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Abstract

The statics and dynamics of smectic C (and C∗) liquid crystals has been a long-
standing topic for investigations. All the previous descriptions, however, have been
restricted in some sense. Either the theories were linear, or flat layers were assumed,
or the layer thickness was taken to be constant, or only statics was considered, or the
description (in the chiral case) included terms not compatible with layering. Here we
will give a nonlinear hydrodynamic theory, which applies to strongly curved layers, non-
flat ’ground’ states, strongly compressed layers as well as strongly deformed director
orientations. Some discrepancies between previous theories are resolved.
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1 INTRODUCTION

A. Saupe [1] was the first to realize that smectic C phases have a nematic degree of freedom.
Thus, there are two additional hydrodynamic degrees of freedom (compared to simple fluids)
due to spontaneously broken symmetries. First, translational symmetry is broken by the
layered structure, which can be described by a phase-like variable Φ. Deviations of this
phase from its equilibrium value, δΦ, constitute one of the symmetry-restoring degrees of
freedom that give rise to hydrodynamic modes. For flat equidistant layers (the unrestricted
equilibrium situation) the phase can be written as Φeq = z (calling the layer normal direction
the z-axis). Deviations can then be described by displacements u of the layers along the
layer normal k̂

Φ = z − u. (1)

For weak deviations from the equilibrium structure the simplest description is obtained by
formulating the dynamics of the layers in terms of u. For strong deviations, however, the
u-description – although still possible – becomes rather cumbersome. We will therefore stick
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here to the phase (or rather δΦ) as hydrodynamic variable. Such a formulation is also useful,
if the equilibrium is restricted or quenched (by external fields or surfaces) and the layers are
no longer flat. Of course, the existence of layers also breaks rotational symmetry, since the
layer normal k̂ defines a preferred direction. However, deformations of that direction, δk̂, do
not constitute independent variables, but are described by gradients of the layer displace-
ment. This is true not only in linear approximation δk̂ = −∇⊥u (where the subscript ’⊥’
refers to components perpendicular to k̂), but generally for arbitrarily strong deformations

δk̂i =|∇Φ |−1 (δij − k̂ik̂j)∇jδΦ. (2)

which follows from the definition of the unit normal vector

k̂ = ∇Φ (|∇Φ |)−1. (3)

This is the manifestation of the fact that the broken rotational symmetry due to the layer
normal is slaved by the broken translational symmetry of the layers themselves.

The tilt of the director n̂ with respect to k̂ (n̂ · k̂ = cosψ 6= 1) gives rise to a second
independent symmetry variable. The director n̂, or its projection onto the layer plane, the
in-plane director ĉ

ĉ ≡ n̂− k̂(k̂ · n̂)

(1− (k̂ · n̂)2)
1
2

= n̂ (sinψ)−1 − k̂ cotψ (4)

breaks rotational symmetry about the layer normal, since the tilt direction is not fixed
energetically. The tilt angle ψ (i.e. the amount of tilt) however, is fixed and deviations
from that fixed angle cost energy rendering such tilt angle deviations non-hydrodynamic.
Rotations of the director about the layer normal (preserving the tilt angle) are therefore the
proper symmetry variable

δn3 ≡ (k̂ × ĉ) · δn̂ = p̂ · δn̂. (5)

In the chiral smectic C∗ phase the tilt direction changes from layer to layer in a helicoidal
fashion and the director is conic helical, where the helix axis coincides with the layer normal.
Simultaneously an in-plane polarization P = P0p̂ (perpendicular to both, the director and
the layer normal) occurs, which is thus helical. In such a structure the translational symmetry
along the layer normal (or helix axis) is broken twice and independently by the layer and
the helix structure. Again there are two additional hydrodynamic variables, when compared
to simple fluids [2]: layer displacement uA (or the phase Φ) and helix displacement uC , both
along the layer normal. The latter, however, is equivalent to a helix rotation (about the
helical axis) and the broken symmetry could also be viewed as rotational. The equivalence
can be described by

(k̂ × p̂) · δp̂ = q0 uC (6)

where q0 is the helical wave vector. Since p̂ and n̂ are rigidly coupled, p̂ · n̂ = 0, this variable
is the same (up to an unimportant factor) as that defined in eq.(5) for the smectic C case.
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Although one could think that the helix displacement variable uC can only be used on length
scales larger than the pitch 2π/q0 (global description), the connection to the helix rotation
(6) shows that this description is useful also for much smaller length scales (local description).
Thus the number of additional hydrodynamic degrees of freedom in smectic C and C∗ liquid
crystals due to broken symmetries is the same and they are of rather similar nature. On
the other hand, the equilibrium states and their symmetries are very different. In smectic C
the director is homogeneous in equilibrium. Since head and tail are undistinguishable for a
director, there is a n̂ to −n̂ symmetry in nematics and a k̂ to −k̂ symmetry in smectic A.
This results in a combined

n̂ to − n̂ ∧ k̂ to − k̂ (7)

symmetry for smectic C, in order to preserve the tilt angle, k̂ · n̂ = cosψ = const. By
the definitions (3) and (4) also ĉ and Φ change sign under the relation (7). Although the
direction p̂ ≡ k̂ × ĉ is not affected by the symmetry (7), it is not a (polar) vector in the
smectic C phase, since the k̂/ĉ-plane is a mirror plane. In the following we will use the triad
of orthogonal unit vectors k̂, ĉ, and p̂ as the body frame. Since smectic C are monoclinic
one could use alternatively the frame n̂, p̂, and ĉ ′ ≡ n̂ × p̂ = (k̂ − n̂ cosψ)(sinψ)−1. If
the molecules are chiral (as in the smectic C∗ phase), the k̂/ĉ-plane is no longer a mirror
plane, and p̂ is a polar axis giving rise to the in-plane polarization P = P0p̂. The lack of
inversion symmetry then leads to the helical and conic-helical equilibrium structure of the
polarization and the director, respectively. In the local description a smectic C∗ is biaxial
similar to smectic C, while in the global description on length scales larger than the helical
pitch uniaxiality like in smectic A is regained.

In addition to the additional hydrodynamic variables discussed above one could think
of additional non-hydrodynamic, i.e. relaxational variables, which are not connected with
symmetries. One candidate is the tilt angle ψ of the director with respect to the layer normal.
It also serves as the order parameter strength of the smectic C phase at the transition to
the A phase. Other candidates are the strength of the nematic order and of the smectic
order. In smectic C∗ also the absolute value of the polarization P is a non-hydrodynamic
variable. Since these variables are only slow enough to be relevant for typical hydrodynamic
time scales, if one operates closely to second order or weakly first order phase transitions, or
at sufficiently high frequencies, but not in general, we will not consider them further below.

The linearized hydrodynamics of smectic C and C∗ is well known. Static deformations
of the in-plane director give rise to 4 Frank-like orientational elastic coefficients, since the
phase is biaxial [1]. Thereafter, the elasticity of the layers has been added comprising one
(layer) compressional modulus, 3 layer curvature coefficients (generalized splay coefficients
– the generalized bend coefficients are usually neglected) and 2 contributions, where layer
curvature and in-plane director bending are mixed [3]. The linearized dynamics of smectic
C phases was given in [4] in the framework using broken symmetries. Due to the monoclinic
symmetry of that phase there are 13 (ordinary) flow viscosities, 4 thermal conductivities, one
permeation coefficient, one director reorientation viscosity, 2 thermo-permeation coefficients,
describing viscous cross couplings between temperature gradients and layer deformations. As
in any system with nematic degrees of freedom there are reactive (non-dissipative) transport
parameters relating flow and director orientation, i.e. for smectics C there are 2 (only
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one of which gives rise to shear flow alignment [5]). The theories described above can be
generalized into the nonlinear domain by taking the (orientation dependent) material tensors
for the actual state of the system instead of those for the equilibrium orientation. However,
they are still linear in the sense that deviations from the equilibrium state are assumed to
be small. But there is a need for dynamic theories that are applicable for situations far
from equilibrium, i.e. for strong layer curvature or non-flat ’ground’ states due to external
fields or boundary conditions. An early, not quite satisfactory attempt in that direction has
been made by the present authors [6]. For the chiral smectic C∗ phase an approach more in
the spirit of a Ginzburg-Landau description has been proposed [7] allowing for chiral terms
that are not compatible with the layer structure, but would lead to a different ground state
with a different symmetry and different broken symmetries. Quite recently the statics of
strongly deformed (layered) smectic as well as discotic phases (including strong curvature
and compression) has been discussed [8]. A dynamic theory based on continuum mechanics
of smectic C and C∗ phases with strong layer curvature, but with constant layer spacing (no
true elasticity, i.e. no compression or dilation and with flat layers as ground state) has been
given also quite recently [9]. There is also a dynamic theory for smectic A liquid crystals
using the phase Φ as variable [10].

2 THERMODYNAMICS AND STATICS

The static behavior of macroscopic systems is most easily described by setting up an energy
functional =

∫
f dV as the spatial integral over the energy density f . With respect to

symmetry variables the energy cannot depend on homogeneous changes of these variables,
but only on their gradients. For the variables discussed in the preceding section the gradient
energy contains several contributions. Changes of the layer thickness, d(|∇Φ | −1) = k̂·d∇Φ
cost elastic energy and are expressed by first order longitudinal gradients of the phase variable
describing compression or dilation of the layers. First order transverse gradient contributions
are not possible, since they describe homogeneous rotations of the layer normal (cf. (2)),
which must not cost energy. Thus, transverse gradients of Φ can first occur second order
and can be interpreted as splay and bend of the layer normal

∇lk̂i =|∇Φ |−1 (δij − k̂ik̂j)∇j∇lΦ. (8)

Of course, eq.(2) ensures the identity k̂i∇lk̂i ≡ 0.
In order to be systematic also inhomogeneous compression or dilation of the layers can be

considered, since thereby also second order gradients of Φ are involved. In-plane rotations of
the director, δn3, can also enter the energy as gradients only, i.e. if they are inhomogeneous.
Finally there are coupling effects between all these deformations. Thus the gradient energy
for smectic C, written explicitly in terms of the true variables, takes the following form,

fg =
B

2
(k̂ ·∇Φ− 1)2 +

1

2
K

(l)
ijkl(∇i∇jΦ)(∇k∇lΦ) +

1

2
K

(n)
jl p̂ip̂k(∇jn̂i)(∇ln̂k)

+
1

2
K

(m)
ijl p̂k(∇i∇jΦ)(∇ln̂k) (9)
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Equation (9) only contains terms up to quadratic order. Cubic and quartic contributions
are possible, but usually not very important, and we will not discuss them.

The gradient energy (9) has been expressed in terms of the hydrodynamic variables Φ and
p̂ · δn̂. All other rotations are not independent but can be expressed by the hydrodynamic
variables using the constraints k̂ · n̂ = cosψ = const, p̂ · n̂ = 0, n̂2 = 1, eq.(8), etc.

k̂ · δn̂ = −n̂ · δk̂ = − |∇Φ |−1 sinψ ĉ · δ∇Φ (10a)

ĉ · δn̂ = −n̂ · δĉ = cosψ ĉ · δk̂ =|∇Φ |−1 cosψ ĉ · δ∇Φ (10b)

k̂ · δĉ = −ĉ · δk̂ = − |∇Φ |−1 ĉ · δ∇Φ (10c)

p̂ · δĉ = −ĉ · δp̂ = (sin ψ)−1p̂ · δn̂− cotψ p̂ · δk̂
= (sinψ)−1p̂ · δn̂− |∇Φ |−1 cotψ p̂ · δ∇Φ (10d)

k̂ · δp̂ = −p̂ · δk̂ = − |∇Φ |−1 p̂ · δ∇Φ (10e)

where δ can be any first order differential operator. Of course, the k̂, ĉ, and p̂ occurring
explicitly and implicitly in eq.(9) are not constant, but time and space dependent. Their
variations are again expressed by δΦ and p̂ · δn using (10).

The actual structure of the material tensors, their dependence on k̂, ĉ, and p̂, follows
from the monoclinic symmetry [4] taking into account (7)

K
(n)
ij = K

(n)
1 k̂ik̂j + K

(n)
2 ĉiĉj + K

(n)
3 p̂ip̂j + K

(n)
4 (ĉik̂j + k̂iĉj) (11a)

K
(l)
ijkl = K

(l)
11 k̂ik̂jk̂kk̂l + K

(l)
22 ĉiĉj ĉkĉl + K

(l)
33 p̂ip̂jp̂kp̂l + K

(l)
23 (ĉiĉj p̂kp̂l + p̂ip̂j ĉkĉl)

+ K
(l)
13 (k̂ik̂j p̂kp̂l + p̂ip̂jk̂kk̂l) + K

(l)
12 (k̂ik̂j ĉkĉl + ĉiĉj k̂kk̂l)

+ K
(l)
44 (k̂ip̂j k̂kp̂l + p̂ik̂jk̂kp̂l + k̂ip̂j p̂kk̂l + p̂ik̂j p̂kk̂l)

+ K
(l)
55 (ĉip̂j ĉkp̂l + p̂iĉj ĉkp̂l + ĉip̂j p̂kĉl + p̂iĉjp̂kĉl)

+ K
(l)
66 (ĉik̂j ĉkk̂l + k̂iĉj ĉkk̂l + ĉik̂jk̂kĉl + k̂iĉj k̂kĉl)

+ K(l)
16 (k̂ik̂j k̂kĉl + k̂ik̂j ĉkk̂l + k̂iĉjk̂kk̂l + ĉik̂jk̂kk̂l)

+ K
(l)
26 (ĉiĉj ĉkk̂l + ĉiĉjk̂kĉl + ĉik̂j ĉkĉl + k̂iĉj ĉkĉl)

+ K
(l)
36 (p̂ip̂jk̂kĉl + p̂ip̂j ĉkk̂l + k̂iĉjp̂kp̂l + ĉik̂jp̂kp̂l) + K

(l)
45 (ĉip̂j k̂kp̂l + p̂iĉj k̂kp̂l

+ ĉip̂jp̂kk̂l + p̂iĉjp̂kk̂l + k̂ip̂j ĉkp̂l + k̂ip̂jp̂kĉl + p̂ik̂j ĉkp̂l + p̂ik̂j p̂kĉl) (11b)

K(m)
ijl = K(m)

1 ĉiĉj p̂l + K(m)
2 p̂ip̂jp̂l + K(m)

3 (ĉip̂j + p̂iĉj)ĉl + K(m)
4 (ĉip̂j + p̂iĉj)k̂l

+ K
(m)
5 k̂ik̂jp̂l + K

(m)
6 (ĉik̂j + k̂iĉj)p̂l + K

(m)
7 (p̂ik̂j + k̂ip̂j)k̂l (11c)

The K
(n)
ij are generalized Frank coefficients for director rotations. The K

(l)
ijkl are given

in Schönflies notation. They comprise 4 generalized Frank coefficients for layer normal
rotations (K

(l)
22 ,K

(l)
33 ,K

(l)
23 ,K

(l)
55 ), one coefficient connected with inhomogeneous layer compres-

sion/dilation (K
(l)
11 ), and 8 coefficients describing mixtures of them. Of the 7 coefficients

connected with mixed deformations of layers and the director, there are 4 describing mixed
splay/bend of n̂ and k̂ (K

(m)
1 . . . K

(m)
4 ), one describes a mixture of director splay/bend with
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inhomogeneous layer compression/dilation (K
(m)
5 ), while the other two involve splay/bend

of n̂ and k̂ as well as inhomogeneous layer compression/dilation.
It is somewhat tempting to use – as in biaxial nematics – the three angles δθ1 = ĉ · δk̂,

δθ2 = p̂ · δk̂, and δθ3 = p̂ · δĉ, in order to describe the orientational degrees of freedom.
In that case, however, one must consider that these angles are not defined globally, since
three-dimensional rotations about different axes are generally non-commutable. This leads
to the so-called Mermin-Ho relations for biaxial nematics [11]

(δ1δ2 − δ2δ1)θ = (δ1θ)× (δ2θ) (12)

where δ1 and δ2 are any first order differential operator and where θ = (θ1, θ2, θ3). Because
of these rather complicated relations and, in particular, because the θi are not independent
of each other due to eq.(8), it is not appropriate to use this angle-variable description for the
dynamics below. The fact that rotations of the different orientations about different axes do
not commute, which is expressed by (12), is incorporated into our description by eqs.(10).

In addition to the symmetry variables there are the usual hydrodynamic variables describ-
ing variations of the entropy density δσ and the mass density δρ (we will take temperature
T and pressure p/chemical potential µ as conjugate quantities, see below). They also show
static cross couplings with layer compression/dilation

f0 = (
T

2CV
)(δσ)2 +

1

2ρ2κs
(δρ)2 +

1

ραs
(δρ)(δσ) + (k̂ ·∇Φ− 1)(γσδσ + γρδρ) (13)

defining the static susceptibilities CV (specific heat), κs (adiabatic compressibility), αs (adi-
abatic expansion coefficient), and the layer related γ’s. In case one wants to consider an
extra scalar quantity, δS, e.g. the scalar order parameter, the tilt angle or a concentration
(in mixtures), the appropriate energy density reads

fS =
γ

2
(δS)2 +

(
γS(k̂ ·∇Φ− 1) + βσδσ + βρδρ

)
δS (14)

with additional static susceptibilities γ, γS, βρ and βσ. Generally it is not necessary to go
beyond the harmonic approximation in eqs.(13) and (14).

In the presence of external fields some or all of the rotational symmetries are broken
externally by these fields. Thus, already homogeneous rotations enter the energy as can be
seen from the dielectric energy

− 4π fdiel =
1

2
ε1(n̂ ·E)2 +

1

2
ε2(k̂ ·E)2 +

1

2
ε3(p̂ ·E)2 + ε4(n̂ ·E)(k̂ ·E) (15a)

=
1

2
ε̄1(ĉ ·E)2 +

1

2
ε̄2(k̂ ·E)2 +

1

2
ε3(p̂ ·E)2 + ε̄4(ĉ ·E)(k̂ ·E) (15b)

with

ε̄1 = ε1 sin2 ψ (16a)

ε̄2 = ε2 + ε1 cos2 ψ + 2ε4 cosψ (16b)

ε̄4 = ε4 sinψ + ε1 sinψ cosψ (16c)
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or from its differential form

− 4π dfdiel =
(
(ε̄2 − ε̄1)(ĉ ·E)(k̂ ·E)− ε̄4(k̂ ·E)2 + ε̄4(ĉ ·E)2

)
|∇Φ |−1 ĉ · d∇Φ

+
(
(ε̄1 − ε3)(ĉ ·E)(p̂ ·E) + ε̄4(k̂ ·E)(p̂ ·E)

)(
(sinψ)−1p̂ · dn̂

− |∇Φ |−1 cotψ p̂ · d∇Φ
)

+
(
(ε̄2 − ε3)(k̂ ·E)(p̂ ·E) + ε̄4(ĉ ·E)(p̂ ·E)

)
|∇Φ |−1 p̂ · d∇Φ

+
(
(ε̄2 k̂ ·E + ε̄4 ĉ ·E) k̂ + (ε̄1 ĉ ·E + ε̄4 k̂ ·E) ĉ + ε3 (p̂ ·E) p̂

)
·dE (17)

In addition there is the flexoelectric energy with respect to both, layer and director
distortions

fflex = e
(n)
ij p̂kEi∇jn̂k + e

(k)
kij(δkl − k̂kk̂l)Ei∇jk̂l (18a)

= e
(n)
ij p̂kEi∇jn̂k + e

(k)
kij |∇Φ |−1 (δkl − k̂kk̂l)Ei∇l∇jΦ. (18b)

expressed by the variables Φ and p̂ · δn̂. There are 4 flexoelectric coefficients connected
with the director and 9 with the layers

e
(n)
ij = e

(n)
1 ĉip̂j + e

(n)
2 p̂iĉj + e

(n)
3 k̂ip̂j + e

(n)
1 p̂ik̂j (19a)

e
(k)
kij = e

(k)
1 ĉkĉiĉj + e

(k)
2 ĉkk̂iĉj + e

(k)
3 ĉkĉik̂j + e

(k)
4 ĉkk̂ik̂j + e

(k)
5 ĉkp̂ip̂j

+ e
(k)
6 p̂kp̂iĉj + e

(k)
7 p̂kĉip̂j + e

(k)
8 p̂kp̂ik̂j + e

(k)
9 p̂kk̂ip̂j (19b)

In order to establish the statics we have to employ thermodynamics first. We write down the
total energy as a homogeneous function of the relevant macroscopic (extensive and intensive)
variables. Above we have expressed the various contributions to the energy density, f , in
terms of the electric field E, rather than by the dielectric displacement field D. Thus, all
material parameters involved are taken at constant field, which is closer to the usual exper-
imental situation. However, the charge conservation law is the relevant dynamic equation,
which involves D as variable. Therefore we will use in the following a Legendre-transformed
energy density, ε(D), with f(E) = ε(D)− (1/4π)E ·D and the total energy can be written

=
∫

ε dV = εV = E(ρV, σV, gV, DV, ρV S, ρV∇iΦ, ρV∇i∇jΦ, ρV p̂i∇jn̂i, ρV p̂iδn̂i)
(20)

With the help of Euler’s theorem and the definition of the thermodynamic pressure, p ≡
−(∂/∂V ) we get the Gibbs-Duhem and Gibbs relation

p = −ε + µρ + Tσ + vigi +
1

4π
EiDi (21)

dp = ρ dµ + σ dT + gi dvi +
1

4π
Di dEi − Ω̃ · d(∇Φ)− h̃ p̂ · dn−WdS (22)

dε = µ dρ + Tdσ + WdS + v · dg +
1

4π
E · dD + Ω̃i d(∇iΦ) + Ψij d∇i∇jΦ

+Hj p̂i d(∇jn̂i) + h̃ p̂ · dn̂ (23)
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The conjugate quantities defined in eq.(23) are either directly given as partial derivatives of
the total energy density

T =
∂ε

∂σ
, v =

∂ε

∂g
, E = 4π

∂ε

∂D
, W =

∂ε

∂S
, Hj =

∂ε

∂(p̂i∇jn̂i)
, ψij =

∂ε

∂∇i∇jΦ(24)

or they are combinations of those

Ω̃i = Ω̄i+ |∇Φ |−2 (sinψ)−1p̂iĉk(Hj∇j∇kΦ + h̄∇kΦ) (25)

h̃ = h̄− |∇Φ |−1 cotψ ĉk(Hj∇j∇kΦ + h̄∇kΦ) (26)

µ = µ̄ + W S + Ω̄i∇iΦ + ψij∇i∇jΦ + Hjp̂i∇jn̂i + h̄p̂iδn̂i (27)

with

Ω̄i =
∂ε

∂∇iΦ
, h̄ =

∂ε

∂(p̂iδn̂i)
, µ̄ =

∂ε

∂ρ
(28)

The difference between the barred and the tilded quantities arises from the fact that p̂
being part of the definition of the nematic-like variable is itself rotated in a deformed state.
In a linear theory this effect can be neglected, since the extra terms in (25) and (26) are
nonlinear. The chemical potential µ contains the intensive variables, while the pressure
involves the extensive ones.

For the explicit calculation of the non-electric conjugate quantities by partial derivation of
the total energy density we can use f (instead of ε), where f = f0+fS +fdiel+fflex+fg +fkin

also contains the kinetic energy density fkin = (1/2ρ) g2. From the latter the velocity,
v = (1/ρ) g, is connected with the momentum density g in the usual manner. For the scalar
quantities chemical potential, µ̄, temperature, δT , and δW we get

δµ̄ =
1

ρ2κs

δρ +
1

ραs

δσ + γρ(k̂ ·∇Φ− 1) + βρδS −
1

2ρ2
g2 (29a)

δT =
T

CV
δσ +

1

ραs
δρ + γσ(k̂ ·∇Φ− 1) + βσδS (29b)

δW = γδS + γs(k̂ ·∇Φ− 1) + βσδσ + βρδρ (29c)

where we have refrained from keeping terms quadratic in δρ, δσ, and δS. The conjugates
to the symmetry variables are

Hj = K
(n)
lj p̂i∇ln̂i + K

(m)
klj ∇k∇lΦ (30)

Ψij = K
(l)
ijkl∇k∇lΦ + K

(m)
ijl p̂k∇ln̂k + e

(k)
klj |∇Φ |−1 (δki − k̂kk̂i)El (31)

h̄ =
(
(ε3 − ε̄1)(ĉ ·E)(p̂ ·E)− ε̄4(k̂ ·E)(p̂ ·E)

)
(sinψ)−1 +

1

2
(∇i∇jΦ)(∇k∇lΦ) K

(l)
ijkl

− |∇Φ |−1 cotψ ĉm(∇l∇mΦ)
(
K

(n)
jl p̂i(∇jn̂i) + K

(m)
ijl ∇i∇jΦ

)
+ p̂kEi(∇jn̂k) e

(n)
ij

+ |∇Φ |−1 (δkl − k̂kk̂l) Ei(∇l∇jΦ) e
(k)
kij − e

(n)
ij |∇Φ |−1 cotψ ĉp Ei∇p∇jΦ

+
1

2
p̂i p̂k (∇jn̂i)(∇ln̂k) K

(n)
jl + (p̂k∇ln̂k)(∇i∇jΦ) K

(m)
ijl (32)
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Ω̄i = k̂i

(
B (k̂ ·∇Φ− 1) + γσδσ + γρδρ + γSδS

)
+

1

4π
|∇Φ |−1 ĉi

(
(ε̄1 − ε̄2)(ĉ ·E)(k̂ ·E) + ε̄4(k̂ ·E)2 − ε̄4(ĉ ·E)2

)
− 1

4π
|∇Φ |−1 p̂i

((
ε̄4 − (ε̄1 − ε3) cotψ

)
(ĉ ·E) + (ε̄2 − ε3 − ε̄4 cotψ)(k̂ ·E)

)
(p̂ ·E)

+e
(n)
lj |∇Φ |−2 (sinψ)−1ĉm p̂i (∇j∇mΦ)El + (p̂k∇jn̂k) Ep ie

(n)
pj

−e
(k)
kpj |∇Φ |−2

(
(δkl − k̂kk̂l)k̂i + (δil − k̂ik̂l)k̂k + (δik − k̂ik̂k)k̂l

)
Ep(∇l∇jΦ)

+ |∇Φ |−1 (δkl − k̂kk̂l)Ep(∇l∇jΦ) ie
(k)
kpj +

1

2
(p̂p∇jn̂p)(p̂k∇ln̂k) iK

(n)
jl

+
1

2
(∇p∇jΦ)(∇k∇lΦ) iK

(l)
pjkl + (p̂k∇ln̂k)(∇p∇jΦ) iK

(m)
pjl

+ |∇Φ |−2 (sinψ)−1p̂iĉk

(
K

(n)
jl (p̂m∇jn̂m) + K

(m)
mjl (∇m∇jΦ)

)
∇l∇kΦ (33)

The quantities h̄ and Ω̄i vanish (except for the first line in eq.(33)) in linear approximation
or if the external field is switched off. Several nonlinearities are due to the orientation
dependence of the material tensors as is expressed by the operators

= sin−1 ψ (p̂ · ∂

∂ĉ
− ĉ · ∂

∂p̂
) (34)

i = |∇Φ |−1
(
(δij − k̂ik̂j)

∂

∂k̂j

− (k̂j ĉi + p̂ip̂j cotψ)
∂

∂ĉj
− p̂i(k̂j − ĉj cotψ)

∂

∂p̂j

)
(35)

An implicit expression for the electric field E (in terms of D and other variables) is obtained
from

Di ≡ −(∂/4π∂E)(fdiel + fflex) as

Di = k̂i(ε̄2 k̂ ·E + ε̄4 ĉ ·E) + ĉi(ε̄1 ĉ ·E + ε̄4 k̂ ·E) + ε3 p̂i(p̂ ·E)

−e
(n)
ij p̂k∇jn̂k − e

(k)
kij |∇Φ |−1 (δkl − k̂kk̂l)∇l∇jΦ (36)

which can be inverted to determine E.
In the chiral smectic C∗ phase there is a molecular chirality of the constituents or of

chiral dopants added characterized by the existence of a pseudoscalar q0. Thus there is no
center of symmetry and no mirror plane. Therefore, p̂ is not equivalent to −p̂ and can be
taken as a polar vector, while q0p̂ is an axial vector [12]. Indeed the difference between
axial and polar vectors is rather unimportant in systems lacking a center of symmetry. Of
course, eq.(7) is still valid. This change of the symmetry in the chiral systems has two
consequences: An in-plane spontaneous polarization (along p̂) [13] and a helical structure
of ĉ and p̂ rendering the phase heli-electric [14]. For a local hydrodynamic description, as
described in the Introduction, this has the consequence that the biaxial structure given by
k̂, ĉ, and p̂ is inhomogeneous in space even in the undeformed state. However, since our
nonlinear description always allowed a space dependence of the local preferred directions
through the state variables, there is no different procedure necessary for dealing with this
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equilibrium inhomogeneity. The equations are valid for the helical ground state (or other
more complicated inhomogeneous structures) as well as for a surface stabilized unwound
state.

Due to the reduced symmetry there are additional contributions (denoted by the super-
script (ch) in the following) to the various energy forms

f (ch)
g = q

(l)
ij ∇i∇jΦ + q

(n)
i p̂k∇in̂k (37)

with

q
(l)
ij = q

(l)
1 (p̂iĉj + p̂j ĉi) + q

(l)
2 (p̂ik̂j + p̂jk̂i) (38a)

q
(n)
i = q

(n)
1 k̂i + q

(n)
2 ĉi (38b)

The various linear chiral gradient terms generally give rise to frustration, since minimization
may give ground states incompatible to the flat layer or the simple helix structure. Only for
the special choice

q
(l)
2 = 0, q

(l)
1 = −(1/2) |∇Φ |−1, q

(n)
1 = − sinψ, q

(n)
2 = cosψ (39)

the simple helix expression f (ch)
g ∼ n̂ · curl n̂ is obtained. In addition to the dielectric energy

there is now a ferroelectric

f
(ch)
ferro = −P0p̂ ·E (40)

and a piezoelectric contribution

f
(ch)
piezo = α

(n)
i p̂jEiδnj + α

(l)
ij Ei∇jΦ (41)

as well as cross coupling terms between the scalar variables δρ, δσ and δS and gradients of
δni and of Φ.

f (ch)
gen = α

(µ)
i p̂j δρ∇iδnj + α

(µ)
ij δρ∇i∇jΦ + α

(T )
i p̂j δσ∇iδnj + α

(T )
ij δσ∇i∇jΦ

+α
(W )
i p̂j δS∇iδnj + α

(W )
ij δS∇i∇jΦ (42)

with the α-tensors of the form (38) carrying 2 coefficients each. These additional chiral
energy contributions give rise to additions to the conjugate quantities

∆T (ch) = α
(T )
i p̂j∇in̂j + α

(T )
ij ∇i∇jΦ (43)

∆µ(ch) = α
(µ)
i p̂j∇in̂j + α

(µ)
ij ∇i∇jΦ (44)

∆H
(ch)
i = α

(T )
i δσ + α

(W )
i δS + q

(n)
i + α

(µ)
i δρ (45)

∆W (ch) = α
(W )
i p̂j∇in̂j + α

(W )
ij ∇i∇jΦ (46)

∆Ψ
(ch)
ij = α

(T )
ij δσ + α

(W )
ij δS + q

(l)
ij + α

(µ)
ij δρ (47)
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∆h̄(ch) = α
(n)
i Ei + Ei p̂j δn̂j α

(n)
i + (p̂j∇in̂j)

(
δσ α

(T )
i + δS α

(W )
i + δρ α

(µ)
i

)
+(∇i∇jΦ)

(
δσ α(T )

ij + δS α(W )
ij + δρ α(µ)

ij

)
+ Ei(∇jΦ) α(l)

ij (48)

∆Ω̄
(ch)
i = α

(l)
ji Ej + Ek(∇jΦ) iα

(l)
kj + (∇k∇jΦ)

(
δσ iα

(T )
kj + δS iα

(W )
kj + δρ iα

(µ)
kj

)
+Ekp̂jδn̂j iα

(n)
k + (p̂j∇kn̂j)

(
δσ iα

(T )
k + δS iα

(W )
k + δρ iα

(µ)
k

)
(49)

∆D
(ch)
i =

−1

4π
(α

(n)
i p̂jδn̂j + α

(l)
ji∇jΦ) (50)

where and i are defined in (34) and (35), respectively.

HYDRODYNAMICS

Having discussed the static properties in the preceding section we are prepared to set up
the hydrodynamic equations, which are either conservation laws or balance equations for
relaxational variables as well as those associated with spontaneously broken continuous sym-
metries. They are of the general form [15]

ρ̇ +∇i(ρvi) = 0 (51)

ġi +∇j(givj) +∇i(p−
E2

8π
) +∇j(σ

(s)
ij + σij) = ρeEi + Pj∇jEi (52)

σ̇ +∇i(σvi) + divjσ =
R

T
(53)

ε̇ +∇i([ε + p]vi) + divjε = 0 (54)

Ḋi + vi∇jDj + (D × ω)i + 4πje
i = 0 (55)

Φ̇ + vi∇iΦ + X = 0 (56)

ṅ + vj∇jn̂ + n̂× ω + Y = 0 (57)

Ṡ + vi∇iS + Z = 0 (58)

where the dots denote a partial time derivative ∂/∂t. Note that in eq.(57) only the p-
component of director reorientation constitutes an independent dynamic degree of freedom
as discussed in the Introduction. Thus, of the phenomenological quasi-current Y only the
p-component will be given below, while the other components are fixed by the quasi-current
X (56) via eqs.(10a,b). In eq.(52) ρe = (1/4π)divD is the electric charge density and
P = (1/4π)(D −E) is the polarization. The nonlinear convective terms shown in eqs.(51-
58) are required by Galilean invariance. The nonlinear term in the director equation (57)
involving the vorticity ω (ω ≡ (1/2)curlv) is due to the broken rotational symmetry. The
vi∇jDj term in (55) reflects the charge transport ρevi, while D × ω comes from D being
defined in the rest frame [16]. All these contributions are balanced, in order to give zero

entropy production (R = 0), by the pressure (eq.(21)) and by σ
(s)
ij , the part of the stress
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tensor, which is determined by symmetry and covariance principles. For σ
(s)
ij we find

σ
(s)
ij =

1

2
(h̃−∇kHk) (n̂ip̂j − n̂jp̂i) +

1

8π
(EiDj − EjDi) (59)

+
1

2
Hk(k̂j ĉi − k̂iĉj)

(
(sinψ)(−1) |∇Φ |−1 p̂l∇k∇lΦ− cotψ p̂l∇kn̂l

)
+Ψjl∇i∇lΦ + (Ω̃j −∇kΨjk)∇iΦ + Hjp̂l∇inl

In eq.(59) the first terms are antisymmetric contributions due to the nematic degree of
freedom, while the last three are generalizations (due to the layers) of the Leslie-Ericksen
stress. Of course, angular momentum conservation requires a symmetric stress tensor (but
angular momentum conservation is not a local equation and does not give rise to an extra
dynamic equation [4]). With the help of rotational invariance of the energy density (23)
expressed by

dεrot = aij (Ω̃i∇jΦ + Ψik∇j∇kΦ + Ψki∇k∇jΦ (60)

+Hi p̂k∇jn̂k + Hk p̂i∇kn̂j + h̃ p̂in̂j +
1

4π
EiDj) = 0

with aij any constant antisymmetric tensor, the antisymmetric part of σ
(s)
ij can be written

as a divergence

σ
(s)
ij − σ

(s)
ji = ∇k(Ψik∇jΦ + Hkn̂j p̂i −Ψjk∇iΦ−Hkn̂ip̂j) (61a)

≡ ∇kdijk (61b)

Then a symmetrized version of (59) can be chosen [4]

2σ
(s,sym)
ij = 2σ

(s)
ij +∇k(djki + dikj − dijk) (62)

with unchanged implication for momentum conservation (52), since∇j∇k(djki+dikj−dijk) =
0.

The phenomenological currents σij , jσ, je and the quasi-currents X, Yi and Z are each
a sum of a reversible and an irreversible part, due to zero (R = 0) and positive definite
(R > 0) entropy production, respectively. They are characterized by reactive and dissipative
transport parameters. Inserting the phenomenological currents or quasicurrents eqs.(51-58)
into the Gibbs relation (23) the condition is

R = WZ + Eij
(e)
i + h(tot)p̂iYi − j

(σ)
i ∇iT − σij∇jvi −X∇iΩ

(tot)
i (63)

with R = 0 and R > 0 for the reversible (superscript R) and irreversible (superscript D)
parts of the currents and quasi-currents, respectively. In deriving (63) we have made use of
the fact that Yi ∼ p̂i, which gives HjYi∇j p̂i = 0. Divergence terms have been incorporated
into the energy density current jε, which takes a very complicated structure. But fortunately
it will not be needed, because the energy conservation law is redundant due to the Gibbs
relation eq.(23). In (63) and in the following we will use the abbreviations

h(tot) = h̃−∇iHi (64a)

Ω
(tot)
i = Ω̃i −∇jΨij (64b)
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For the reversible (time-symmetric) parts the condition R = 0 and symmetry allows the
following contributions

Y
(R)
i = −p̂iλjk

1

2
(∇jvk +∇kvj) (65)

σ
(R)
ij = −1

2
(λij + λji)h

(tot) − 1

2
(βij + βji)W (66)

jσ (R) = 0 = je (R) = 0 = X(R) (67)

Z(R) = −1

2
βij(∇ivj +∇jvi) (68)

with

λij = λ1p̂ik̂j + λ3p̂iĉj (69)

βij = β1ĉiĉj + β2k̂ik̂j + β3p̂ip̂j + β4(k̂iĉj + ĉik̂j) (70)

containing two λ-transport parameters [5], one of which corresponds to the flow alignment
parameter of uniaxial nematics and 4 reactive β-parameters connected with S. Note that
there are no flow-alignment-like terms with respect to the layer normal k̂. Such terms are
possible in a biaxial nematic, but they are not possible in a layered structure.

The irreversible parts of the currents and quasi-currents are obtained from an entropy
production functional that is bilinear in the thermodynamic forces, i.e. we restrict ourselves
here to linear irreversible thermodynamics (cubic and quartic terms in the entropy production
have been discussed in [17]). Nevertheless, the expressions obtained will be highly nonlinear
when conjugate quantities are expressed by the variables using eqs.(29-33).

j
σ(D)
i = −κij∇jT − κ

(E)
ij Ej − ξ

(T )
i divΩ(tot) (71)

j
e(D)
i = σ

(E)
ij Ej + κ

(E)
ij ∇jT + ξ

(E)
i divΩ(tot) +∇j(ζ

(E)
ji h(tot)) (72)

σ
(D)
ij = −1

2
νijkl(∇kvl +∇lvk) (73)

X(D) = −ξdivΩ(tot) − ξ
(T )
i ∇iT − ξ

(E)
i Ei (74)

Y
(D)
i =

1

γ1
p̂ih

(tot) − p̂iζ
(E)
jk ∇jEk (75)

Z(D) = τW (76)

The material parameters κij , κ
(E)
ij and σ

(E)
ij are of the usual symmetric form (70) (as is the

dielectric tensor in (15b)) containing 4 different coefficients each, while the rank-1 tensors

ξ
(T )
i and ξ

(E)
i contain 2 parameters

ξi = ξ1ĉi + ξ2k̂i (77)

The tensor ζ
(E)
ij is of the same form as λij, eq.(69), containing 2 parameters, ζ

(E)
1 and ζ

(E)
2 .

Eqs. (71-76) contain in the field-free case the same number of dissipative coefficients as
Ref. [4] (cf. the discussion in the Introduction). In [9] much more viscosity-like coefficients
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were found. This is not because ref. [4] used linear irreversible thermodynamics for the
dissipative dynamics (so did we in the present paper as well as ref. [9]), but because in [9]
three dynamic variables (the three rotation angles of the triad k̂, ĉ, and p̂) were used as is
suitable for monoclinic biaxial nematics, while for smectic C liquid crystals only two dynamic
variables (in-plane director rotation and the phase of the layering) are appropriate. Thus, the
existence of layers (i.e. the requirement for k̂ being a layer normal as is expressed in eq.(3))
reduces the number of coefficients as has been seen above for the flow alignment parameters.
With external electric fields eqs. (71-75) contain additionally 4 electric conductivities, 4
thermo-electric diffusivities, 2 electro-permeative and 2 dynamic flexoelectric coefficients.

As discussed above for the chiral smectic C∗ phase we can use the same dynamical
variables as in the achiral case. The absence of the mirror plane (i.e. no p̂ to −p̂ symmetry),
however, allows for additional terms in the phenomenological currents and quasi-currents.
Especially there is the dynamic analogue to the static piezo term [18] in the dissipative
domain

∆j
e(D,ch)
i = ζ

(E)
i h(tot) (78)

∆Y
(D,ch)
i = p̂i ζ

(E)
j Ej + p̂i ζ

(T )
j ∇jT (79)

∆jσ(D,ch)
i = −ζ(T )

i h(tot) (80)

as well as some reversible cross couplings [19]

∆jσ (R,ch) = −β
(T )
kji∇kvj (81)

∆je (R,ch) = β
(E)
kji∇kvj (82)

∆σ
(R,ch)
ij = β

(T )
ijk∇kT + β

(W )
ijk Ek (83)

where ζ
(E)
i is of the form (77) and the β

(T,E)
ijk ’s have the structure (11c).

Acknowledgement: H.P. wishes to thank H. Temmen for fruitful discussions on the non-
linear hydrodynamics and electrodynamics of smectic phases being part of H. Temmen’s
doctoral thesis [16].

References

[1] A. Saupe, Mol.Cryst.Liq.Cryst. 7 59, (1969).

[2] H. R. Brand and H. Pleiner, J. Phys. (Paris) 45 563 (1984).

[3] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford University Press, (1993).

[4] P. C. Martin, O. Parodi and P. Pershan, Phys. Rev. A6 2401, (1972).

[5] H. R. Brand and H. Pleiner, J. Phys. (Paris) 43 853 (1982).

[6] H. R. Brand and H. Pleiner, J. Phys. (Paris) 41 553 (1980).

14



[7] I. Dahl and S.T. Lagerwall, Ferroelectrics 58 215 (1984).

[8] S. Stallinga and G. Vertogen, Phys. Rev. E51 536 (1995).

[9] T. Carlson, F. M. Leslie and N. A. Clark, Phys. Rev. E51, 4509 (1995).

[10] J. Marignan, O. Parodi, and E. Dubois-Violette, J. Phys. (Paris) 44, 263 (1983).

[11] H. R. Brand and H. Pleiner, Phys. Rev. A24, 2777 (1981).
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