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The statics and dynamics of smectic C (and C∗) liquid crystals has been a
long-standing topic for investigations. All the previous descriptions, how-
ever, have been restricted in some sense. Either the theories were linear, or
flat layers were assumed, or the layer thickness was taken to be constant, or
only statics was considered, or the description (in the chiral case) included
terms not compatible with layering. Here we will give a nonlinear hydro-
dynamic theory, which applies to strongly curved layers, non-flat ’ground’
states, strongly compressed layers as well as strongly deformed director ori-
entations. Some discrepancies between previous theories are resolved.
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INTRODUCTION

A. Saupe was the first to realize that smectic C phases have a nematic degree
of freedom. The direction of the tilt (the in-plane director) has to be spec-
ified in order to completely describe the phase. Deformations of that angle
variable give rise to 4 Frank-like orientational elastic coefficients, since the
phase is biaxial [1]. Thereafter, the elasticity of the layers has been added
comprising one (layer) compressional modulus, 3 layer curvature coefficients
(generalized splay coefficients – the generalized bend coefficients are usually
neglected) and 2 contributions, where layer curvature and in-plane director
bending are mixed [2]. On the basis of broken symmetries the linearized
hydrodynamics of smectic C phases was given in [3]. Due to the mono-
clinic symmetry of that phase (requiring all equations to be invariant under
the combined replacement of the layer normal k̂ and the in-plane direc-
tor ĉ by −k̂ and −ĉ, respectively) there are 13 (ordinary) flow viscosities,
4 thermal conductivities, one permeation coefficient, one director reorien-
tation viscosity, 2 thermo-permeation coefficients, describing viscous cross-
couplings between temperature gradients and layer deformations. As in any
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system with nematic degrees of freedom there are reactive (non-dissipative)
transport parameters relating flow and director orientation, i.e. for smec-
tics C there are 2 (only one of which gives rise to shear flow alignment [4]).
There are two additional hydrodynamic degrees of freedom (compared to
simple fluids): the displacement of layers u along the layer normal (due to
the broken translational symmetry) and rotations of the in-plane director
(k̂× ĉ) ·δĉ due to the broken rotational symmetry (in the layers). Of course,
the existence of layers also breaks rotational symmetry, since the layer nor-
mal defines a preferred direction. However, deformations of that direction,
δk̂, do not constitute independent variables, but are described by gradients
of the layer displacement. This is true not only in linear approximation
δk̂ = −∇⊥u, but generally

k̂ = ∇Φ (|∇Φ |)−1 (1)

where Φ is the phase variable describing the periodic layer structure with
Φ = z − u for flat layers along the z-direction.

In the chiral smectic C∗ phase the tilt direction changes from layer to
layer in a helicoidal fashion and the director is conic helical, where the helix
axis coincides with the layer normal. Simultaneously an in-plane polariza-
tion P (perpendicular to both, the director and the layer normal) occurs,
which is thus helical. In such a structure the translational symmetry along
the layer normal (or helix axis) is broken twice and independently by the
layer and the helix structure. Again there are two additional hydrodynamic
variables, when compared to simple fluids [5]: layer displacement uA and
helix displacement uC , where the latter is equivalent to helix rotation (about
the helical axis). Although one could think that the helix displacement vari-
able can only be used on length scales larger than the pitch 2π/q0 (global
description), however, by using the helix rotation, (P0× δP ) · k̂ = q0 uC, it
turns out that this description is useful also for much smaller length scales
(local description). Again, curvature of the layers and of the helix struc-
ture is described by gradients of uA and of uC , respectively. Of course, if
additionally the tilt angle or the magnitude of the polarization are used,
non-hydrodynamic variables are introduced.

The theories described above are linear in the sense that deviations from
the ground state (flat layers) are assumed to be small. However, they are
nonlinear with respect to director and layer orientation, since all material
tensors implicitly depend on those orientations giving rise to a host of intrin-
sic nonlinear effects. Nevertheless there is a need for dynamic theories that
are applicable for situations of strong layer curvature or non-flat ’ground’
states due to external fields or boundary conditions. An early, not quite
satisfactory attempt in that direction has been made by the present au-
thors [6]. For the chiral smectic C∗ phase an approach more in the spirit
of a Ginzburg-Landau description has been proposed [7] allowing for chiral
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terms that are not compatible with the layer structure, but would lead to a
different ground state with a different symmetry and different broken sym-
metries. Quite recently the statics of strongly deformed (layered) smectic
as well as discotic phases (including strong curvature and compression) has
been discussed [8]. A dynamic theory based on continuum mechanics of
smectic C and C∗ phases with strong layer curvature, but with constant
layer spacing (no true elasticity, i.e. no compression or dilation and with
flat layers as ground state) has been given also quite recently [9]. There is
also a dynamic theory for smectic A liquid crystals using the phase Φ as
variable [10].

THERMODYNAMICS AND STATICS

Using the phase Φ as variable it is obvious that homogeneous changes, δΦ,
do not cost energy, since they correspond to a rigid translation of the layer
structure. Only changes of the layer thickness cost energy and are described
by d(|∇Φ | −1) = k̂ ·d∇Φ, where k̂ is the layer normal defined in eq.(1). Its
direction is not fixed energetically (in the absence of external fields), thus
rigid rotations of k̂ (i.e. rigid rotations of the layers) do not cost energy.
Thus, only gradients of the layer normal can enter the free energy, which
are, however, expressed by higher order gradients of Φ (using eq.(1))

∇lk̂i =|∇Φ |−1 (δij − k̂ik̂j)∇j∇lΦ. (2)

This is the manifestation of the fact that the broken rotational symmetry
due to the layer normal is slaved by the broken translational symmetry of
the layers themselves and does not give rise to independent hydrodynamic
degrees of freedom. Of course, eq.(2) ensures the identity k̂i∇lk̂i ≡ 0.

The director n̂ constitutes a different broken rotational symmetry. Rigid
rotations of the director do not cost energy, if they are done together with
the whole structure, i.e. if the tilt angle ψ between k̂ and n̂ is kept fixed,
k̂ · n̂ = cosψ = const.. Thus, a rotation k̂ · δn̂ is equivalent to −n̂ · δk̂ =
− |∇Φ |−1 sinψ ĉ · δ∇Φ, where we have made use of the in-plane director
ĉ defined by n̂ = k̂ cosψ + ĉ sinψ. For the same reason rotations ĉ · δn̂ =
cosψ ĉ·δk̂ are not independent, but described again by gradients of Φ. Only
rotations of the director about the layer normal, p̂ · δ n̂ are independent.
Here we use the orthogonal triad k̂, ĉ, and p̂ ≡ k̂ × ĉ as basic coordinate
system, although one could use also n̂, p̂, and ĉ ′ ≡ (k̂ − n̂ cosψ)(sinψ)−1.
Of course, only inhomogeneous rotations, p̂i∇jni can enter the free energy.
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The gradient free energy is of the form

fg =
B

2
(|∇Φ | −1)2 +

1

2
K

(n)
jl pipk(∇jni)(∇lnk) (3)

+
1

2
K

(k)
ijkl(δim − kikm)(δkn − kkkn)(∇jkm)(∇lkn)

+
1

2
K

(m)
ijl pk(δim − kikm)(∇jkm)(∇lnk)

where the gradients of k̂ have to be expressed by gradients of Φ by eq.
(2). One can add higher order compression or dilation, i.e. terms ∼
(kikj∇i∇jΦ)2 and crosscouplings between compression/dilation with tem-
perature and density variations. Note that gradients of ĉ are already con-
tained in eq.(3). Of course, the k̂, ĉ, and p̂ occurring explicitly and im-
plicitly in eq.(3) are not constant but time and space dependent. Their
variations are again expressed by δΦ and p̂ · δn. The actual structure of
the material tensors, their dependence on k̂, ĉ, and p̂, follows from the
monoclinic symmetry and has already been discussed in the literature.

It is somewhat tempting to use – as in biaxial nematics – the three
angles δθ1 = ĉ · δk̂, δθ2 = p̂ · δk̂, and δθ3 = p̂ · δĉ, in order to describe the
orientational degrees of freedom. In that case, however, one must consider
that these angles are not defined globally, since three-dimensional rotations
about different axes are generally non-commutable. This leads to the so-
called Mermin-Ho relations for biaxial nematics [11]

(δ1δ2 − δ2δ1)θ = (δ1θ)× (δ2θ) (4)

where δ1 and δ2 are any first order differential operator and where θ =
(θ1, θ2, θ3). Because of these rather complicated relations and because θ1, θ2

are not independent of each other due to eq.(2), it is not very appropriate
to use this angle-variable description for the dynamics below.

In the presence of external fields some or all of the rotational symmetries
are broken externally by these fields. Thus, already homogeneous rotations
enter the free energy as can be seen from the dielectric energy

4π fdiel =
1

2
ε1(n̂ ·E)2 +

1

2
ε2(k̂ ·E)2 +

1

2
ε3(p̂ ·E)2 + ε4(n̂ ·E)(k̂ ·E) (5)

which could also be expressed in terms of ĉ instead of n̂. Eq.(5) as well as
the flexoelectric energy

fflex = e
(n)
ij p̂kEi∇jnk + e

(k)
kij(δkl − k̂kk̂l)Ei∇jkl (6)

can be expressed by the variables Φ and p̂ · δn̂.
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Now we can write down the Gibbs relation connecting the differentials
of variables with entropy density (dσ) or energy density changes (dε)

dε = µdρ + Tdσ + v · dg +
1

4π
E · dD + Ω̃ k̂ · d(∇Φ) (7)

+Ψ′′k̂ik̂j d(∇i∇jΦ) + Ψ̃il d
(
|∇Φ |−1 (δij − k̂ik̂j)∇j∇lΦ

)
+Ω′ĉ · d(∇Φ) + Ω′′p̂ · d(∇Φ) + Hjd(p̂i∇jni) + h′p̂ · dn

= µdρ + Tdσ + v · dg +
1

4π
E · dD + Ω · d(∇Φ) (8)

+Ψij d(∇i∇jΦ) + Hj p̂id(∇jni) + h p̂ · dn

with

Ω = k̂
(
Ω̃− Ψ̃il |∇Φ |−2 (δij − k̂ik̂j)(∇l∇jΦ)

)
(9)

+ ĉ
(
Ω̃′ − Ψ̃il |∇Φ |−2 (k̂iĉj + k̂j ĉi)(∇j∇lΦ)

)
+ p̂

(
Ω′′ − Ψ̃il |∇Φ |−2 (k̂ip̂j + k̂jp̂i)(∇j∇lΦ)

+(sinψ)(−1)Hl |∇Φ |−2 ĉj (∇l∇jΦ)
)

and

Ψij = Ψ′′k̂ik̂j + Ψ̃qi |∇Φ |−1 (δqj − k̂qk̂j) (10)

and

h = h′ − cotψ Hl |∇Φ |−1 ĉj (∇l∇jΦ) (11)

where we have introduced the mass density ρ, the momentum density g
and the dielectric displacement field D as well as the conjugate quantities
chemical potential µ, temperature T , velocity v and electrical field E. The
elastic stress conjugate to layer compression or dilation is Ω̃, to inhomoge-
neous compression or dilation is Ψ′′, while Ψ̃il is conjugate to inhomogeneous
layer rotations (i.e. curvature of the layers). The conjugate Hj is related
to director orientational elasticity, while h′, Ω′ and Ω′′ are conjugate to di-
rector and layer (normal) rotations, respectively. The latter quantities have
to vanish either with external field strength (squared) or they are nonlinear
and vanishing with the wave vector squared at least. Explicit expressions
for the conjugate quantities can be obtained by partial derivatives of the
energy expression with respect to the appropriate variable, but will not be
given here for lack of space.

Instead of the phase Φ one could use the displacement u along the layer
(z-) axis by the transformation Φ = z − u. As long as gradients of u are
kept to any order, this is still an exact description, although it is no longer
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coordinate-free and the manifest rotational invariance is lost. For almost
flat layers, however, where one can expand the expression in the (small)
gradients of u, this leads back to the well-known linear or weakly nonlinear
theories.

HYDRODYNAMICS

Having discussed the static properties in the preceding section we are pre-
pared to set up the hydrodynamic equations, which are either conservation
laws or balance equations for variables associated with spontaneously bro-
ken continuous symmetries. They are of the general form [12]

ρ̇ +∇i(ρvi) = 0 (12)

ġi +∇j(givj) +∇i(p−
E2

8π
) +∇j(σ

(s)
ij + σij) = ρeEi + Pj∇jEi

(13)

σ̇ +∇i(σvi) + divjσ =
R

T
(14)

ε̇ +∇i([ε + p]vi) + divjε = 0 (15)

Ḋi + vi∇jDj + 4πje
i = 0 (16)

Φ̇ + vi∇iΦ + X = 0 (17)

p̂ · ṅ + p̂ivj∇jni + (p̂× n̂) · ω + p̂iYi = 0 (18)

where the dot denotes a partial time derivative ∂/∂t. In eq.(13) ρe =
(1/4π)divD is the electric charge density and P = (1/4π)(D −E) is the
polarization. The nonlinear convective terms shown in eqs.(12-18) are re-
quired by Galilean invariance. The nonlinear term in the director equation
(18) involving the vorticity ω (ω ≡ (1/2)curlv) is required by rotational
symmetry. These contributions are balanced, in order to give zero entropy
production (R = 0), by the pressure and the part of the stress tensor de-

termined by symmetry σ
(s)
ij . For the pressure the Gibbs-Duhem relation

gives

p = −ε + µρ + Tσ + vigi +
1

4π
EiDi (19)

dp = −ρ dµ− σ dT − gi dvi −
1

4π
Di dEi −Ω · d(∇Φ)

−Ψij d(∇i∇jΦ)−Hj p̂id(∇jni)− h p̂ · dn (20)

while for σ(s)
ij we find

σ(s)
ij =

1

2
h(tot)(n̂jp̂i − n̂ip̂j) +

1

2
cotψ Hq(k̂j ĉi − k̂iĉj)p̂k∇qnk

−1

2
(sinψ)(−1)Hq |∇Φ |−1 (k̂j ĉi − k̂iĉj)p̂k∇k∇qΦ (21)

+Ψjl(∇i∇lΦ) + Ω
(tot)
j ∇iΦ + Hjp̂l∇inl
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where we have introduced the convenient abbreviations

Ω
(tot)
i = Ωj −∇jΨij (22)

h(tot) = h−∇iHi (23)

In eq.(21) the first three terms are antisymmetric contributions due to the
nematic degree of freedom, while the last three are generalizations (due to
the layers) of the Leslie-Ericksen stress.

The phenomenological currents σij , jσ, je and the quasi-currents X and
Yi are each a sum of a reversible and an irreversible part, due to zero (R = 0)
and positive definite (R > 0) entropy production, respectively. They are
characterized by reactive and dissipative transport parameters. The energy
current density then follows from the Gibbs relation. For the reversible
parts we find

Y
(R)
i = p̂iλjk

1

2
(∇jvk +∇kvj) (24)

σ
(R)
ij = −1

2
(λij + λji)h

(tot) (25)

jσ (R) = 0 = je (R) = 0 = X(R) (26)

with λij = λ1p̂ik̂j + λ3p̂iĉj containing two reactive transport parameters
[4], one of which corresponds to the flow alignment parameter of uniaxial
nematics. Note that there are no flow-alignment-like terms with respect to
the layer normal k̂. Such terms are possible in a biaxial nematic, but they
are not possible in a layered structure.

The irreversible parts of the currents and quasi-currents are obtained
from an entropy production functional that is bilinear in the thermodynamic
forces, i.e. we restrict ourselves here to linear irreversible thermodynamics
(cubic and quartic terms in the entropy production have been discussed in
[13]). Nevertheless, the expressions obtained will be highly nonlinear when
written in the variables.

j
σ(D)
i = −κij∇jT − κ

(E)
ij Ej − ξ

(T )
i divΩ(tot) (27)

j
e(D)
i = σ

(E)
ij Ej + κ

(E)
ij ∇jT + ξ

(E)
i divΩ(tot) +∇j(ζ

(E)
ji h(tot)) (28)

σ
(D)
ij = −1

2
νijkl(∇kvl +∇lvk) (29)

X(D) = −ξdivΩ(tot) − ξ
(T )
i ∇iT − ξ

(E)
i Ei (30)

Y
(D)
i =

1

γ1
p̂ih

(tot) − p̂iζ
(E)
jk ∇jEk (31)

The energy density current jε is an extremely complicated expression, but
fortunately it will not be needed, because the energy conservation law is
redundant due to the Gibbs relation eq.(8).
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Eqs. (27-31) contain in the field-free case the same number of dissipative
coefficients as Ref. [3] (cf. the discussion in the Introduction). In [9] much
more viscosity-like coefficients were found. This is not because ref. [3] used
linear irreversible thermodynamics for the dissipative dynamics (so did we
in the present paper as well as ref. [9]), but because in [9] three dynamic
variables (the three rotation angles of the triad k̂, ĉ, and p̂) were used as is
suitable for monoclinic biaxial nematics, while for smectic C liquid crystals
only two dynamic variables (in-plane director rotation and the phase of the
layering) are appropriate. Thus, the existence of layers (i.e. the requirement
for k̂ being a layer normal as is expressed in eq.(1)) reduces the number
of coefficients as has been seen above for the flow alignment parameters.
With external electric fields eqs. (27-31) contain additionally 4 electric
conductivities, 4 thermo-electric diffusivities, 2 electro-permeative and 2
dynamic flexoelectric coefficients.

A more extended discussion including chiral smectic C∗ liquid crystals
will be given elsewhere.
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