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In this short review we give an overview over selected macroscopic properties of sidechain liquid crystalline elastomers
(LCEs) focusing on three closely related topics a) the influence of relative rotations between the director and the strain
field on various reorientation instabilities, b) the nonlinear stress-strain curves for the polydomain - monodomain
transition and for the reorientation transition in LCE monodomains and c) the shear mechanical response of LCEs in the
linear regime. We consider only already existing real materials and do not discuss hypothetical ”ideal” systems. We
conclude that all observations reported to date can be accounted for without invoking the concept of soft elasticity, but
instead relying on macroscopic dynamics in the linear and the nonlinear domain.

1 Introduction

Liquid crystalline elastomers (LCEs) are a new class of
materials [1] (compare ref. [2] for a review of the early
work up to about 1998), which combine the physical
properties of two subsystems, namely of a network (like
in an elastomer) [3] and of mesogenic units (liquid crys-
talline building blocks) used to form liquid crystalline
phases in low molecular weight materials (LMWs) [4].
When the mesogenic units are incorporated into the
polymer backbones, the materials are called main chain
systems [5] (compare also ref. [6] for early work on main
chain LCEs), while for the case of mesogenic units at-
tached to the polymeric backbone via a flexible spacer,
one speaks about sidechain materials. Sidechain liquid
crystalline elastomers have been pioneered by Finkel-
manns’s group [1]. Originally only polydomain sidechain
LCEs could be synthesized. Starting, however, with the
work of Küpfer and Finkelmann [7, 8] it became pos-
sible to generate monodomains of a LCE, a liquid sin-
gle crystal elastomer (LSCE) by using two cross-linking
steps, where the first one is used to generate a weakly
cross-linked network, which is then stretched to induce
a monodomain, whose director orientation is then in
turn ’imprinted’ by the second cross-linking step [7, 8].
Depending on whether the cross-linking is done in the
isotropic or the nematic phase a material with different
properties results. When the cross-linking is done in the
nematic phase, this information is fixed in the vicinity of
the cross-linking points leading to an ’imprinted’ order
(also often called ’frozen-in’ order) [9]. This is brought
out very clearly when a sample thus prepared is exposed
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to a mechanical stress applied perpendicular to the origi-
nal direction of the monodomain. In this case the degree
of order of the reoriented sample is reduced considerably
when compared to the original sample [7, 8].
Over the last decade and a half different types of LCEs
have been synthesized and characterized including ne-
matic [1], cholesteric [1], smectic A [1, 10], smectic C∗

[11] and discotic LCEs [12]. The potential applications
one has in mind for these systems span a range from soft
contact lenses in ophthalmology to soft actuators and
components of artificial muscles [13] along with poten-
tial use as nonlinear optical elements including second
harmonic generation and a cholesteric laser [14].
So far one has studied the physical properties of this
new class of materials mainly as a function of tempera-
ture, length of the spacer or variations of the chemistry
for backbone, cross-linker and mesogenic units. It is
clear, however, that for potential applications the most
attractive option will be a substantial response to the
application of low electric fields. This has led over the
last couple of years to the most recently intensifying in-
vestigation of LCEs swollen with LMW nematic phases.
In the course of these studies one has found large vol-
ume changes and volume transitions [15–17] as well as
quite significant electro-mechanical effects in small to
moderate electric fields [18–20].
One of the fundamentally interesting issues in the field of
liquid crystalline elastomers is the question of the phys-
ical consequences of the coupling between the two ‘sub-
systems’, namely the mesogenic parts and the network.
For weakly cross-linked liquid crystalline elastomers and
gels, it turns out that relative rotations [21,22] between
the two subsystems play a crucial role in the under-
standing of the reaction of liquid crystalline sidechain
elastomers to external electric, magnetic and mechani-
cal fields. This topic will therefore be discussed in the
next section. As the cross-linking density is increased,
the average number of mesogenic sidechains between two
cross-linking points decreases and eventually the system
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loses its genuine liquid crystalline properties [23]. In
such densely crosslinked thermosets [24, 25] there is no
longer a clearly defined dynamic degree of freedom re-
lated to nematic ordering nor are there relevant relative
rotations.
Another rather prominent feature of liquid crystalline
elastomers is the observation of a plateau region with
almost zero or small slopes for intermediate values of
the strain in the static stress-strain curves for two sit-
uations: i) for the polydomain - monodomain transi-
tion [26], and ii) for the director reorientation in mon-
odomains under the influence of an external mechani-
cal force applied perpendicularly to the original director
orientation [7, 8, 27, 28]. This phenomenon has been in-
terpreted in the neo-classical Gaussian chain model [29]
(compare ref. [30] for a detailed exposition of this model)
to reflect the property of ‘soft’ or ‘semi-soft’ behavior in
the sense that one of the linear elastic coefficients van-
ishes provided the material has undergone a spontaneous
shape change at a phase transition at higher tempera-
ture [31]. In sections 2 and 3 we will analyze in detail the
linear and nonlinear aspects of the stress-strain relations
observed for liquid crystalline elastomers and we will
critically compare the phenomena found in LCEs with
those observed in other systems, which show plateau re-
gions when a specific thermodynamic force (such as the
mechanical stress or the electric current) is plotted as a
function of a related macroscopic variable (such as the
strain, the strain rate or the electric field).

2 Linear elasticity

2.1 De Gennes’ free energy

To be specific we discuss first how the macroscopic vari-
ables to describe the macroscopic behavior of a nematic
sidechain elastomer are chosen. We focus here on weakly
cross-linked nematic side-chain elastomers, where it is
possible to define appropriate dynamic macroscopic vari-
ables. Furthermore, in nematic main-chain elastomers
one cannot define the variables as simply as it is done
here, since one cannot separate between elastic and ne-
matic contributions as clearly.
The uniaxial symmetry of the nematic phase is described
by a unit vector n̂, the so-called director, for which one
cannot distinguish between head and tail. Under the
conditions of weak cross-linking the suitable thermody-
namic variables are the variations δn of the director n̂
with n̂ · δn = 0 [22].
First we consider small deformations. In this case a de-
scription using linear elasticity is appropriate. For the
description of elastic deformations we use the strain ten-
sor ε with εij = 1

2 (∇iuj +∇jui), which is well known
from linear elastic theory; ui are the components of the
displacement vector u.
Relative rotations describing rotations between the net-
work and the director field, are macroscopic variables,
which have been introduced to the macroscopic descrip-
tion of liquid crystalline elastomers by de Gennes [21].

These relative rotations exist as macroscopic variables
neither for low molecular weight liquid crystalline ma-
terials nor for ordinary rubbers. Their influence on the
macroscopic dynamics and under the action of external
fields has been studied for nematic sidechain elastomers
in ref. [22]. The influence of relative rotations has also
been studied for cholesteric elastomers [32]. In this case
relative rotations arise under the influence of an exter-
nal electric field (rotato-electricity) and, very recently,
for uniaxial magnetic gels [33], which are obtained when
the gelation is performed under the influence of an ex-
ternal magnetic field [34].
We note that these relative rotations are very similar
in spirit as macroscopic variables as the relative transla-
tions, which are common for incommensurate crystalline
systems, for which one has two density waves coexisting
in one or more direction(s) with incommensurate repeat
distances. We refer to ref. [35] for a detailed discussion
of the macroscopic dynamics of such a system.
Using linearized theory the rigid rotation of a solid body
is characterized by ωij = 1

2 (∇iuj −∇jui). In a uniaxial
system this motion can be divided into a rotation around
and two rotations orthogonal to the preferred direction.
Rotations around the preferred direction are character-
ized by ω‖ = 1

2niεijkωjk; for relative rotations, how-
ever, only the orthogonal rotations are relevant, namely
ω⊥

i = njωij with niω
⊥
i = 0. Since the rotation of the

director is given by the variations δni, the relative rota-
tions finally read Ω̃i = δni − ω⊥

i [21, 22].
To simplify the following discussions, we present an ex-
pression for the energy density of the system containing
the contributions we need below quite frequently. The
distortion of a nematic phase is described by the Frank
distortion energy [4]. Since we consider the components
of ε and Ω̃ as small quantities one can expand their con-
tributions to the energy density up to quadratic order.
Collecting these terms, the energy density E reads

E =
1
2
K1 (∇ · n̂)2 +

1
2
K2 [n̂ · (∇× n̂)]2

+
1
2
K3 [n̂× (∇× n̂)]2 +

1
2
cijklεijεkl

+
1
2
D1Ω̃iΩ̃i + D2Ω̃iεjknjδ

⊥
ik + E0 (1)

with the Frank constants K1, K2, K3, the coefficients
D1, D2 and cijkl, which are of uniaxial symmetry. Sum-
mation over repeated indices is implied in Eq.(1) and in
the following. δ⊥ik = δik − nink is the transversal Kro-
necker delta. E0 contains all terms present in a simple
liquid. The relative rotations contribute to a self energy
term (∝ D1) and a coupling term between the relative
rotations and the strain tensor (∝ D2).

2.2 Relative rotations and their influence on in-
stabilities in LCEs

The first suggestion for detecting the influence of the
consequences of D2 was made in the same paper this
quantity was introduced [21]. De Gennes showed that

2



the stress-optical coefficient (the ratio between the ap-
plicable dielectric constant in a specific geometry and
the applied mechanical stress) could be substantially en-
hanced by the presence of D2. So far there appears to be
no experiment that has followed up on this prediction.
In 1996 Weilepp and Brand [36] analyzed the onset of the
stripe pattern observed for a nematic monodomain LCE
under the influence of an external stress applied perpen-
dicular to the original director orientation by Kundler
and Finkelmann [27,28] in the framework of macroscopic
dynamics. It was shown in ref. [36] that relative rota-
tions play a crucial role in the understanding of the onset
of this spatially heterogeneous reorientation pattern. It
was found that macroscopically a vanishing value of D2

would make the onset of this pattern-forming instability
impossible.
More recently Müller and Brand [37] analyzed in a
macroscopic description the analog of the Frederiks in-
stability in a nematic elastomer [38] and its competition
with the undulation instability using the approach of
Refs. [21, 22]. Here one denotes by Frederiks instabil-
ity the reorientational instability which can arise when
an electric or magnetic field is applied to a nematic
LMW monodomain in the planar or homeotropic geom-
etry with the external field perpendicular to the director
orientation [4]. They showed for the splay Fredericksz
geometry that the size and sign of D2 play a crucial role
in determining whether the analogue of a classic Fred-
eriks instability results or whether it is replaced by an
undulation instability.

2.3 Shear mechanical response

To make contact with our results on piezorheometry and
the associated discussion of soft elasticity [39–43], we
use the notation of ref. [21] and write the relevant parts
of the energy density (1) in the form E − E0 ≡ Eg =
En+Ee+Een. Here Ee is the conventional elastic energy
for a uniaxial solid

Ee =
c11

2
(ε2

xx + ε2
yy) + c12εxxεyy

+c13εzz(εxx + εyy) +
c33

2
ε2

zz

+2c44(ε2
yz + ε2

xz) + 2(c11 − c12)ε2
xy (2)

where the cij are the elastic constants. En is the Frank
elastic energy for the director

En =
K1

2

(
∂nx

∂x
+

∂ny

∂y

)2

+
K2

2

(
∂nx

∂y
− ∂ny

∂x

)2

+
K3

2

[(
∂nx

∂z

)2

+
(

∂ny

∂z

)2
]

(3)

where K1, K2 and K3 are the Frank elastic constants [4].
Een is the coupling energy between the director and the
network

Een =
D1

2
[
(Ωx − ωx)2 + (Ωy − ωy)2

]
+ D2 [(Ωy − ωy)εxz + (Ωx − ωx)εyz] (4)

where D1 is the stiffness modulus of the relative rota-
tions and D2 is the coupling constant between relative
rotations and elastic deformations.
In writing down these equations, we have introduced the
linearized strain tensor

εij =
1
2

(
∂ui

∂xj
+

∂ui

∂xj

)
(5)

and the rotations

ωi =
1
2
εijk∂juk (6)

with the displacement field u. Since we are interested
in the linear response region, we can describe director
rotations by Ω with

δn = Ω× n (7)

and thus relative rotations by Ω−ω. To be specific we
have chosen the uniaxial direction to be the z direction.
Next we discuss the two specific shear configurations of
interest in analyzing the experimental results presented
in ref. [39]. When a homogeneous shear is applied in
the plane perpendicular to the director we have for the
associated elastic energy, taking into account that only
εxy = εyx 6= 0,

Eg = 2(c11 − c12)ε2
xy (8)

and thus for the hydrodynamic value of G
′

⊥

G
′

⊥ = 4(c11 − c12) (9)

This result shows that there is for the perpendicular
geometry no coupling between the director and the net-
work in the hydrodynamic limit.
For the parallel geometry for which the director lies in
the shear plane, which we have chosen to be the x − z
plane, we have for the generalized energy Eg (with εzx =
εxz = 2ωy)

Eg = 2c44ε
2
xz +

1
2
D1(Ωy − ωy)2 + D2(Ωy − ωy)εxz (10)

Minimizing Eg with respect to Ωy−ωy and inserting the
result into Eg we have

Eg = 2
(

c44 −
D2

2

4D1

)
ε2
xz (11)

This result clearly shows that the effective elastic mod-
ulus for shear in the plane containing the director is
reflecting the coupling of the network and the direc-
tor rotations leading to a reduction of the shear modu-
lus c44 by the amount D2

2/4D1. We have therefore for
the macroscopic shear modulus G

′

‖ in the hydrodynamic
regime

G
′

‖ = 4
(

c44 −
D2

2

4D1

)
(12)
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Fig. 1: Temperature dependence of the shear modulus G′(T )
and the phase shift ϕ(T ) for a monodomain sample. On the
top the shear velocity v is perpendicular to the director and
on the bottom the shear velocity is parallel to the director.
In both cases one sees a dominant influence of the glass tran-
sition. For the parallel case there is also a slight reduction
of G′ in the vicinity of the extrapolated nematic - isotropic
transition due to c̃44 < c44. From ref. [39].

2.4 Soft elasticity

Using the neo-classical Gaussian chain model [30,44,45]
it has been postulated that LCEs show ‘soft elasticity’,
what corresponds to the requirement [44,46]

c̃44 ≡ c44 −
D2

2

4D1
≡ 0 (13)

where in the literature sometimes c̃44 is called C5. As we
have seen above, this effective modulus is directly related
to the shear modulus G of the LCE. Measurements of the
shear rigidity modulus G

′

‖ in the linear response regime
are therefore a direct test of the soft elasticity concept.
To rule out completely any role of soft elasticity for side-
chain LCE, Martinoty’s group has performed high preci-
sion experiments with a piezorheometer [39,41,43]. This
is a technique designed to probe precisely the range of
interest in the frequency domain, namely from ca. 10−2

to ca. 104 Hz. It has been successfully applied to study
many aspects of liquid crystalline polymers and elas-
tomers [47–52] as well as to the rheological behavior of
polymers in samples of small thickness [53], to polyelec-
trolyte films [54], and to uniaxial magnetic gels [34].
In Fig.1 we have plotted the temperature dependence of
the elastic modulus G′ and of the phase shift ϕ between
the elastic and viscous response, G′′, for two geometries.

Fig. 2: G′ and G′′ for n̂ ‖ v are shown for a frequency range
down to frequencies of 0.02 Hz. From ref. [41].

The figure on the top shows the situation for which the
director is perpendicular to the shear velocity v, while
the figure on the bottom shows the case v ‖ n̂. While G′

for the former geometry does not show any anomaly in
the vicinity of the nematic - isotropic transition, it shows
a dip for the latter geometry. This behavior can be easily
accounted for [39] from the analysis of the macroscopic
behavior of LCEs - compare also Eqs.(11) and (13) of
the last section. Surely there is no indication whatsoever
that G′ would vanish anywhere.
To verify that the experiments were performed in the
truly hydrodynamic regime, Fig.2 shows the behavior of
G′ and G′′ in the frequency range down to 0.02 Hz. A
clear-cut plateau value for G′ is obtained, which confirms
that the data displayed in Fig.1 do not show any low
frequency anomaly down to the lowest experimentally
accessible frequencies. For a more detailed discussion of
dynamical aspects, cf. [42, 43].
Meanwhile the notion of ’soft elasticity’ has been
changed into ’semi-soft elasticity’ meaning that c̃44 is
zero only in ideal systems, while in real systems it is fi-
nite, but small due to imperfections (for a list of those
imperfections cf. [30]). Such a description would be
reasonable, if the ’ideal’ case would describe the basic
features and the ’imperfections’ would add some cor-
rections. However, the measurements described above
clearly show that c̃44 is neither zero nor small, but of
the order of the other elastic moduli, and therefore it
is not appropriate to use it as a small perturbation.
This conclusion does not come as a surprise, since re-
cently Fried and Sellers [55,56] have shown that the neo-
classical Gaussian chain model [30, 44, 45] is incomplete
and needs substantial modifications that render c̃44 to
be finite.
Some time ago it has been shown [31, 57] that isotropic
solids that undergo a spontaneous change into an
anisotropic state must have a zero shear modulus c̃44 due
to the Goldstone theorem. This symmetry argument,
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Fig. 3: The nominal stress σn is plotted as a function of

the relative elongation λ (= L/L0) in the nematic phase

for several reduced temperatures Tred = T/Tc: (∗) : 0.969,

(+) : 0.991, 4 : 0.996. From ref. [26].

however, is not applicable in the present case, since at
the isotropic to nematic phase transition real side chain
elastomers condense into a multi-domain structure with-
out a shape change, if untreated. Only after stretching
by an external force single domain elastomers are ob-
tained. Then, of course, the shape anisotropy is not
spontaneous, in particular for systems that are cross-
linked for a second time in the stretched state. Like in
ordinary anisotropic solids, there is no symmetry reason
for c̃44 to vanish.

3 Nonlinear stress-strain relations for
LCEs

3.1 The polydomain to monodomain transition

The first observation of a plateau in a static stress-strain
curve for liquid crystalline elastomers was described by
Schätzle, Kaufhold and Finkelmann for a polydomain
sample about 15 years ago [26]. They observed (see
Fig.3) a linear relation between stress and strain for
small (region A) as well as for large values of the strains
(C). For intermediate values (B) a plateau region was
found, the width of which diminishes when approaching
the transition temperature Tc.
The behavior at small strains is the one familiar from
almost all systems with a finite static shear modulus,
which is in liquid crystalline elastomers due to the chem-
ical cross-links. The plateau for intermediate values of
the strain as well as the increase for even larger values of
the strain can be understood in terms of the model put
forward by Uchida [58,59], which takes into account elas-
tic interactions [60] as well as random stresses. Uchida
finds a plateau regime originating from a structural self-
organization of domains due to the long range elastic
interaction and emphasizes the role played by random
internal stresses. Uchida demonstrates that the non-
locality of the elastic interactions as well as the cross-
linking conditions are crucial. He underlines the impor-
tance of both, the breaking of long range orientational
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Fig. 4: The effective shear elastic modulus G′
PL of a poly-

domain sample as a function of the relative elongation; the
plateau of the stress-strain curve starts at λ > 1.12. From
ref. [61].

order by frozen internal stresses as well as the influence
of quenched disorder on the mechanical response [59].
Clearly the plateau region is connected to the spatial
heterogeneity associated with the transition from the
polydomain to the monodomain structure. It is not re-
lated to a vanishing shear elastic modulus as has been
verified directly by recent experiments of Collin et al.
[61] shown in Fig.4. The effective modulus drops by a
factor of 4, when stretched into the plateau, but is nei-
ther zero nor small. It should be noted that the waiting
time between two shear measurements in Fig.4 is sim-
ilar to that between two stress measurements in Fig.3
and, thus, both types of measurements correspond to
the same ’equilibrium state’. Once the conversion from
a polydomain to a monodomain has been achieved, an
almost linear stress - strain behavior results at higher
strains [58,59].
One does not expect the concept of soft elasticity to play
any role for the plateau regime associated with the poly-
domain - monodomain transition, since for LCEs cross-
linked in the isotropic phase no spontaneous overall pre-
ferred direction nor an accompanying shape change (but
rather a randomly oriented domain texture) occurs when
such a sample is cooled through the isotropic to nematic
transition. Conversely, the plateau can be understood
as due to the reorientation of the domains and does not
require or imply a vanishing shear elastic modulus.
Thus we arrive at the conclusion that for the polydo-
main to monodomain transition the spatial heterogene-
ity caused by the many small domains plays the crucial
role in the generation of the plateau in the static stress-
strain curve.

3.2 The reorientation transition of LCE mon-
odomains

Monodomains of LCEs were generated first by Küpfer
and Finkelmann [7] using two cross-linking steps in the
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nematic phase. In the first step a weakly cross-linked
network was generated which was then stretched to allow
for the second cross-linking step to take place on a time
scale of about ten hours, fixing the information about
the direction of the external mechanical stress within the
network. That means that heating up such a LSCE into
the (pseudo-) isotropic state and cooling down again into
the nematic one, the former orientation is reobtained.
This clearly shows [62] that nematic LSCEs are beyond
the critical point, i.e. there is no true phase transition
anymore and even in the (pseudo-) isotropic phase there
is a small residual non-zero nematic order due to the
imprinted directional information. Thus, the observed
shape change at the isotropic to nematic transition is,
although commonly called ”spontaneous”, not sponta-
neous in the sense of [31], but simply restores the state
obtained by the second cross-linking step.
Later on it was argued [63] that a strong degree of spatial
heterogeneity is responsible for the supercritical behav-
ior, but very recently the group of Zalar [64] has shown
that monodomains prepared according to the procedure
of ref. [7] are beyond the critical point with a compara-
tively low degree of heterogeneity.
Already in this first report on such LSCEs, the authors
also described an experiment, where an external me-
chanical stress was applied in a direction perpendicular
to the fixed-in direction of the director. As a result,
the static stress-strain curve had three regimes with a
plateau-like regime at intermediate values of the strain
– similar to the case of the polydomain - monodomain
transition discussed in the last section – however with a
much less well-defined plateau. This is shown in Fig.5
taken from ref. [7], which also shows the dichroic ra-
tio indicating that above the intermediate plateau-like
regime the director has rotated about 90◦, and is par-
allel to the external stretch direction in the high strain
regime. This reorientation was also monitored in the
early experiments by x-ray diffraction [7, 8] and more
recently by FTIR spectroscopy [65]. By the same exper-
iments it became clear that the overall degree of nematic
order was reduced after reorientation. The reorientation
is reversible and after cessation of the external stress, the
original perpendicular orientation is reobtained.
About a decade ago, Kundler and Finkelmann [27, 28]
showed optically that the plateau in the stress-strain
curve is closely related to the occurrence of a stripe
pattern with domains of two different director orienta-
tions separated by domain walls. If the external stretch-
ing is not applied perpendicular to the director, but
at an oblique angle, no stripe pattern has been ob-
served [27]. Other biasing external fields, like magnetic
fields or shear deformations, also prevent the evolution of
clear stripe patterns [66]. No stress-strain measurements
have been published for those cases. Clearly, the stripe
texture is a spatially heterogeneous state. The occur-
rence of the plateau during the reorientation of LSCEs
was interpreted as evidence for soft or semi-soft elastic-
ity [29, 30]. However, as has been discussed above and
shown in [43] there is no soft or semi-soft elasticity in

Fig. 5: The nominal external stress σe (4) and the dichroic
ratio R (*) are plotted as a function of the relative elongation
L/L0 of the nematic LSCE for T = 60◦C. From ref. [7].

these LSCEs i.e. the shear elastic modulus is neither
zero nor small. Indeed the initial slope of the stress
vs. strain curve in Fig.5 gives a value of about 105 Pa
for the elastic modulus demonstrating that there is no
soft- or semi-softness involved. We do not believe that a
theory, which is incapable of describing the linear elas-
tic regime correctly, can be used to explain the physics
of the nonlinear behavior. Instead, the key for under-
standing the plateau-like behavior very likely lies in the
spatially heterogeneity of the system in this situation.
To support this hypothesis it helps to recall other sys-
tems for which one has observed experimentally, and
analyzed theoretically, plateau regions when a thermo-
dynamic force is plotted as a function of a thermody-
namic variable. Typically, such a plateau region occurs
for systems, which are no longer spatially homogeneous
with respect to certain physically relevant quantities.
Examples include the Gunn effect for which one ob-
serves charge domains with high and low carrier den-
sity in semiconductors [67–69] due to a negative differ-
ential resistance, the stress-strain curve in shape mem-
ory and martensitic alloys [70, 71] as well as in other
alloys [72, 73] and the stress - strain-rate curves as-
sociated with shear-banding in metallic alloys [74] as
well as in non-Newtonian fluids such as worm-like mi-
celles [75,76]. Finally the occurrence of a plateau region
is commonly observed in the spatially inhomogeneous
region of a system showing a two-phase region includ-
ing the p(V ) (pressure vs. volume) diagram for van der
Waals type behavior and the pa(A) (areal pressure vs.
area) diagram for Langmuir-Blodgett films.
Of course, the physics of these systems is quite differ-
ent from the LSCE case and they cannot be used as an
immediate model, but in all these examples the plateau
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is related to a ’two-phase’ region of (either ordered or
disordered) spatial inhomogeneities that occur to avoid
thermodynamically forbidden negative slopes, e.g. a
negative differential resistance for the Gunn effect, a
negative compressibility in the van der Waals case, or
a negative viscosity in shear banding. Quite similar, the
plateau-like behavior in LSCEs during the director re-
orientation appears to be due to the same type of mech-
anism, avoiding a negative elastic modulus in this case.
This scenario has been corroborated by Conti et al. [77],
who solved a model free energy of [29]. They found a
plateau at intermediate strains, which is related to the
occurrence of small-scale inhomogeneities due to direc-
tor textures. Note that this model has a finite elastic
shear modulus and can describe experiments only if for
that modulus a nonzero value of the usual magnitude for
polymeric networks is chosen. If the shear elastic modu-
lus is put to zero, a ’plateau’ of zero stress is trivially ob-
tained and no initial regular elastic behavior with finite
slope occurs in contrast to the experiments. Even for the
LSCEs, whose second crosslinking step has been done
in the isotropic phase, there is a finite plateau thresh-
old (Fig.8 of [8]) in contradiction to soft elasticity. The
finiteness of the plateau is not due to ’imperfections’,
but a necessary consequence of the production process of
LSCEs, the second crosslinking step. Without it, there
is never any monodomain material, but only polydomain
samples, discussed in Sec.3.1.
Thus, soft elasticity does not correctly describe the phys-
ical origin of the plateau, i.e. the ‘2-phase behavior’.
There is no reason that the description with a non-zero
elastic modulus (that gets the physical picture right) is
called ’semi-soft’, since it is not just a small correction to
the soft case, but is due to inherent properties of LSCEs.

4 Conclusions and perspective

In this short review we have summarized the current
knowledge of two key issues concerning the physical
properties of liquid crystalline side-chain elastomers,
which are closely related: a) the role played by relative
rotations between the network and the preferred direc-
tion characterizing broken rotational symmetry; and b)
the physical picture and mechanisms behind the plateau
region observed for the stress-strain curves for the poly-
domain - monodomain transition as well as for the mon-
odomains under an external mechanical stress applied
perpendicularly to the ’imprinted’ preferred direction.
For the future there are at least two outstanding chal-
lenges. First of all it will be important to calculate the
stress-strain curve including the plateau from a fully
nonlinear macroscopic theory incorporating both, the
nonlinear Eulerian strain tensor as well as the complete
nematic order parameter tensor, Qij [78–84]. We note,
however, that this rather ambitious program has never
been carried out in all detail for any of the systems show-
ing plateau regions described in the last section. There-
fore even the analysis of a model, which captures the
essential ingredients and takes into account all the ap-

propriate symmetry properties [85] would be a decisive
step forward.
The other outstanding challenge is the issue whether soft
LCEs in the spirit of Golubovic and Lubensky [31] exist.
Certainly their theoretical description has led to many
publications over the last few years [30, 57, 86–91]. The
LCEs, which have been synthesized so far, however, do
not satisfy the requirements of these theoretical mod-
els. The recent work of Fried and Sellers [55, 56] even
suggests that it will be probably impossible to synthe-
size LCEs with the properties required in the theoretical
work of Golubovic and Lubensky [31].
Another topic which will undoubtedly attract increasing
attention in the near future are smectic A monodomain
liquid crystalline elastomers. Their synthesis is fairly re-
cent [92] and the analysis of their physical properties has
just started [92,93]. For these materials one of the issues
of interest in the framework of macroscopic dynamics is
certainly the characterization of their nonlinear behav-
ior including the questions whether relative rotations are
as important as for nematic LCEs and whether there is
also a plateau in the stress-strain curve for this class of
materials. So far the nonlinear analysis was confined to
a model based on Gaussian rubber elasticity [94]. In
addition, it would be highly desirable from a modeling
point of view to have quantitative data above, but close
to the onset of the undulation instability [92, 93], since
we have shown very recently [95], using the macroscopic
approach, that the onset of the undulational instabil-
ity in monodomain smectic A LCEs is associated with a
forward bifurcation for all parameters investigated.
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[68] M. Büttiker and H. Thomas, Phys. Rev. Lett., 1977, 38,
78.

[69] D.E. McCumber and A.G. Chynoweth, IEEE Trans.
Electron Devices, 1966, 13, 4.

8



[70] A. Lendlein and S. Kelch, Angew. Chem. Int. Ed., 2002,
41, 2035.

[71] L. Delaey, R.V. Krishnan, H. Tas, and H. Warlimont,
J. Mat. Sci., 1974, 9, 1521.
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