricate problem. In order to get some insight analytically, we
will simplify it by assuming that the influence of the curved boundaries can be
treated electrostatically and in a coarse grained fashion. First we notice that
the electrical potential φind, induced by the film buckling, is proportional to
∇xu. Since φind has to vanish at the electrodes and since it is the solution
of Laplace’s equation outside the film (and a somewhat more complicated
equation inside, because of the dielectric anisotropy) the appropriate ansatz
for film buckling is

u = uo cos2(kxπx) cos(kyπy) . (24)

Neglecting all cross-couplings to other variables and taking into account only
the elastic and dielectric anisotropy energy (9), but neglecting for the moment
the buckling induced electric energy, the neutral curve for buckling would be
[47]

4 ε̄ k2
xπ

−2E2
buck(noinduced) = 3 k4

y T2 + 16 k4
x T3 + 8 k2

xk
2
y T5 (25)

It is easy to notice that the critical wave vector ky is zero, while kx cannot be
smaller than 1. This describes a 1-dimensional pattern above the threshold
(the neglected cross-couplings would recover a finite ky, i.e. a 2-dimensional
pattern)

E2
buck(kx = 1; ky = 0;noinduced) = 4

T3 π
2

εz − εx
, (26)

with the abbreviations

εx = ε3 , εz = ε̄+ ε3 = ε2 + ε3 + 2 ε4 cosψ + ε1 cos2 ψ . (27)

However, we still have missed the extra dielectric energy due to electric po-
tential induced by the curved boundaries. Taking a buckled film described by
a fixed displacement (24) with ky = 0 the electrostatic boundary problem can
be solved by standard means. In the limit of thin films and averaging over
space the electric energy density within the film at a given buckling amplitude
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u0 is found to be

ε̃′buck−el = −1
2
εxE

2
o +

π2

4
E2

o u
2
o (εx − ε′z) , (28)

with

ε′z = εz +
1

πdz
√
εxεz

[1
2

sinh
(

2π
√
εx
εz
dz

)
(εz − 1)2 (29)

+2 sinh
(
π

√
εx
εz
dz

)
(εz − 1)(1− εz

εx
)εx

]
.

This electric energy density (28) has exactly the same form as the dielec-
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Figure 12: Neutral instability curve involving film buckling, director reori-
entation and EC (flow) for negative dielectric anisotropy. The patterns are
2-dimensional and minimum M corresponds to an EC-like instability, while
minimum L is qualitatively new [47].

tric anisotropy energy density (i.e. the electric energy density without the
buckling-induced part) except that there εz occurs instead of ε′z. Vice versa
this means that in this approximation the buckling-induced electric energy
can be accounted for by replacing εz by ε′z in the free energy expression (9).
Then the buckling threshold is obtained from (26) as

E2
buck(kx = 1; ky = 0) = 4

T3 π
2

ε′z − εx
. (30)

In the numerical stability analysis one can take into account all cross-coup-
lings, the dynamics, more spatial (and temporal) modes for a given parameter
set, but still treats the buckling-induced electric energy as described above.
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It is found that buckling couples “strongly” to the other types of instability
in the sense that not only all basic instability types occur in mixed form,
but that new instabilities arise that are not present in any of the limiting
cases. E.g. the minimum L in fig. 12 (which can be the absolute minimum
for a different parameter set) is neither present in the pure buckling, nor in
the Frederiks, nor in the pure EC case and is, thus, qualitatively different
from those. A more detailed discussion of the numerical stability analysis of
smectic layers under external electric field will be given elsewhere.

2.6 Polarization Frederiks Transition

In the previous sections we have discussed exclusively achiral smectic C films.
We now switch to the chiral smectic C∗ phase, where not only is the direc-
tor conic helical but also there is an in-plane polarization always parallel to
the director. Due to the helical nature of this polarization the electrostatic
boundary problem at the electrodes is non-trivial even in the ground state. We
therefore assume the helical pitch much larger than the film thickness, which
allows us to neglect the helix. The problem is then homogeneous across the
film. Since we want to concentrate on the influence of the polarization on
the Frederiks transition, we also assume the layers to be fixed. The problem
is then strictly 2-dimensional. The advantage is that within this approxima-
tion not only the linear stability problem is feasible, but also the complete
nonlinear stability problem can be obtained.
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Figure 13: The threshold field Ec of the generalized Frederiks transition as
function of the material parameter combination P = ε1/p

2
o. The region E

allows for a possible restabilization [15].

In the achiral case the sign of the dielectric anisotropy ε1 governs the sta-
bility. In the geometry chosen (n ⊥ E) positive (negative) ε1 characterizes a
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dielectric unstable (stable) situation. In the chiral case the polarization stabi-
lizes (destabilizes) the structure according to the ferroelectric coupling, if it is
parallel (antiparallel) to the external field. Since the in-plane polarization is
rigidly connected to the director both (in)stability mechanisms work together,
either constructively or destructively. Most interesting is the case, where the
situation is dielectrically stable but ferroelectrically unstable. Since the fer-
roelectric coupling is linear in the external field, it will win for small fields,
while the dielectric stabilization gains at higher field strengths. Thus one can
expect – with increasing field – first an instability (the combined structure of
director and polarization rotates) to occur, while then either a restabilization
to the ground state occurs, or the structure rotates further so that the direc-
tor and the polarization have turned by π (except at the boundaries), which
is a genuinely stable situation. The detailed theory [15, 48] shows on what
parameters the different scenarios depend.

First we have to add the ferroelectric energy to eq. 9,

ε̃p = ε̃− PiEi . (31)

Since we can neglect flow, we are left with two variables, the induced electric
potential φel, defined by E = E0 − ∇φel and the rotation of the in-plane
director c. With the ansatz

c = (sin θ, cos θ, 0) , P = po (cos θ, − sin θ, 0) , (32)

one gets two partial differential equations for θ and φel at the threshold pos-
tulating the electric current as well as the torque on the director (and on the
polarization) to vanish [49](

F11 sin2 θ + F22 cos2 θ
)
∇2

xθ − p0 sin θ (Eo −∇xφ
el) (33)

+
(
(F11 − F22)(∇xθ)2 + ε1(Eo −∇xφ

el)2
)
sin θ cos θ = 0 ,

σxx

(
2 cos θ sin θ (∇xθ)(Eo −∇xφ

el)− cos2 θ (∇2
xφ

el)
)

(34)

+σyy

(
2 cos θ sin θ (∇xθ)(Eo −∇xφ

el)− sin2 θ (∇2
xφ

el)
)

= 0 .

where σxx and σyy are the in-plane electric conductivities. The external field is
chosen to be static, in order to prevent the ferroelectric effect to be averaged
out. Planar boundary conditions are chosen such that the ground state is
given by θ = 0 = φel.

In order to get the linear stability threshold it is enough to consider θ with
the ansatz θ(x) = Ao cosπx. Equation (33) immediately leads to [15]

poEc1,2 =
1
2P

(
1±

√
1 + 4PF22

)
, with P ≡ ε1

p2
o

, (35)

which is visualized in fig. 13. Case A corresponds to the well-known achiral
case (P →∞, or ε1 →∞, p0 → 0), with the two thresholds Ec = ±

√
F22/ε1.
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In region B (C) the ferroelectric torque stabilizes (destabilizes) and the Fred-
eriks transition threshold is increased (decreased) compared to the achiral
case. In region D both effects are stabilizing and no instability results.
Region E (ferroelectrically unstable, dielectrically stable) is the most inter-
esting one showing a possible restabilization. An instability is possible for
p0 >

√
−4ε1F22 only. For that region we have performed a weakly nonlinear

analysis resulting in an amplitude equation of the form

I

II

III
0

1

2

3

4

-0.2 -0.1 0 0.1 0.2

Figure 14: The zeros of g1,2 denoting the boundaries, where the instabilities
change their nature (see text) [15].

τo∂tA =
(
η1,2 − g1,2A

2
)
A , (36)

with

g1,2 =
3
8

1 + 8
3 F11P±

√
1 + 4PF22

1 + 4PF22 ±
√

1 + 4PF22

, τo =
2P

1 + 4PF22 ±
√

1 + 4PF22

. (37)

where η12 = (Eo−Ec1,2)/Ec1,2 are the reduced relative threshold fields for the
Frederiks instability and the restabilization, respectively. The upper (lower)
sign refers to the stabilization (restabilization) curve. The nature of the bi-
furcation changes (continuous / discontinuous, forward / backward), where
the cubic coefficient g1,2 changes sign. The zeros of g1,2 are shown in fig.
14 as function of the relevant parameters. In region I both instabilities are
continuous, in region II the restabilization has become discontinuous, while
in region III both instabilities are discontinuous.
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Figure 15: The amplitude B as function of the reduced external field η1 =
(E0 − Ec1)/Ec1 for different values of F11/F22 = 2.9, 1.5, 0.5. Dotted lines
show unstable states [15]. The ground state is stable again for η1 > ηr =
(Ec2 − Ec1)/Ec1.

The weakly nonlinear analysis is valid only near the threshold, where the
amplitudes are still small. For large amplitudes, i.e. in order to investigate
the restabilization behavior, we have performed a numerical integration of eqs.
33 and 34. With fixed boundary condition φel(x=±1/2) = θ (x=±1/2) = 0
a standard shooting procedure is used. The states are characterized by an
amplitude B

B =
1
2

∫ 1/2

−1/2

θ(x) dx , (38)

which reduces to the amplitude A0 introduced in the linear case. In the
ground state and the restabilized state B = 0. For special values of F11/F22

the three regimes I, II, and III are regained (fig. 15). As one can see from
this figure, the large amplitude behavior (restabilization or not) is very closely
related to the small amplitude behavior (forward or backward bifurcation). In
region I, where both bifurcations (at η1 = 0 and η1 = ηr) are continuous, the
restabilized ground state above ηr is actually reached. In regimes II and III,
where at least one bifurcation is discontinuous, the restabilized ground state

0
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3

4

-1 0 1 2 3 4 5

I

Figure 16: Example of regime I (restabilization bifurcation is continuous),
where the restabilized ground state is not reached (F11/F22 = 2.75). The
dotted lines show the generic case (F11/F22 = 2.8) for that regime. [47]
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is not reached and instead a state with θ = π (except near the electrodes) is
reached. In region III the Frederiks transition is first order like. Only in a very
small parameter range the small amplitude and the large amplitude behavior
are asynchronous. There the restabilization instability is still continuous, but
the stabilized ground state is not reached (fig. 16), showing that the amplitude
equation is qualitatively correct for most parameter values, but not really
everywhere.

Since the fully nonlinear solutions are obtained only numerically, there
would be some advantage for having an analytical model that reproduces the
numerical results. The amplitude eqs. (36) are really 2 different equations
(for each instability a separate one) so they cannot describe the full bifurca-
tion scenarios. A suitable model is the following phenomenological amplitude
equation

∂tA = η (1− η)A− g(η)A3 −A5 , (39)

which can be derived from a potential P via ∂tA = − δP
δA .

P =
1
2

[
1
3
A6 +

1
2
g(η)A4 − η (1− η)A2

]
(40)

With the choice g(η) = S (C−η) the three regimes I, II, and III are reobtained
by C > 1, 0 < C < 1, and C < 0, respectively. The fine-tuning can be done
by choosing S. An example for the potential P in regime I is shown in fig.
17.

log P

1
0

A

Figure 17: Model potential P suitable for regime I
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3 Electroconvection Theory in Smectic C and
Smectic C∗ Films

Most of the experimental and theoretical work on electroconvection (EC)
in liquid crystals is devoted to nematic liquid crystals. This part has been
reviewed in several works [2, 29, 30, 31, 32, 50]. In comparison rather little is
known about electroconvection in smectic phases. Electroconvection observed
in experiments on smectics so far is mainly driven by mechanisms which are
rather independent of the Carr-Helfrich mechanism and the liquid crystalline
symmetries. Some of those mechanisms usually work also in the isotropic
phase of the material as described in more detail in sec. 4.1.

It is an interesting question which distinctive features of electroconvection
might be related to the symmetries of smectic liquid crystals. Application of
electric fields to a smectic C sandwich cell with the layers stacked perpendic-
ular to the cell plane (as shown in fig. 18) can in principle induce convection
structures driven by a mechanism similar to the Carr-Helfrich mechanism in
the nematic phase. Figure 18 sketches a side view of such a cell with the
smectic layers in bookshelf geometry. The c director, denoted by the arrows
in the fig. 18, plays the same role here as the director n in the nematic phase.
The c director is fixed at the glass plates but can reorient in the smectic layer
plane.

E

Figure 18: Geometry of smectic C sandwich cell with electroconvection do-
mains, layers in bookshelf geometry. The arrows denote the c director, the
projection of the tilted director n onto the layer plane.

Here we describe mechanisms for electroconvection which are specific for
liquid crystals, in particular smectic C and smectic C∗ films. We do not
discuss surface charge driven instabilities, because they are not specific to
liquid crystals. Such mechanisms can be avoided using large parallel capacitor
like electrodes. We restrict the theoretical formulation to fixed smectic layers
(i.e. rigid film geometry Tijkl → ∞, u = 0, vz = 0). It is also assumed that
neighboring smectic layers behave equally, hence all gradients ∂z vanish.

Under these conditions electroconvection in free standing smectic C films
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is isomorphic to a two dimensional nematic liquid crystal. Investigations on
this system are rather promising to gain further insight into the mechanism
of electroconvection, because the motion can be visualized in more detail in
a film.

As discussed in sec. 2.6 the SmC∗ is biaxial for film thicknesses small
compared to the pitch. The number of coefficients contained in the material
tensors such as the tensors for electric conductivity, for the dielectric tensor
and elasticity is much larger than for nematic liquid crystals. However, this
is neglected in the following consideration and a SmC∗ film is described being
isomorphic to a two-dimensional nematic but with an additional spontaneous
electric polarization P, which is coupled rigidly to the in-plane director . The
same geometry as in sec. 2.6 and in fig. 3 is considered.

3.1 Linear Equations

The stability of the convection–free, planar basic state c = (0, 1), v = 0 and
φel = 0 is investigated in this section. To test the stability of this state, the
equations of motion are linearized with respect to small deviations from it.
Due to the 2D description there are no gradients in z–direction and all vectors
have vanishing z–components (i.e. vz = 0). The component vy is expressed
by vx via the incompressibility condition.

After elementary algebraic operations, described in more detail in refs.
[47, 48] one ends up with three coupled two–dimensional equations

0 =
(
(ε1 sin2 ψ + ε3)k2

y − ε3∇2
x

)
∂tφ

el + (−ε1 sinψEo(t) + p0) ky ∂tn3 (41)

+
(
σyyk

2
y − σxx∇2

x

)
φel −

(
ε1 sinψ ( ∂tEo(t) ) +

σyy − σxx

sinψ
Eo(t)

)
ky n3 ,

0 = −ky∂tn3 + (p0 − ε1 sinψEo(t)) k2
y φ

el −
(
α2k

2
y + α3∇2

x

)
vx (42)

+
(
ε1 sinψE2

o(t)− p0Eo(t)− F11 k
2
y + F22∇2

x

)
kyn3 ,

0! = ρm(k2
y −∇2

x) ∂tvx +
(
ηc k

4
y − 2 η̂ k2

y ∇2
x + ηb∇4

x

)
vx (43)

+ ky

(
α2k

2
y + α3∇2

x

)
∂tn3 +

(
ε1 sinψE2

o(t)− p0Eo(t)
)
k3

y n3

+
(
ε3∇2

x − (ε3 + ε1 sin2 ψ) k2
y

)
k2

y Eo(t)φel .

Herein the following abbreviations for the viscosities have been used:

2α2 = −1− λ(3) , 2α3 = 1− λ(3) ,

ηb = ν3 +
1
4

(1− λ(3))2 , ηc = ν3 +
1
4

(1 + λ(3))2 ,

η̂ =
1
γ1

(ν1 + ν2 − ν3) +
1
4
(1− λ(3)2), (44)

where the ν’s are ordinary viscosities [43], while λ(3) is a reactive transport
parameter [51]. These equations can be rescaled and reformulated in dimen-
sionless form as discussed in ref. [48]. They are similar to the linear equations
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for planarly aligned nematic liquid crystals [26, 48, 52], but contain in addi-
tion the effects of the polarization p0. Accordingly, the eqs. (41-43) have a
different symmetry, which is described in more detail in sec. 3.3. They can be
written in a more compact matrix form,

B(t,∇x) · ∂tU(x, t) = L(t,∇x) ·U(x, t) , (45)

with the (formal) vector field,

U = (φel, θ, vx). (46)

Either DC or periodic AC driving voltages are assumed in the following. For
periodic voltages V (t) = V (t + T ), with T = 2π/ω, the matrices B and L
are periodic in time and eq. (45) shares some similarities with the well known
Mathieu equations. In the following we assume additionally

V (t+ T/2) = −V (t). (47)

3.2 Boundary Conditions

A specification of the boundary conditions is needed when the linear equa-
tions (41-43) are analyzed. Usually films are considered which are infinitely
extended in y-direction (or take periodic boundary conditions). In x-direction
the film is confined between electrodes located at x = ± 1

2 , with the conse-
quence that the velocity vx, perpendicular to the electrodes, has to vanish at
this surface

vx(±1
2
) = 0 . (48)

In addition either stress-free or rigid boundary conditions

∂2
xvx(±1

2
) = 0 , ∂xvx(±1

2
) = 0 , (49)

are assumed, where the latter case is closer to real experimental conditions.
The induced potential has to be zero at the surface and for the director c

we consider planar boundary conditions (c = (0, 1))

θ(±1
2
) = 0 , φel(±1

2
) = 0 . (50)

3.3 Symmetries and Floquet Analysis

The solutions of the linearized eqs. (45) can be classified with respect to
their symmetry properties under spatial reflections and translations in time.
Choosing the line x = 0 to be the middle of the film, i.e. −1/2 < x < 1/2,
where 1 is the rescaled film width in fig. 3, eq. (45) is invariant under reflection
with respect to x→ −x.

This symmetry of the equations, together with the boundary conditions
chosen, allows to characterize all solutions to be either symmetric, U(x) =
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U(−x), or antisymmetric, U(x) = −U(−x), with respect to x. For periodic
voltages that fulfill eq. (47), the linear homogeneous eq. (45) is invariant under
time translations

t→ t+ nT (n integer, positive) . (51)

According to the spectral method of Floquet [53] this leads to a general
solution of the form,

U(z, t) = Û(z, t)eσt , (52)

with the Floquet exponent σ and the periodic function Û . Due to the symme-
try (51) the solutions Û are grouped according to the integers n into harmonic
ones (n = 1) and subharmonic ones (n = 2). The harmonic ones are invariant
under a single T -translation t→ t+T , i.e. Û(t) = Û(t+T ), while the subhar-
monic ones change sign Û(t) = −Û(t + T ) under that translation. The full
solutions U(t) do not have these symmetries because of the Floquet multiplier
exp(σt). However, the prefactor produced by a time translation, i.e. exp(σT )
for a T -translation, is irrelevant, since the amplitude of a solution U(t) is not
determined by the linear, homogeneous equation (45).

The Floquet exponent σ is a function of the external (V0, ω) and internal
(material) parameters of the system and depends on the transverse wave vec-
tor ky. It governs the linear stability of the basic, non-convective state against
inhomogeneous perturbations, which is stable, if Re(σ) < 0, and unstable for
positive growth rates Re(σ) > 0. Thus, from the condition,

Re [σ(V0, ky, ...)] = 0 , (53)

those parameter values are determined, which separate the linear stable regime
from the unstable one. Equation (53) allows for instance the determination
of V0 as a function of ky, the so called neutral curve, V0(ky), at which the
real part of the Floquet exponent changes its sign. The absolute minimum
of V0(ky) at a critical kyc, Vc = V0(kyc), gives the threshold for the onset of
convection in linearized stability analysis.

For vanishing p0 (SmC phase) and if additionally eq. (47) holds, e.g. the
driving voltage is sinusoidal, or of square or triangular wave form, there is
an additional symmetry with respect to time translations, since eq. (45) is
invariant under the replacement,

t→ t+
T

2
, if

 φel

θ
vx

 → ±γ

 −φel

θ
vx

 , (54)

where γ is an irrelevant constant. This symmetry requires the solutions Û
to be harmonic, since by applying (54) twice (i.e. after a T -translation) Û
is mapped to itself. Thus, if eq. (54) is valid, subharmonic solutions are
ruled out. The upper and lower sign in (54) belong to two different solutions,
corresponding to the so-called conductive and dielectric regime, respectively,
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vz

Figure 19: The time dependence of the field variables is shown at the onset of
EC in the SmC∗ phase (with macroscopic polarization). The fields at the cell
center (x = 0) are plotted in arbitrary units for the frequency ω = 390 of the
applied voltage. The dynamics of the system is 2T -periodic only, although the
driving force E0(t) is T -periodic [48].

known from EC in nematic liquid crystals [1]. In SmC∗ however, this symme-
try (54) is lifted, since p0 6= 0. In that case subharmonic solutions are possible
(fig. 19) and the two harmonic regimes – although still discernible – are no
longer purely “conductive” nor purely “dielectric”. This is discussed in more
detail in sec. 3.5.

3.4 Onset of Convection for DC Voltage

As for the polarization Frederiks transition described in sec. 2.6, the existence
of a finite polarization in the SmC∗ phase has also a profound influence on the
DC electroconvective instability. Without a polarization p0, as in the smectic
C phase, the sign of the DC voltage is arbitrary and the threshold for the
DC electroconvection depends on V 2

0 only. This behavior is changed by the
presence of the polarization P in SmC∗. Now E parallel to P (V0 > 0) is
energetically preferred to the case E antiparallel to P (V0 < 0) (cf. fig. 3)
indicating that the basic state is more stable in the former situation than in
the latter one. Thus, one can expect the DC electroconvection threshold to
increase (decrease) with p0 for V0 > 0 (< 0), which indeed has also been found
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numerically for rigid boundaries [48].
This can be understood analytically as well. Assuming stationary instabil-

ities (a Hopf bifurcation has not been found in our studies), we get a quadratic
equation for V0(q), i.e. b1V 2

0 + b2p0V0 + b3 = 0, which is written down explic-
itly for the special case εa = 0 and stress-free boundary conditions in ref. [48].
The interesting point is that the linear term of the polynomial is proportional
to p0. Thus, in contrast to the smectic C case, in the smectic C∗ phase the
neutral curve for DC EC is no longer symmetric w.r.t. V0 → −V0.

This simple threshold condition also explains, why for finite values of p0

the range of existence of the DC electroconvection is larger than for zero p0.
Real values for Vc are only possible, if p2

0 b
2
2 > −4b1b3. Thus, for zero p0 the

product b1b3 must be negative, while for large enough p0 also positive values
of b1b3 lead to an instability threshold. In particular, for a large enough and
destabilizing polarization (E antiparallel to P, V0 < 0), an electroconvective
instability is possible, even if ε1(= εa) ≤ 0 and σ1(= σa) = σyy − σxx <
0. In this situation the planar basic state is stable within the simple Carr-
Helfrich mechanism (p0 = 0), but the destabilization due to p0 overcomes
the stabilization due to negative dielectric and conductive anisotropies. An
interesting competition between the static Frederiks transition and the EC
may be found, as discussed in more detail in ref. [48].

3.5 Onset of Convection for AC Driving Voltage in SmC∗

Films

For an AC driving voltage, in the smectic C phase (p0 = 0) the harmonic so-
lutions (cf. sec. 3.3) are each decomposed into two independent classes (called
A and B in [50, 52]) representing the conductive and dielectric regime, respec-
tively. These two regimes are well known from EC in nematic liquid crystals
[1, 30, 32]. Hence SmC liquid crystals are isomorphic to two-dimensional
nematics in the present approximation.

The presence of the finite polarization in SmC∗ allows, in addition, for a
subharmonic (2T -periodic) solution (figs. 19, 20, 21), thus breaking sponta-
neously the discrete time translational symmetry of the (T -periodic) driving
voltage. The subharmonic regime is strictly prohibited, if the symmetry (54)
holds.

For finite polarization, besides the neutral curves for the (former) conduc-
tion and the (former) dielectric regime, an additional neutral curve for the
subharmonic regime arises at intermediate frequencies, as is shown in fig. 20.
The former conductive and dielectric regime are shifted by the polarization.
Changing the frequency ω the three minima of the neutral curve in fig. 20
are shifted relative to each other, such that any of them, can be the absolute
minimum, i.e. the threshold Vc for a certain frequency range. The critical
threshold voltages, Vc(ω) and the associated critical wave vectors kyc(ω) are
plotted for each regime as a function of frequency ω in fig. 21 for two different
values of the polarization p0.
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Figure 20: Neutral curves V0(ky) are shown for two different values of the
polarization (p0 = 0 and 5 according to the arrows) at a fixed frequency
(ω = 180) of the applied voltage. The conduction regime (dashed lines) and
the dielectric regime (dotted lines) are present for any p0. Only for finite po-
larizations the additional subharmonic regime occurs at intermediate ky values
(solid line).

For sufficiently high values of p0 the neutral curve belonging to the subhar-
monic regime has the lowest minimum for a certain frequency range (solid line
in fig. 21). It always appears at intermediate frequencies, between the conduc-
tive and dielectric regime. Figure 21b shows the critical wavenumber kyc as
a smooth function of the external frequency within a given regime, but with
discontinuous jumps when the marginal stability switches from one regime to
another. Again only two regimes are present for p0 = 0, but three for large
enough p0. Although there is no simple mechanism that could explain, why
a subharmonic regime exists as the marginally stable solution, the following
remarks may help the intuition. With p0 = 0 the sign of V0 is undefined and
it is rather V 2

0 that governs the instability thresholds. A finite p0, however,
introduces contributions linear in V0 as has been shown explicitly in the DC
case (sec. 3.4). Thus for sinusoidal voltages V (t) the fields may oscillate either
with half the frequency of V (t)2 or V (t), depending on the influence of the
different destabilizing forces. For very large threshold voltages, such as in the
dielectric regime, contributions in the director relaxation time being quadratic
in the voltage, V 2, win over those effects linear in V . At small frequencies
in the conduction regime the threshold is relatively small and the impurity
charges can follow the action of the external field immediately while leaving
the director orientations roughly unchanged. In both cases the fields oscillate
in a subharmonic fashion with respect to V 2.
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Figure 21: Onset of instability: The critical voltages Vc = V (kyc) (left) the
critical wavelengths kyc (right) of the three regimes as a function of the ap-
plied AC frequency. For low or vanishing polarization p0 there are only two
regimes, while for p0 > 4.5 (for the parameters chosen) there is in addition the
subharmonic regime at intermediate frequencies. At those frequencies, where
the instability switches from one regime to the other, the critical wave vector
shows a jump [48].

The frequency range of the conduction regime is always bounded from
above by the inverse charge relaxation time. Beyond that frequency the
charges cannot follow the external field. If immediately beyond that frequency
the contribution p0V to the director relaxation time is more important than
those proportional to V 2, then the subharmonic regime may have a lower
threshold than the dielectric one. With further increasing frequency also the
threshold increases, and therefore at large frequencies V 2 dominates the V
effect and the dielectric regime is favored. Using these qualitative arguments
the subharmonic regime can only occur as an additional regime between the
conduction and the dielectric regime.

3.6 Codimension-3 Bifurcation

The value of p0 can be seen as a third control parameter of the system in
addition to the amplitude, V0, and frequency, ω, of the applied voltage. For
large polarizations the subharmonic threshold curve Vc(ω) intersects both, the
conductive and the dielectric threshold curve, at two codimension-2 points (in-
dicated in fig. 21). If p0 is lowered, these two codimension-2 points approach
each other and finally merge (cf. fig. 22). We have found numerically that
this coalescence happens just at the point, where also the conductive and di-
electric thresholds intersect. Here all three regimes coexist and a competition
of three solutions having different wavelengths should be seen in experiments.
For p0 < p3, the subharmonic regime disappears. (The actual value of p3

depends obviously on the material parameters.) This scenario seems to be
generic, since near this codimension-3 point the threshold curves Vc(ω) are
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nearly straight lines, where the conductive and dielectric curve have the largest
and smallest slope, respectively. Increasing however the polarization p0 well
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Figure 22: Codimension-3 point: At the minimal value of the polarization
(p0 = 4.5 for the parameters chosen), for which the subharmonic regime exists,
the three different regimes have equal critical voltages at a certain external AC
frequency ω3 ≈ 361. This is a codimension-3 point [48].

beyond p3 the cutoff frequency of the conductive regime is shifted to higher
values and the threshold and critical wavelength at a fixed frequency is low-
ered further. The subharmonic regime appears always after the cutoff of the
conductive regime for high values of p0 and is extended to much higher fre-
quencies at the cost of the dielectric regime. For large polarizations p0 in the
conductive regime we find typically rather small threshold values kyc ≈ 0.15
and Vc ≈ 0.5 at ω = 200. The observation of such very small wavenumbers
should not be confused with the Frederiks transition (ky ≡ 0, which does not
occur for ε1 < 0).

3.7 Parameter Dependencies

The frequency range, where the subharmonic regime has the lowest thresh-
old, depends not only on the polarization but also on the values of the other
material parameters and on the film width. To design an experiment for in-
vestigating the subharmonic regime it is helpful to know, for which geometric
and material parameters the subharmonic regime can be observed most likely.
All results described in the previous sections of this work have been calculated
for the values given in Appendix A of ref. [48]. The electroconvective insta-
bility is especially sensitive to changes in the electrical anisotropies εa = ε1
and σa = σyy − σxx [25, 26, 50, 52]. Therefore we consider the influence
of variations of these quantities on the existence range of the subharmonic
regime.
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As an example the dependence on σa has been investigated by keeping
σxx constant and changing the value of σyy. Increasing values of σa enforce
the ability of space charges to follow the applied alternating field up to higher
frequencies according to the Carr-Helfrich mechanism [1, 19]. Thus the cut-off
frequency of the conductive regime increases approximately proportional to
σa while the dielectric regime is only slightly affected. This is shown for p0 = 0
by the dashed line in fig. 23. Similar behavior is found for a finite polarization
(solid lines) although for σa/σxx < 0.55 (for the parameters chosen) the sub-
harmonic regime squeezes in between the two other regimes. The threshold
voltages of the conductive and the dielectric regimes diverge by approaching
σa → 0 according to the Carr-Helfrich mechanism causing smaller values of
the anisotropy σa to favor the subharmonic regime. Furthermore the subhar-
monic regime exists even for (slightly) negative values of the anisotropy σa.
The same has been found for an applied DC-voltage (sec. 3.4). Increasing p0

will again lead to a larger frequency range of the subharmonic instability and
the subharmonic regime will exist to even larger values of σa than indicated
in fig. 23.

conductive

subharmonic

dielectric
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Figure 23: The solid lines indicate the existence ranges of the different in-
stability regimes at various AC frequencies as a function of the conduction
anisotropy σa for p0 = 5 and σxx = 133 and εx = 5.25; εa = −0.38. The
dashed line describes the codimension-2 line between the conductive and the
dielectric regimes for p0 = 0.

Another interesting dependence, the dependence of variations on the film
width has also been discussed in ref. [48].
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4 Electroconvection Experiments on Smectic
Films

4.1 General

When pattern formation by electroconvection in freely suspended smectic
films is discussed, at least three different mechanisms have to be considered.
The first type of instability bases on the Carr-Helfrich mechanism known from
nematic liquid crystals. Here an in-plane anisotropy of the conductivity is re-
quired, which is present in the tilted smectic C and C∗ phases, but not in the
A phase. A modification of this mechanism by an additional polarization P
has been discussed theoretically in the previous section.

A second mechanism works via charge injection at the electrodes and has
been reported for isotropic liquids already in 1936 [54]. Since then this insta-
bility has been studied in a variety of systems (e.g. [55, 56, 57, 58, 59]). An-
other mechanism is due to surface charge layers (“diffusion layers”) [60, 61, 62].
These different mechanisms in general do not necessarily exclude each other,
a competition or interplay of them is very likely in smectic films. In some
cases, the special choice of substances or experimental conditions may allow
a separate study of the individual effects.

In the first experiments reported on electroconvection in freely suspended
films nematic liquid crystals have been used [60, 61]. Faetti and his coworkers
used the nematic liquid crystal 4-n-butyl-N-(4-methoxybenzylidene)-aniline
(MBBA). The nematic director in these films is anchored at the liquid crystal-
air interface at some small angle with respect to the film normal. An electric
field applied parallel to such films leads to characteristic convection vortices
which can be visualized in the optical transmission texture.

Faetti et al. discovered two different convection modes in their nematic
films. In thin layers, the threshold for onset of electroconvection depends
linearly on the film thickness. For an explanation of this so-called vortex
mode (VM) the authors developed a model which bases on the interactions of
surface charges on the film with the electric field. This vortex mode occurs also
in the isotropic phase of a material and therefore the Carr-Helfrich mechanism
could be excluded as the driving effect. Moreover, the experiments were also
performed with insulated and conducting electrodes to exclude convection
driven by charge injection.

With increasing film thickness, the threshold for the vortex mode increases
and consequently the authors observed the crossover to a different convection
type [60] in thick films (several micrometers). The threshold voltage of this
structure, the so-called domain mode (DM), is independent of the film thick-
ness. This regime is driven by bulk charges and two frequency regimes of
convection have been observed for AC electric fields, similar as in electrocon-
vection in nematics between two glass plates. Accordingly the domain mode
has been also explained by the Carr-Helfrich mechanism.

The latter is characterized by an oscillating charge field at low frequencies
and another at high frequencies with oscillating director field. The viewing
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direction in the geometry of nematic films is into the rolls, in contrast to con-
ventional nematic sandwich cells. In the isotropic liquid phase, only the vortex
mode remains, the domain mode requires the anisotropic electric properties
of the nematic phase.

4.2 Experiments on Freely Suspended Smectic A Films

In isotropic liquids and nematic phases a molecular layer structure as in smec-
tic liquid crystals is absent. Therefore such nematic films are unstable, their
thickness is inhomogeneous and subject to considerable fluctuations and their
lifetime is restricted. Moreover, the velocity field is very complex and not
necessarily restricted to a two-dimensional flow.

In contrast, the layer structure of smectics guarantees well-defined homo-
geneous film thickness and the flow takes place essentially in planes of the
smectic layers. Morris and coworkers [40, 41] investigated free-standing smec-
tic A films under lateral electric fields and discovered a vortex mode analogous
to the nematic phase. Faetti’s theoretical explanation which is independent
of the anisotropy in the smectic layers, was adapted to smectic films and de-
veloped further. Analytical expressions for the threshold voltage of vortex
electroconvection has been derived by Daya et al. [62]

Uc =
dz

ε0

√
σηRc . (55)

σ is the in-plane electric conductivity, η is the viscosity of the smectic material,
dz is the film thickness and Rc denotes a constant, which depends on the
electrode shape. Plate electrodes with Rc ≈ 92 and wire electrodes with
Rc ≈ 77 lead to slightly different threshold fields. Characteristic for the
vortex electroconvection is the linear dependence of the onset voltage on film
thickness, which is confirmed very well in experiments. Smectic A films are
isotropic within the layers. Hence, the Carr-Helfrich mechanism does not
work in these materials. For this isotropic mechanism in smectic A the theory
has been also extended recently by a perturbation calculation into the weakly
nonlinear regime [63].

4.3 Experiments on Freely Suspended Smectic C Films

Electroconvection in smectic C films has been studied quite recently in exper-
iments by Becker et al. [64] and Langer et al. [65, 66]. The principal difference
to the smectic A phase is the in-plane anisotropy. With polarizing microscopy,
a flow induced optical texture (SmC schlieren) can be observed. Vortex flow
in the smectic C phase can be immediately traced from the texture changes
in the optical reflection or transmission image. Two effects are superimposed,
the first is a texture transport by the mass flow in the film plane. The second
effect is the reorientation of the c director by flow coupling, in an inhomoge-
neous flow field, a hydrodynamic torque acts on c. Figure 24 shows typical
convection textures in a smectic C film driven at low frequency AC (polarized
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light, no analyzer). Between adjacent dark and bright stripes, the c-director
is rotated by 90◦.

Figure 24: Reflection texture of EC vortices in a smectic C film. The electrodes
are at the upper and lower edges, with 0.55mm gap. Vortices appear at 22V
and 0.5Hz (left), while ring structures are seen at the field reversal (30V) and
0.3Hz (right).

At DC excitation the flow is unidirectional, the director walls are carried
with the flow field and wind up to spirals until the counter-action of increasing
elastic deformations establishes a stationary asymptotic state of the director
fields.

At AC excitation, the director walls wind up during one half cycle (fig. 24
left) but the flow is reversed in the next half cycle. The right image in fig. 24
shows the moment of field reversal, where the walls have formed a concentric
ring system. When threshold fields for convection are measured in depen-
dence upon the film thickness, a qualitative and quantitative correspondence
with the vortex mode in SmA is found [66]. Also for a smectic C mixture,
the threshold increases rather linearly with the film thickness as shown in
fig. 25. This indicates that the observed pattern in SmC is of the same type
as the vortex convection found in smectic A films. It is driven by surface
charges and decorated by the texture flow. The deformation of the c-director
field by the flow field is huge, while in the opposite direction the influence is
negligibly small. In the smectic C material, in principle a Carr-Helfrich type
of convection could occur as discussed in sec. 3, but the surface driven vortex
flow effects have been suppressed. In these experiments on SmC the vortex
mode has obviously a lower threshold field. Carr-Helfrich driven convection
is conceivable only at high frequencies or in very thick films (dz � 1µm). A
cross-over between both types as detected in nematic films [61] has not yet
been described for smectics.

4.4 Electroconvection in smectic C∗ films

Electroconvection in ferroelectric smectic C films have been performed so far
only in materials with high spontaneous polarization P [66]. In this material,
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Figure 25: Onset voltage for electroconvection in a smectic C mixture in
dependence of the film thickness dz (50% 5-n-Octyl-2-(4-n-hexyloxyphenyl)-
pyrimidin and 50% 5-n-Octyl-2-(4-n-octyloxyphenyl) -pyrimidin with phase
sequence < −10◦C SC 50.5◦C SA 53◦C N 68◦C I, electrode gap 0.5mm ,
T=25◦C, σ = 8.92 · 10−12A/(V m)) [66]

the interaction of P with the external electric field E is dominant. The c
director aligns perpendicular to E. A convective vortex flow leads to periodic
deflections of the c director from its fixed alignment but is too weak to create
disclination walls. The vortices are visualized with crossed polarizers slightly
oblique to the electrode geometry which decorates oppositely rotating vortices
with different reflection intensities. Figure 26 shows the reflection texture of
a 2.1 µm thick film in the SmC∗ phase observed with crossed polarizers. A
small angle < 20◦ was adjusted between the electrode and the polarizer. The
oppositely rotating vortices are visible as rectangular areas of nearly uniform
brightness.

In the SmC∗ films one observes DC electroconvection already at very low
voltages. Figure 27 gives the flow velocity as a function of the applied voltage.
Note that the onset threshold in SmC was 0.5V even in the thinnest films. For
SmC∗ a non-zero critical voltage cannot be derived from these experiments,
it is below the experimental resolution. Moreover, it is characteristic that the
convective flow velocity is independent of the film thickness dz. This indicates
that the convection in these films is not primarily driven by the film surface.

The interpretation of these observations is not unambiguous. On the one
hand, many arguments characterize the observed effect as a Carr-Helfrich type
convection as predicted in ref. [48], cf. sec. 3. The well defined ground state
with the c director parallel to the electrode edges exists, the periodic director
deflection is small (� 90◦) and the observed flow velocity is film thickness
independent over a large thickness range. The flow field itself is very similar
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Figure 26: Reflection texture of EC in a smectic C∗ film (dz = 2.1µm), with
electrode gap 0.5mm, DC voltage 60V and crossed polarizers slightly rotated
out of the electrode direction. [67]

to that in the surface driven structures in SmA and SmC. A direct proof for
or against one of both mechanisms has not yet been achieved (cf. the nematic
films where a clear crossover between both mechanisms can be observed).

Experiments with AC electric fields can elucidate more of the driving
mechanisms. However, in the ferroelectric smectic films the electroconvection
is disturbed by the switching of the c director at field reversal, it reorients by
180◦ as the spontaneous polarization aligns with the external field E. The
disturbance of the EC vortices by ferroelectric switching is small only at very
low frequencies (a few Hz). In these experiments one observes that the vor-
tices change their sense of rotation with the driving field. Speaking in terms
of the Carr-Helfrich mechanism, this means that the charges remain at their
positions while the director reverses sign with the external field, this is char-
acteristic for the so-called dielectric regime in EC of nematics (cf. also sec.
3.5).

Finally we summarize the progress made in the study of electroconvec-
tion in thin quasi two-dimensional films and sketch the perspectives of future
work. The investigation of freely suspended films of tilted smectic phases has
revealed new electroconvection scenarios and to a certain extend it has im-
proved understanding of the electrohydrodynamic effects, but there are still
many problems to be solved before a comprehensive description will be ob-
tained. Theory and experiment are still a few steps apart, it should be a
goal of future experimental investigations to prepare very low P ferroelectric
samples, and an important theoretical task will be the combination of works
in refs. [62, 48], which should include both surface effects and an in-plane
electric anisotropy of the smectic material. In view of the many potential
applications of ferroelectric smectics the understanding of electroconvection
effects in these materials is not only of pure academic interest.

320



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.000

0.002

0.004

0.006

0.008

0.010

0.012  72,1 nm
 367,8 nm 
 1533 nm
 2100 nm
 2565 nm

vo
rt

ex
 f

re
q

u
en

cy
   

f    
v 

 [
1/

s]
 

U  [ V ]

Figure 27: Vortex velocity of convective flow in an SmC∗ film (ZLI 4237-
100, Merck); films of different thickness dz are compared (gap width 0.5mm,
T=25◦C). [65]
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