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Abstract. We discuss various kinds of instabilities in smectic liquid crystal films.
Instabilities of the layer structure, within the layer structure, and combined ones
can be discriminated.

1 Introduction

Smectic liquid crystals are characterized by a layered structure. In the sim-
plest case the layers are defined by a sinusoidal modulation of the density
with a relative amplitude of a few percent [de Gennes and Prost 1993]. This
layering constitutes a spontaneously broken translational symmetry in one
dimension, quite analogously to crystals with their translational order in
three dimensions (and discotics, which have a two-dimensional translational
order). Although the positional order of the layers in smectics is not really
long-ranged, because of the Landau-Peierls instability [note 1], for practi-
cal purposes (reasonable experimental samples) it can be treated as truly
long-ranged.

Due to the liquid crystalline nature smectics can be driven out of equilib-
rium not only by temperature or pressure gradients, or by imposed external
flow, also external electric and magnetic fields can be used to obtain insta-
bilities. This allows for completely new instability mechanisms as well as for
complex instability scenarios even for the first instabilities. The advantage of
films lies in their superior visualization properties and in the possibility to
explore new geometries in the experimental setup.

Layering is the basic feature of smectics. In smectics A liquid crystals
this is the only order present. In more complex smectics additional (nematic-
like) rotational order (smectic C) or bond-orientational order (hexatic B) or
both (smectic I and F) exists and in helical smectics (C*, I* and F*) an
additional translational order along (but generally incommensurate) to the
layers occurs. Of course, there are even more ordered smectic systems, which,
however do not yet play a role in pattern formation, since their equilibrium
behaviour still has to be investigated.

Instabilities in smectics can be taken in three groups: those, where the
layers themselves are subject to distortions and pattern formation, those,
where the instability takes place completely in-plane (the layers staying flat),
and those, where both kinds of deformations occur simultaneously. We will
only briefly comment on the rather classical first case, give a more detailed
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description of some examples of the second kind and make a few remarks at
the end on the still to be explored third case.

2 Layer Instabilities

Layer instabilities in smectics A are well-known and described in the liter-
ature [de Gennes and Prost 1993]. There is the undulation instability due
an applied mechanical dilation, closely related to the buckling instability in
metal plates [Boucif et al 1984] or in discotic systems [Cagnon et al 1984].
Here the system reacts to external constraints by layer undulations rather
than by layer dilation, because of energetic reasons. Quite similar undula-
tion instabilities can occur, if a temperature gradient or an electric field is
applied along the layer normal (thermo-buckling [Pleiner and Brand 1985]
and electro-buckling [Pleiner and Brand 1987]), since in both cases layer di-
lations can occur [note 2]. Undulation instabilities also arise, if a magnetic
or electric field is applied perpendicular to the layers and the magnetic or
electric susceptibility anisotropy is positive. Then the layer normals tend to
rotate inducing buckling of the layers (Helfrich-Hurault effect [Helfrich and
Hurault 1970]). Undulation instabilities in more complex smectics are far less
investigated and imply in-plane distortions and pattern forming processes as
well.

3 In-Plane Instabilities

Keeping the layers fixed a smectic A liquid crystal behaves like a two-dimen-
sional isotropic liquid within the layers and all the instabilities known from
simple liquids can be obtained. An interesting instability type is the so-called
vortex-flow instability under a perpendicular electric field due to surface
charges or charge separation (although the precise mechanism is still un-
clear) [Morris et al 1991]. This instability seems to exist in the smectic C
phase as well [Becker et al].

A smectic C liquid crystal corresponds to a two-dimensional nematic, if
the layers are fixed. Here the standard nematic instabilities, Frederiks transi-
tion and electroconvection, can be expected. In addition, rotating mechanical
[Cladis et al 1985] and electrical fields [Cladis et al 1995] give rise to inter-
esting target and spiral wave patterns. In the chiralized version, smectic C*,
an in-plane polarisation exists rendering the in-plane system ferroelectric-
like. If the twist (the polarization helix) is suppressed or negligible (very thin
film), the polarisation exists globally and allows for new coupling effects to
an external electric field. This leads to new features in the Frederiks and in
the electroconvection instability described below and to target waves in a
rotating electric field [Kremer et al 1990], [Hauck and Koswig 1991].
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3.1 Polarization Frederiks Transition

We derive first the fully nonlinear equations to investigate director deforma-
tions above a DC-driven splay Frederiks-transition in smectics C* within the
layers. We are looking for solutions, which are homogeneous perpendicular to
the external field. We assume incompressibility and do not take into account
the thermal degree of freedom. The backflow is very weak in this situation
[Pieranski et al 1973] and will be neglected. With notation and scalings of
[Zimmermann et al 1996] we write down the energy density fe containing a
dielectric part fr and an elastic part fr due to distortions of the in-plane
director ¢:

Ja=fr+fe (1)
1
fe= —5 € Bk — Pl (2)
1 o, 1 , 1 )
fr= §F22 (dive)” + §F33 (c-curle)® 4+ §F11(c><curlc) , (3)

Where the anisotropic tensors are of the form ¢;; = € d;; + €4 cic; and €] is
the dielectric constant perpendicular to the director c. Fbs is the splay, Fi3
the twist and Fiq the bend elastic constant introduced first in [Saupe 1969].
The molecular field h; and the dielectric displacement D; are given by

dfa _ Ofg
6ci DZ h 6Ez (4)

h; =

where the electric field E; is due to the applied voltage V as well as due to
the induced potential. In the given geometry only two degrees of freedom
are left, one angle 6 (z,t) of the director orientation and the induced electric
potential ¢ (z,t). The nonlinear balance equation of the director is given by

1
Ovei = — 6l hie (5)
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The equation of motion for ¢ is derived from the Maxwell equation divD =
p. Eliminating p via the charge conservation law 9, p+ V - 3¢ = 0, where the
electric current density is ji = o;;F;, one gets

(0]



0=0,(V -D)+V-j°. (7)

Equations (6) and (7) describe so far the full nonlinear dynamics of the
problem. Since Eq.(7) gets rather complicated we expand it for the static
case 0¢¢p = 0 only and obtain

0=27% infcosh (V—0.¢4(2)) 0.0 — <1 + %o gin? 9) 2% . (8)
o1 o1

Linear stability analysis and a standard weakly nonlinear calculation re-
veals [Zimmermann et al 1996] that there is a new instability branch due
to the polarization. This branch can, for certain parameter values, collapse
and the trivial undisturbed solution becomes stable again (restabilization).
To get an overview of what could happen for large director deformations we
have integrated the coupled system of Eqgs.(6,8) numerically. As a character-
ization of the nonlinear director field the integrated director deformation is
introduced

/2
B:%[re@mz (9)

and interpreted as an order parameter. B vanishes for the basic state (6, = 0).
For the new instability branch the bifurcation behavior is complex. In the
range poV, < 0 and F' < 0 the elastic, dielectric and the ferroelectric torques
favor different equilibrium states # = 0, 6 = 0 or 7, and 6§ = 7, respectively.
Since the dielectric torque dominates at very high voltages (n — oo) two
(linear) stable equilibrium states are possible with B = 0 or B — 72/2,
respectively. In the latter state (m-state) one has 0 (2 =0) ~ 7 at the cell
center, while 6 bends back to @ (z==4n/2) = 0 near the boundaries.

For intermediate voltages the bifurcation diagrams are plotted as func-
tions B (n) in Fig.1 with the reduced voltage n = V;YC .

Motivated by the amplitude equation [Zimmerménn et al 1996] the nu-
merical studies were done here for three distinct values of F11/Fa2 belonging
to the three regimes called I, II, and III, which describe the three possibil-
ities of the Frederiks instability and the restabilization to be continuous or
discontinuous.

In regime I the bifurcation at n = 0 is supercritical while the restabi-
lization at 7, is also continuous (inverted backward). This restabilization
threshold is indeed reached, since after increasing first with increasing values
of n, B then decreases back to B = 0. Somewhat above 7, there is an unsta-
ble solution between the restabilized ground state and the isolated w-state.
On the other hand, in regimes IT and III the branch that bifurcates from the
ground state (B = 0) at = 0 never comes back to B = 0, i.e. the restabilized
ground state is generally not reached in experiments. Above 7, there is an
unstable branch between the ground state and the m-state. In regime III the
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Fig. 1. The integrated director deformation B as function of the reduced voltage
n=(V-=V.)/Ve for F = —0.2 at 8 different values of Fi1/Fs2 (=2.9,1.5,0.5 from
left to right).

bifurcation at n = 0 is subcritical showing a hysteresis, which can be quite
large, especially for small values of Fi1/Fss.

It should be mentioned, however, that the transition from the restabiliza-
tion scenario to the m-state scenario does not necessarily take place at the
same parameters, where regime I switches to regime II.

3.2 Electroconvection

In addition to the general Frederiks transition presented here, also electrocon-
vection can occur, when an external electric field is applied to the film [Ried
et al 1996]. While the Frederiks transition is homogeneous in z-direction
(g- = 0), electroconvection shows a pattern along x with a characteristic
wavenumber ¢g. # 0. For a certain range of material parameters both insta-
bility types are possible and a competition between Frederiks and electrocon-
vective instability takes place. If a pure electroconvective pattern formation
is searched, we suggest experiments with F' < —1/4, since no Frederiks tran-
sition is possible there. For DC voltages, in addition, all parameter values
F < 0 will lead to an electroconvective transition, if the field is parallel to
the polarization. On the other hand all (big) positive values of F' will prefer
the Frederiks transition ¢, = 0 (cf. [Zimmermann et al 1996] for details).

In nematics there are two regimes for AC voltage electroconvection, one
at low frequencies (conductive regime) and one at high frequencies (dielectric
regime), with different thresholds and critical wavelengths for the cellular
convection pattern. These known results [de Gennes and Prost 1993] are
qualitatively unaffected by the presence of both, fixed layers and the macro-
scopic polarization in smectics C* for low and high frequencies of the applied
electric AC field. At intermediate frequencies, however, a new “subharmonic
regime” appears as the first unstable mode in Sm C* [Ried et al 1996]. Its
threshold voltage increases with decreasing polarization. For vanishing po-
larization this regime does not exist and is therefore not accessible in other
liquid crystal phases such as nematics or smectics C. Under certain condi-
tions a codimension-3 point is found, where the three different instabilities
(conductive, dielectric and subharmonic, all with different wavelengths and
different temporal behavior) compete at onset.
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4 Layer and In-Plane Instabilities Combined

If the Frederiks transition and the electroconvective instability in smectic
C or C* is treated more realistically, i.e. if the assumption of fixed layers
has been relaxed, it is obvious that layer undulations come into play. Not
only is there a competition between Frederiks, electroconvection and electro-
buckling instability, all of these three distinct instability types will acquire
some features of the others showing flow, layer undulation and static director
reorientation. Work on special aspects of such systems is in progress.
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