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We investigate theoretically the bifurcation scenario for colloidal suspensions subject to a vertical
temperature gradient taking into account the effect of sedimentation. In contrast to molecular binary
mixtures, here the thermal relaxation time is much shorter than that for concentration fluctuations.
This allows for differently prepared ground states, where a concentration profile due to sedimentation
and/or the Soret effect has been established or not. This gives rise to different linear instability
behaviors, which are manifest in the temporal evolution into the final, generally stationary convective
state. In a certain range above a rather high barometric number there is a coexistence between the
quiescent state and the stationary convective one, allowing for a hysteretic scenario.
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1. Introduction
Thermal convection in binary mixtures has at-
tracted much research activity already for along
time [Platten & Legros 1984, Cross & Hohenberg
1993, Lücke et al. 1998]. In comparison to the pure
fluid case, the dynamics and the bifurcation sce-
nario are more complicated due to the extra degree
of freedom associated with the concentration field.
Thereby solutal currents are not only driven by
concentration gradients, they occur also in response
to temperature inhomogeneities. This is denoted as
the thermo-diffusive or Soret effect. Its influence
on the convective buoyancy force is quantified by
the dimensionless separation ratio ψ. The sign of ψ
indicates whether temperature- and solutal-induced
density gradients are parallel or opposed to each
other. At negative ψ the motionless conductive
state experiences an oscillatory instability, saturat-
ing in a nonlinear state of traveling waves [Lücke
et al. 1998]. On the other hand, at positive ψ the
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convective instability remains stationary, but the
critical Rayleigh number for the onset of convection
is dramatically reduced as compared to the pure-
fluid reference value Ra0c = 1708. This is a result
of the joint action of thermal and solutal buoyancy
forces.

A typical property of binary mixture convec-
tion the formation of concentration boundary layers
[Winkler & Kolodner 1992]. This is a consequence
of the fact that the concentration diffusivity Dc in
mixtures is usually much smaller than the heat dif-
fusivity κ. For molecular binary mixtures the di-
mensionless Lewis number L = Dc/κ adopts typ-
ical values between 0.1 and 0.01 [Kolodner 1988].
If colloidal suspensions are under consideration, the
time scale separation is even more dramatic. In
this context magnetic colloids, known as ferroflu-
ids, are a canonical example. These materials are
dispersions of heavy solid ferromagnetic grains sus-
pended in a carrier liquid [Rosensweig 1985]. With
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a typical diameter of 10 nm the particles are pretty
large on molecular length scales, resulting in an ex-
tremely small particle mobility. This feature is re-
flected by Lewis numbers as small as L = 10−4

[Blums et al. 1997]. The smallness of L leads to
a situation where de-mixing effects take place on
very large time scales. Thus, in those experiments,
where thermodiffusion is irrelevant, ferrofluids can
safely be treated as single-component fluid systems.

However, ferrofluids and other colloidal suspen-
sions are also known to exhibit a very large separa-
tion ratio ψ (up to |ψ| ≈ 100 [Blums et al. 1999,
Lenglet et al. 2002]. This observation is due to
the pronounced thermo-diffusivity of these materi-
als in combination with the large specific weight
difference of the two constituents. As a result,
in these materials the solutal buoyancy forces are
rather strong and a two-component treatment of
convective instabilities is mandatory. By consider-
ing the classical Rayleigh Bénard setup it is shown
[Ryskin et al. 2003] that the convective behavior
is significantly different from the case of molecular
mixtures. Starting from the motionless configura-
tion with an initially uniform concentration distri-
bution, convective perturbations are found to grow
even at Rayleigh numbers well below the threshold
Ra0 of pure-fluid convection. The actual critical
Rayleigh number Rac is drastically smaller, but ex-
perimentally inaccessible due to the extremely slow
growth of convection patterns for Ra & Rac, re-
quiring very large observation times. On the other
hand, operating the colloidal convection experiment
at Rayleigh numbers Rac < Ra

<∼ Ra0, reveals
considerable positive growth rates, which lead to a
saturated nonlinear state almost as fast as pure-fluid
convection does at Ra > Ra0.

In an external magnetic field the apparent imper-
fection of the bifurcation is even more pronounced
in the case of ferrofluids. Magnetophoretic effects
as well as magnetic stresses have been taken into
account in the static and dynamic parts of the equa-
tions leading to rather pronounced boundary layer
profiles (with respect to the concentration and mag-
netic potential). This boundary layer couples ef-
fectively to the bulk behavior due to the magnetic
boundary condition [Ryskin & Pleiner 2004].

In the case of a negative separation ratio (negative
Soret coefficient) the thermal and solutal density

gradients are opposed when heating from below.
The linear convective oscillatory instability known
from molecular binary mixtures (with ψ < −1) at
Ra0 is also found for colloidal ones, but the nonlin-
ear treatment shows that the linearly unstable os-
cillatory states are transients only and decay af-
ter some time, rendering the final convection-free
state stable [Ryskin & Pleiner 2005]. Above a
second threshold, somewhat higher than Ra0, a fi-
nite amplitude stationary instability is found, while
small amplitude disturbances do not destroy the
convection-free state. The traveling wave solution
dominating in molecular binary mixtures is shifted
to unrealistically high temperature gradients and is
not possible anymore in colloidal systems [Huke et
al. 2000, Huke et al. 2007]. When heating from
above molecular binary mixtures with a negative
separation ratio ψ < −1, a linear stationary insta-
bility is found, which is basically driven by the so-
lutal buoyancy and only slightly modified by ther-
mal variations. In colloidal suspensions, however,
the concentration and temperature dynamics show
completely different behavior. Thus, this station-
ary instability is very different from that obtained
by heating from below with a positive separation ra-
tio. In the former case small scale structures arise at
very high Ra numbers, whose wavelength decreases
strongly with increasing Ra.

In earth’s (vertical) gravity field, the density con-
trast in colloidal suspensions results in a tendency
to phase separate the two constituents. However,
for truly colloidal systems the particles are small
enough that Brownian motion successfully pro-
hibits a real phase separation allowing for the bi-
nary mixture description. (In the different case of
micrometer-sized particles, e.g. magnetorheologi-
cal fluids, a two-fluid description [Onuki 1989, Mil-
ner 1989, 1993, Pleiner & Harden 2003] should be
used.) Nevertheless, there is a slight accumulation
of the heavier constituent towards the bottom, i.e. a
sedimentation induced concentration gradient, that
can be expected to be relevant in systems with a
large separation ratio ψ, while in molecular binary
mixtures this effect generally is negligible. Some
experiments show that sedimentation strongly af-
fects the qualitative behavior of thermal instabili-
ties in ferrofluids (Bozhko & Putin [2003], Bozhko
et al. [2006], Tynjälä et al. [2006]). A first theo-
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retical discussion has been provided by Shliomis &
Smorodin [2005].

In ferrofluids instead of the temperature gradient
an external magnetic field produces a destabilizing
force (the Kelvin force), which is larger in areas
with a higher concentration of magnetic particles.
Concentration fluctuations are therefore amplified
and can lead to an instability. Recently, Ryskin
& Pleiner [2007] have shown theoretically that a
gravity-stratified ferrofluid indeed becomes convec-
tively unstable in a sufficiently strong external ver-
tical magnetic field. The amplitude of the velocity
field is a rather complicated function of time. Ini-
tially the amplitudes grow exponentially with the
linear growth rate. For all realistic parameter val-
ues the final flow at long times is stationary. For
intermediate times the amplitude saturates at a high
value and then decreases considerably to its asymp-
totic value. The transition between the intermedi-
ate high peak value and the very small, saturated
one is due to the fact that the convective flow ef-
fectively reduces the concentration gradient, thus
reducing the very basis for the instability. The fi-
nal stationary state is reached, when the process of
building up the concentration gradient due to sedi-
mentation is balanced by its destruction due to ad-
vection. Since the former process is very slow, only
a very small velocity is necessary. In contrast to the
velocities the amplitudes of the concentration vari-
ations are not small. The stationary concentration
profile is essentially neither linear nor constant due
to the nonlinear part of the Kelvin force. This is in
marked contrast to the thermal convection problem
in non-magnetic colloidal suspension.

In this paper we consider a horizontally infinite
slab of colloidal suspension (thickness h) subject
to gravity and a vertical temperature gradient (no
magnetic field). We restrict ourselves to the case
of a positive separation ratio and heating from be-
low. We provide a comprehensive discussion of the
influence of sedimentation on the bifurcation sce-
nario for that case. Sedimentation affects convec-
tive instabilities in two stages. First, on the level of
possible ground states and their linear stability, and
second on the long-time nonlinear asymptotic . Due
to the slow particle diffusion one can prepare differ-
ent ground states. Applying the temperature gradi-
ent to a suspension right after its preparation, sed-

imentation has no time to develop (”homogeneous
state”) and the linear instability behavior is the same
as in the case without sedimentation [Ryskin et al.
2003]. However, waiting long enough until the sed-
imentation has taken place (”stratified case”) and
applying then the temperature gradient, leads to
situation similar to that of a negative ψ material
(and disregarding sedimentation): the destabilizing
temperature gradient has to overcome the stabiliz-
ing sedimentation-induced concentration gradient,
which leads to an enhanced threshold and an oscil-
latory linear instability. At an even stronger tem-
perature gradient the oscillation frequency goes to
zero rendering the linear instability to be stationary.
(This latter feature has no counterpart in the case of
negative ψ without sedimentation.) After having set
up the mathematical framework in Sec. 2, the linear
instabilities will be discussed in more detail in Sec.
3. Here we also have included the experimentally
hardly realizable case that the concentration gradi-
ent, due to sedimentation as well as due to the ther-
modiffusion effect, is fully developed (”fully devel-
oped state”). All these linear cases influence the
nonlinear bifurcation scenario and are manifest as
transients. In Sec. 4 we give an approximate an-
alytical solution for the stationary non-linear prob-
lem. We predict a hysteretic behavior due to the ef-
fects of sedimentation in a parameter range, where
the non-convective state coexists with finite ampli-
tude stationary convection state. Numerically we
describe the transients to the stationary state, find
an oscillatory solution, and give analytical condi-
tions, for which such a solution can exist. These
main results are summarized in Sec. 5.

2. Basic Equations
We consider a slab of colloidal liquid subject to a
positive temperature gradient (in z direction) and
gravity (in -z direction). The system of equations
is the same as for molecular binary mixtures in-
cluding incompressibility, as well as momentum,
heat, and mass conservation reading in Boussi-
nesq approximation [Boussinesq 1903, Platten &
Chavepeyer 1976, Brand et al. 1984]
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∇ · v = 0, (1)
∂tv + v ·∇v = −∇W + Pr∇2v +

Pr Ra [(T − T̄ )− ψ(C − C̄)
]
ez, (2)

∂tT + v ·∇T =∇2T, (3)

∂tC + v ·∇C = L(∇2C +∇2T ). (4)

The relevant variables are the flow velocity v, tem-
perature T , and concentration (of the particles) C.
The material is characterized by the transport co-
efficients κ, Dc, Ds, and ν for heat and particle
diffusion, thermodiffusion, and viscosity, respec-
tively. As usual they are used to make the equa-
tions dimensionless scaling length with the layer
thickness h, time with h2/κ, temperature with ∆T ,
the applied temperature difference, and concentra-
tion with (Ds/Dc)∆T . The quantities T̄ and C̄
are reference values defined as the mean values
for temperature and concentration. The pressure
W is a kind of Lagrange multiplier that serves to
guarantee incompressibility for all times. We are
left with three dimensionless numbers governing
the bulk material properties, the Prandtl number
Pr = ν/κ, the Lewis number L = Dc/κ , and the
separation ratio ψ = Dsβc/(DcβT ), where βT =
−(1/ρ)∂ρ/∂T and βc = (1/ρ)∂ρ/∂c are the ther-
mal and solutal expansion coefficients. The dimen-
sionless Rayleigh number Ra = βTgh

3∆T/(κν),
with g the earth’s gravity constant, is the control
parameter for the bifurcation behavior.

Gravity is not only responsible for the driving
force, but also for an inhomogeneous distribution
of the particles. In equilibrium, the balance be-
tween gravity and Brownian motion leads to a
Boltzmann distribution for the concentration [Biben
et al., 1993] with the sedimentation length hs =
kBT/(χTmpg), where mp is the effective buoyant
mass of a particle, and χT is the osmotic compress-
ibility. Since usually hs � h, the exponential dis-
tribution reduces to a linear concentration profile
due to sedimentation

C(z) = C(1− z/hs), (5)

where C is the mean mass fraction of the colloidal
particles. To reach this true equilibrium state one

has to wait for a rather long time allowing exper-
iments to be started from either this state or from
the homogeneous state C = C̄. The transition from
the former to the latter state is due to a mass flux of
particles, which can be written in the simplest (and
dimensional) form as [Blums 2002]

js = −Dc

hs
C ez, (6)

This sedimentation current should be added to the
diffusive and thermo-diffusive concentration cur-
rents in the concentration dynamics Eq.(4), but is
generally neglected there by putting C = C̄ result-
ing in ∇ · js = 0. At the rigid (and imperme-
able) boundaries, however, the sedimentation cur-
rent cannot be neglected w.r.t. the other concen-
tration currents, since there the total concentration
current has to vanish, which is guaranteed by the
(dimensionless) boundary conditions

(∂zC + ∂zT )|z=±1/2 = − B

ψRa
, (7)

v|z=±1/2 = 0, (8)

T |z=±1/2 = T̄ ∓ 1

2
. (9)

at the upper (z = 1/2) and the lower (z = −1/2)
plate. The additional standard boundary conditions
for flow and temperature reflect the no-slip condi-
tion and the externally applied temperature gradi-
ent across the mean temperature T̄ . The boundary
condition for the concentration variable contains the
barometric number B [Shliomis & Smorodin 2005]

B =
βc g C h

4

κ ν hs
, (10)

which can vary considerably, typically from 1 to
105, due to the strong h-dependence. This param-
eter measures the importance of sedimentation rel-
ative to viscosity and thermal diffusion. A strong
impact of sedimentation on the bifurcation scenario
can be expected for B ≥ ψRa0. For ferroflu-
ids, using a magnetic field H0 instead of the tem-
perature gradient, a magnetic barometric number
Bm = χ2

c C
2
H2

0 h
4/(ρ ε̄ ν2h2s) governs the sedimen-

tation effects on convective instabilities [Ryskin &
Pleiner 2007]. Here, χc = ∂χ/∂C describes the
concentration dependence of the magnetic suscep-
tibility χ giving rise to magnetophoresis, and ε̄ is
the effective magnetic permeability of the material.
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3. Linear Instabilities
Starting from the homogeneous state (no sedimen-
tation gradient) the linear development of a convec-
tive instability is unaffected by sedimentation ef-
fects, since there is no concentration gradient to be
advected. Thus, the true threshold, Rac is by a fac-
tor of ψ smaller than in the single-component case,
Ra0c , but the time evolution is too slow for the in-
stability to be observed. At higher Ra numbers the
growth rates are sufficiently high, but the system is
already in the instability regime mimicking an im-
perfect bifurcation to a stationary state.

In the stratified state (with a sedimentation-
induced concentration gradient) the instability
threshold is higher than in the case before, since the
concentration gradient opposes the temperature gra-
dient. Using the analogy to the case of binary mix-
tures with a negative separation ratio one can expect
a linear oscillatory instability above Ra0c . How-
ever, in contrast to the thermo-diffusive concentra-
tion gradient, the sedimentation-induced one is not
proportional to the temperature gradient. Thus if
the barometric number is too small, sedimentation
cannot compete with the temperature gradient and
a stationary instability has to expected. Indeed a
linear stability analysis along the lines of Ryskin &
Pleiner [2005] gives the threshold condition

3RaPr
λ+ 2π2Lψ

λ+ 2π2

= 3BPr + 27π2Prλ+ 7λ2 (11)

with one additional sedimentation contribution (∼
B). Here, the growth rate λ = 0 and = iω for the
stationary and oscillatory instability, respectively.
The former occurs for small barometric numbers
B < B1 ≡ LψRa0 at the threshold

Rastc =
B

Lψ
(12)

independent of any wave number, while forB > B1

an oscillatory linear instability is found with

Raosc = Ra0 +
27Pr

14 + 27Pr
B (13)

ω2
c =

6Pr

14 + 27Pr
(B −B1) (14)

where the critical wave number approximately by
kc = π and Ra0 = 18π4. For typical material

parameters, ψ ∼ 10 and L ∼ 10−4, the transition
occurs at B1 ∼ 1. Equations (13) and (14) were
(for ψ = 0) also obtained by Shliomis & Smorodin
[2005], with slightly different numerical factors due
to a different choice of trial functions.

Increasing the Ra number beyond Raosc the oscil-
lating frequency ω starts to decrease, until it van-
ishes at a certain Ra2, with the result that for Ra >
Ra2 the linear instability is stationary again. Ra2
is a complicated function of B with Ra2(B1) =
Raosc ≈ Rastc (B1). This disappearance of the oscil-
lation frequency does not have an analog in the case
of negative-ψ colloids (without sedimentation) and
again, the reason is the independence of the sedi-
mentation current from the temperature gradient.

The fully developed state with a concentration
gradient due to both, sedimentation and thermod-
iffusion is difficult to realize in experiments. Not
only one has to wait initially for the sedimenta-
tion gradient to develop, also after each tempera-
ture gradient step one has to wait for the thermo-
diffusive response to be finished. Nevertheless, this
case plays an important role in the interpretation of
the nonlinear bifurcation scenario, below. The lin-
ear stability analysis of this case is very similar to
that of the stratified case discussed before, except
for the concentration gradient, which now reads (in
dimensionless form) ∂zC = 1 − B/(ψRa), rather
than ∂zC = −B/(ψRa) as before. This differ-
ence can be accounted for by substituting B with
B−ψRa in the Eqs.(11)-(14) leading to a linear in-
stability behavior qualitatively the same as before.
The threshold of the stationary instability is now

Rast,fc =
B

(L+ 1)ψ
≈ B

ψ
(15)

which is reduced by a factor of 1/L (at the same B)
due to the destabilizing effect of thermodiffusion.
On the other hand, sedimentation has to be stronger
by that factor L, in order to be relevant. Thus, the
oscillatory instability with the threshold

Raos,fc = Ra0+
27Pr

14 + 27Pr(ψ + 1)
(B−B2) (16)

and the frequency at onset

ω2
c,f =

6Pr

14 + 27Pr(ψ + 1)
(B −B2) (17)
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occurs for B > B2 ≡ Ra0ψ. The relevant sed-
imentation strength is now B2 ∼ 104. Again,
the frequency decreases with increasing Ra num-
ber and vanishes at a certain Ra2,f leading to a sta-
tionary instability. There is again a ’triple’ point,
Rast,fc (B2) = Raos,fc (B2) = Ra2(B2) and for very
large B, Ra2(B) ∝ (B − B2)/(ψ + 1), asymptot-
ically. Eqs. (15)–(17) correspond to Eqs. (26) and
(27) of Shliomis & Smorodin [2005].

4. Bifurcation Scenario
A linear theory can neither predict the actual ge-
ometry of the emerging pattern, nor can it give the
its type and its saturation amplitude obtained in the
long time limit. It also fails to describe the com-
plete bifurcation topology, in particular it misses fi-
nite amplitude instabilities and sometimes it deliv-
ers (linear) instabilities that turn out to be transients,
only. This happens for the thermal instability in col-
loidal suspensions (without sedimentation), in the
case of a negative separation ratio ψ, where a linear
oscillatory instability relaxes back to the quiescent
stable state [Ryskin & Pleiner 2005]. Since a sim-
ilar linear oscillatory instability has been found in
the previous section, it is compulsory in the present
case to discuss the nonlinear behavior. This can be
done most easily by numerical methods and will
be described first, revealing in particular the time
evolution into the saturation state. Afterwards, we
present an approximate analytical expression of the
amplitude of the (stationary) state that covers fairly
well the important nonlinear features and allows for
their understanding.

We start with the same numerical method as al-
ready used in [Ryskin & Pleiner 2005], section IV-
A, to investigate the time evolution of the system in
the nonlinear regime. This method is essentially an
extension of the Lorenz model [Lorenz 1963, Vero-
nis 1965, Ahlers & Lücke 1985]. The simplifying
idea of this method is to look only for solutions
corresponding to a 2-dimensional pattern (convec-
tion rolls). From the thermal instability behavior
of colloidal binary mixtures one knows that the roll
pattern is unstable against a square pattern (and for
high ψ values to certain kinds of cross-rolls) close
to Ra0 [Huke et al. 2007]. This might be still the
case when sedimentation is included to the analysis,
although no studies on that are available. Neverthe-

less, the basic notions of the nonlinear instabilities,
which we will derive below, are certainly also true
for square patterns, but much harder to get numeri-
cally and analytically than for the roll pattern.

For convection rolls, which are periodic with
wave number k in the lateral direction, the ansatz
reads

C (x, z, t) = C0(z, t) + c1(z, t) cos kx (18)
T (x, z, t) = −z + θ0 (z, t) + θ1 (z, t) cos kx (19)
w(x, z, t) = w1(z, t) cos kx (20)

taking into account five modes. The crucial differ-
ence to the previous work is that here we have an in-
homogeneous boundary condition, Eq. (7), for the
concentration variable.

The initial state has zero velocity and a linear
temperature profile, while for the concentration
field we assume consecutively a homogeneous, a
stratified, and a fully developed field, with ∂zC =
0, ∂zC = 1 − B/(ψRa), and ∂zC = −B/(ψRa),
respectively, as discussed in the previous Section.
We then apply additionally a small perturbation of
the velocity field w1 of the form ∼ cos2(πz). With
typical parameter values, ψ = 10, Pr = 7, and
L = 10−4, and for either moderate B = 400 or
rather high values B = 18000 a Ra number is cho-
sen above the linear threshold value, thus monitor-
ing the temporal development of the instabilities. In
almost all cases we find that the system approaches
a stationary state at long times, independent of the
initial state (a rare exception is discussed below).
However, how this stationary state is reached de-
pends strongly on the linear behavior: If for B =
400 the Ra number is chosen to be in the linear
oscillatory regime, between Raosc < Ra < Ra2,
Eq.(13), the amplitude first starts to oscillate around
zero, before it increases and, after some overshoot
wiggles, reaches the asymptotic constant value, cf.
Fig.1a). Choosing instead a Ra number above Ra2,
where the system shows a stationary instability, lin-
early, the amplitude increases directly from zero to
its final values, cf. Fig.1b). This explains the re-
duction of the oscillation frequency with increasing
Rayleigh number (Fig. 1 of Shliomis & Smorodin
[2005]) as a remnant of the linear behavior rather
than a genuine nonlinear effect. In addition, we
show that this transient frequency becomes zero,
when the Rayleigh number exceeds Ra2.



7

FIG. 1. The time evolution of the convection amplitude forB = 400
at two different values of the Rayleigh number corresponding a) to
the oscillatory linear regime, Ra = 2200, and b) to the stationary
linear regime, Ra = 3200. The broken lines are appropriate refer-
ence solutions for the case without sedimentation (B = 0).

Similarly, and even more pronounced is this be-
havior for large values B > B2 and a Ra num-
ber above Raos,fc ≈ Ra0: Starting from the ho-
mogeneous ground state, where the linear stability
predicts a stationary instability, since ψ is positive
[Ryskin et al. 2003], the nonlinear numerical solu-
tion shows a smooth and monotonic transition to the
final value of the amplitude, cf. Fig.2b). Starting
on the other hand from the fully developed ground
state, where linear theory gives an oscillatory in-
stability, Eqs.(16) and (17), the (nonlinear) ampli-
tude oscillates for a rather long time around a zero
value with growing peak amplitude, until finally it
switches to the stationary finite value, cf. Fig.2a).
Starting from the stratified ground state, the system
is linearly stable, since for such a large B value
Raosc � Ra0. However, with time the concentra-
tion profile evolves towards the fully developed one
giving rise, at the end, to the behavior described be-
fore. The final state is the same stationary convec-

FIG. 2. The amplitude of a finally steady convection as a function of
time for different initial concentration profiles: a) the fully developed
profile, and b) the homogenous concentration profile. Parameters are
the same in both casesRa = 1796,B = 18000, ψ = 10,L = 10−4.

tion in all three cases. This behavior is in marked
contrast to the case of the linear oscillatory instabil-
ity when heating a system with negative separation
ratio from below (without sedimentation), where
the initial convective oscillations relaxes back to the
non-convective state [Ryskin & Pleiner, 2005].

For the convection amplitude of the ultimate
asymptotic stationary state we derive an approxi-
mate analytical expression in terms of Ra and B.
Substituting Eqs. (18)-(20) into the nonlinear equa-
tions of motion (2)-(4) and sorting out the different
lateral dependencies for the stationary state yields
the following system of equations(

D2 − k2
)2
w1 = Ra k2(θ1 − ψc1) (21)

1

2
∂z (w1c1) = L∂2z (C0 + θ0) (22)

w1∂zC0 = L
(
∂2z − k2

)
(c1 + θ1) (23)

1

2
∂z (w1θ1) + w1 = ∂2zθ0 (24)

w1∂zθ0 =
(
∂2z − k2

)
θ1. (25)
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Equation (22) can be integrated once. Taking into
account the boundary condition Eq. (7) the concen-
tration profile c1(z) is found to be

c1 =
2L

w1

(
∂z(C0 + θ0)− (1− B

ψRa
)

)
(26)

Far from the boundaries C0 and c1 are proportional
to L . This follows from the requirement of Eq. (23)
to be consistent with Eq. (26) and by taking into
account that far from the boundaries the derivatives
of the functions are small. Thus, in Eq. (26) C0 can
be neglected except close to the boundaries and we
get

c1 = −2L

w1

(
1− B

ψRa
− ∂zθ0

)
. (27)

To satisfy the boundary conditions for c1, and to
find the profile of the concentration field near the
boundaries, one needs to solve the boundary layer
problem. This has been done in Ryskin & Pleiner
[2004], Appendix A. It was shown that the bound-
ary layer depth δ ∼ L1/3 is rather small and its con-
tribution to the amplitude equation gives only small
corrections ∼ L. Therefore, Eq. (27) can be used
to find the velocity and temperature distributions.
This is obtained approximately by means of the trial
functions

w1 = A cos2(πz), θ0 = G sin(2πz),

θ1 = F cosπz. (28)

Substituting those profiles into Eqs. (21),(24), and
(25) and projecting these equations onto the weight
function cos2(πz), leads to a system of three alge-
braic equations for the amplitudes A,F,G. Solving
for A, the saturation amplitude of convection, we
find the implicit expression(

1 +
12

5
Ā

)(
Ra0Ā− L [ψRa−B]

)
= RaĀ

(29)
relating Ā ≡ A2/(32π2) to the driving force Ra,
and to the material parameters L, ψ, and B.

In Fig. 3 the amplitudeA is shown as a function of
the reduced Rayleigh number ε = (Ra−Ra0)/Ra0,
where Ra0 is the linear threshold for thermal con-
vection of a single component liquid. Two qual-
itatively different types of behavior are found de-
pending on the barometric number B as the cru-
cial parameter. First, for B ≤ B2 ≡ Ra0ψ, there

FIG. 3. The amplitude of the stationary convection as a function of
the reduced Rayleigh number ε = (Ra − Ra0)/Ra0 for different
values of the barometric number a) B → 0, b) B = 16000, c)
B = B2 ≡ Ra0ψ ≈ 17534, d) B = 19000. Solid lines correspond
to stable branches. The direction of the hysteresis loop is shown by
the arrows.

is a monotonic increase of the amplitude with the
Rayleigh number to arbitrarily high Ra numbers
(lines a,b,c). These lines start with a vertical slope
(not generally visible at the scale of the figure) at
the threshold εc<, i.e. at the linear stability thresh-
old Rast,fc = B/ψ (which is < Ra0 in this case).
In the opposite case, B > B2 (line d), there are
two branches of the function A(ε) in the interval
ε1 < ε ≤ εc>. According to our numerical calcula-
tions the upper branch appears to be stable and the
lower one unstable. Again, such lines (in particular
their unstable branches) intersect the abscissa verti-
cally at εc>, i.e. at the linear thresholdRast,fc , which
is now > Ra0. This is the scenario of a backward
instability, where the amplitude takes a finite value
A1 at the threshold ε1 with

A2
1 =

40π2

3
(
√

1 + ε1 − 1) (30)

ε21 ≈
16

5
Lψ β for 1 > β > Lψ (31)

ε1 ≈ β for β < Lψ (32)

where β ≡ (B − B2)/B2. Increasing the
Rayleigh number beyond ε1 the actual jump from
a convection-free to the convective state takes place
at a Ra number that is generally higher than the Ra
number, at which the system jumps back from the
convective to the convection-free state loweringRa.
This hysteretic behavior is indicated in Fig. 3 by ar-
rows.
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FIG. 4. The oscillatiory nonlinear amplitude as a function of time for
Ra = 1755 & Ra0, B = 17540 & B2, ψ = 10, and L = 10−4.

It may come as a surprise that for vanishing am-
plitudes thresholds are found, which belong to the
linear stability analysis of the initially fully devel-
oped concentration profile (rather than the stratified
or homogeneous one). The reason is that during
the development of the convective patterns, the slow
concentration dynamics also evolves until the final
state is reached. Thus, the nonlinear behavior of
Fig. 3 is obtained for any initial state, even the ho-
mogeneous one, but only after a long time.

The last question to be discussed in this sec-
tion concerns the existence of oscillatory, or more
general non-stationary, nonlinear convective states.
Numerically, in almost all cases a stationary insta-
bility has been found. Our approximative analyti-
cal solution, Eq. (29) shows that for B < B2 there
is always a stationary solution, while for B > B2

the finite amplitude stationary state only exists for
ε > ε1. Of course, the convection-free state A = 0
exists for all numbers Ra and B, although it looses
its stability at some Rac(B), also depending on the
initial state, as has been discussed by a linear anal-
ysis above. Now it can happen (only for B > B2)
that the convection-free state is already unstable
with respect to a linear oscillatory instability, but
no stationary nonlinear solution exists, leading to a
situation where an oscillatory instability could be
the natural response of the system. This requires
that the threshold Raos,fc , Eq. (16), for an initially
fully developed concentration profile, is lower than
ε1. This is possible in a very narrow parameter
range only, where ε1 is given by Eq. (32), i.e. for
B − B2 < LψB2 and Ra− Ra0 < LψRa0. In this

parameter range an oscillatory solution has indeed
been found numerically, which is shown in Fig. 4.
The possibility to observe this and other solutions
experimentally will be discussed in the following
section.

5. Conclusions
We have shown that effects of sedimentation signif-
icantly change the linear as well as the non-linear
behavior of thermal convection in colloidal suspen-
sions. We have considered the instability of three
possible convection-free state - an initially homoge-
nous one, an initially stratified one and the one with
the fully developed concentration profile. In the two
latter cases the linear instability can be oscillatory,
if the strength of sedimentation, quantified by the
barometric number, is sufficiently large. The non-
linear treatment, however, reveals that the oscilla-
tions are transient only, finally ending up in a sta-
tionary convective state, where, for simplicity, we
have considered roll patterns only. Only in a very
narrow window in the parameter space non-linear
oscillations can exist. It is not obvious that it is pos-
sible to observe such a non-linear oscillatory con-
vection in experiment, since in the numerics we had
to tune the parameters Ra and B with an accuracy
up to 0.1% to get this state. On the other hand our 5-
mode model of the nonlinear evolution is certainly
not exact and we cannot guarantee that this numer-
ical oscillatory solution would also be obtained in a
more refined model. Finally, even if the oscillatory
solution exists in a real physical system, it is cer-
tainly very difficult to tune the barometric number
in experiments with an accuracy of 0.1%, since too
many physical effects contribute to it.

In a certain range of the parameter space, in par-
ticular for very high barometric numbers, the sta-
tionary convective solution comes in two branches,
a stable and an unstable one. The former can coex-
ist with the stable convection-free state, a situation
that leads to a hysteretic behavior in experiments. A
hysteretic behavior was indeed observed in experi-
ments [Bozhko & Putin 2003]. Although a direct
comparison with our theory is not possible, since
the barometric number in the experiment is not re-
ally known and most of the experimental results are
obtained in the presence of a magnetic field, a situa-
tion which we have not considered so far. We hope
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that our investigations will motivate further exper-
iments on sedimentation effects in the convective
instabilities of colloidal suspensions.
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