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Abstract. We argue that all dynamic mechanical experiments on sidechain liquid crystalline elastomers

performed up to now can be described without invoking the picture of dynamic soft or semi-soft elasticity.

PACS. 83.80.Va Elastomeric polymers – 61.30.-v Liquid crystals – 83.60.Bc Linear viscoelasticity

1 Static aspects

Although our paper [1] did not deal directly with the ques-

tion of static soft and semi-soft elasticity, there is cer-

tainly a connection and the Comment [2] starts with an

extended presentation of this matter, which we have to

elucidate on. It has already been noticed by de Gennes [3]

that the shear elastic constant C44 is renormalized to

C̃44 = C44 − D2
2/4D1, if the nematic degree of freedom

is eliminated adiabatically. This is nothing special for ne-

matic elastomers, but a rather common feature in ther-

modynamics, when of two degrees of freedom, coupled by

a bilinear term in a (harmonic) free energy, one is elimi-
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nated adiabatically (e.g. cf. Chap.2.5.2 in [4] dealing with

the flexoelectric coupling in nematics). Really special for

nematic elastomers is the notion of ’soft elasticity’ [5, 6]

meaning C̃44 = 0, which was later softened into ’semi-

soft elasticity’, where C̃44 is not exactly zero, but small

due to various kinds of ’imperfections’ (cf. Chaps. 7.4-7.6

in [6]). The two concepts of renormalized and semi-soft

elastic constants have clearly to be distinguished.

The plateau in Fig.1 of [2], called soft in [2], is as-

sociated with a nonlinear effect and does not prove that

C̃44 = 0. Only the initial slope of the stress-strain curve

can be related to the linear response behavior intrinsically

assumed for linear elasticity. At large extensions, that is

far beyond the linear response regime, where the direc-

tor is parallel, the elastic modulus has again a finite value

comparable to that of the initial slope of the stress-strain

curve. In between there is a transition to a heterogeneous

texture. The associated plateau does not imply that C̃44

is zero in the two homogeneous regions above and below

the plateau, in the same way as the flat part of a V (T )

(volume vs. temperature) plot at the liquid to gas transi-

tion does not mean that the thermal expansion coefficient

is zero in the liquid or in the gas state. A direct test of the

soft elasticity concept, i.e. checking whether C̃44 is zero

or not in a monodomain sample, consists in measuring the

shear rigidity modulus in the linear regime for a suitable

geometry.

The symmetry arguments of Golubovic and Luben-

sky [7] are not applicable, since they require a sponta-

neous breaking of rotational symmetry due to a sponta-

neous shape anisotropy at the isotropic to nematic phase

transition [8]. At this transition however, real side chain

elastomers condense into a multi-domain structure with-

out a shape change, if untreated. Only after stretching

single domain elastomers are obtained. Then, of course,

the shape anisotropy is not spontaneous, in particular for

systems that are cross-linked for a second time in the

stretched state. Like in ordinary anisotropic solids, there

is no symmetry reason for the (shear) modulus to vanish.

2 Dynamic aspects

Now we turn to the discussion of the macroscopic dynamic

behavior of nematic elastomers, the description of which

has been pioneered in refs. [3, 9]. In the following we ad-

dress some detailed points raised in [2], dealing with the

validity of the measurements, dynamic soft elasticity, the

power-law scaling of the dynamic moduli G′ and G′′, and

the possible influence of chemistry. They are discussed

roughly in the sequence they are coming up in [2].

1) First we briefly address the issues of the time we

have to wait to reach true equilibrium, and of the small-

est frequency studied. Both questions also apply to the

Cambridge work since the smallest frequency studied in

refs. [10–12] is 0.1 Hz. For our measurements equilibrium

is achieved when G′ becomes frequency independent and

concomitantly the phase angle φ becomes zero. The lowest

frequency studied in [1] is 10−1 Hz. This frequency is low

enough to obtain true equilibrium in the isotropic phase

and for temperatures around the N-I transition, as Figs.

8-10 of [1] show. Fig. 1 of this reply confirms this, by
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extending the G′ data of Figure 9b down to 0.02 Hz. One

should keep in mind that stress relaxation experiments,

which are compared in [2] to frequency-dependent oscil-

latory measurements, have their own experimental prob-

lems.

2) In the hydrodynamic regime, the storage modulus

G′
‖, for the (parallel) geometry with the director in the

shear plane, is related to C̃44, while for the geometry with

the director not in the shear plane, G′
⊥ comes with C44.

Thus, the ratio G′
⊥/G′

‖ is larger than one for any nematic

side chain elastomer. If dynamic ‘soft or semi-soft elas-

ticity’ [6, 10–13] would apply, this ratio would be infinity

or rather very large. However, experimentally we demon-

strated that G′
⊥/G′

‖ ∼ 2 . . . 3 for samples 1 and 2. Note,

that sample 1 is similar to the LC elastomer, for which

the authors of the preceding comment [2] have claimed dy-

namic semi-soft elasticity. Sample 2 differs from sample 1

by the nature of the crosslinkers, leading to a higher shear

rigidity modulus (105 Pa versus 104 Pa in the isotropic

phase). Since the two samples behave the same way en-

tering the nematic phase, the decrease of G′
‖ compared

to G′
⊥ is due to the renormalisation of C44, but not due

to semi-softness or softness. This conclusion is also sup-

ported by the behavior of the polydomain sample (sample

5) which also shows a small dip of G′ around the N-I tran-

sition, stemming from the domains that are sheared in a

direction parallel to the director.

In contrast to what is claimed in [2], we have never

stated that the reduction in C44 is a consequence of in-

teracting bulky side groups. The interacting bulky side

Fig. 1. G′ and G′′ from fig.9b of [1] are shown for an extended

frequency range down to frequencies F of 0.02 Hz.

groups have been discussed in connection with an effec-

tive Rouse behavior in [1].

3) Next we discuss the question of the time scales as-

sociated with the director and the network. The char-

acteristic time scale for the Rouse-like modes is given by

G′ = G′′. We emphasize that the point of intersection is

not arbitrary. It gives the value for the time scale of the

slowest Rouse mode τR. We refer the interested reader to

the book of Ferry [14] that includes an extension of the

Rouse model to elastomers by Mooney. τR is given by:

τR =
ξN2

c b2

3Π2kBT
(1)

where ξ is the monomeric friction coefficient, Nc the num-

ber of Rouse sequences between two crosslinking points,

and b the length of a sequence. The theory of Terentjev

and Warner (TW) is based on the separation of time scales

between the director and the network with τn >> τR,

where τn is the relaxation time of the director [10, 13].
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This decoupling approximation was used by the Cam-

bridge group to analyse their data, in particular those

associated with the sample prepared in the same way as

sample 1 [10]. In their commentary, the authors change

their point of view and now claim that τn << τR for the

same sample as before. To obtain this result they have

analysed the low frequency part of the master curve given

by Fig. 2b in [2] and deduced that τR is in between 64 s

(assuming G′′ ∼ ω0.65) and 440 s (assuming G′′ ∼ ω). By

comparing these values to the τn value, which they take

to be ∼ 10−2 s, they concluded that τR is vastly greater

than τn. However, τR has been evaluated at T = 22◦C

(the reference temperature of the master curve) and τn

at T ∼ 77◦C. If the temperature dependence of τn given

in [15] is taken into account, one finds τn ∼ 200 s, that is

of the same order of magnitude as τR. So, it is clear that

τn can be neither >> τR nor << τR. τn is of the order of

τR, as we have stated in [1]. It should be noted that eq.1

of [2] is valid only if τn is longer than τR.

4) We examine now the scaling behavior observed for

G′ and G′′. Fig. 2b of [2] shows that the viscoelastic part

of G′ and G′′ is characterized by an exponent n ∼ 0.65,

whereas we find n ∼ 0.5. The authors of [2] indicate

that n ∼ 0.65 is not surprising given that values of n

varying from 0.44 to 0.75 have already been reported for

side chain nematic elastomers. In fact, these values have

been obtained for side chain nematic polymers but not

for elastomers, as claimed in [2]. For side chain nematic

elastomers we have always found for the exponent n the

value n ∼ 0.5 (see section 6.3 of [1]).

Fig. 2. A stress-strain curve is shown for 1 Hz at T = 30◦C.

The solid line indicates the result expected for linear response.

In this connection there appears to be an open problem

with Fig.2b of [2]. In the linear response regime the value

n = 0.65 is not compatible with the observation G′ = G′′

in Fig.2b. G′ = G′′ leads to n = 0.5. It should be noted

that the measurements of the Cambridge group were taken

with a strain ε ∼ 2 · 10−2 [10], whereas ours were taken

with ε ∼ 10−4. Our measurements show that G′ = G′′

and n = 0.5, which is the behavior expected in the linear

response regime. Fig.2 shows a typical example of the

variation of the stress σ as a function of the strain ε. It can

be seen that σ is proportional to ε only for ε smaller than

∼ 3 · 10−4. This definitely shows that the measurements

of the Cambridge group are not in the linear response

regime, in contrast to what is claimed in [10,12], and can

therefore not be interpreted in the framework of linear

response theory as it has been done in [10, 12]. In this
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Fig. 3. Temperature dependence of G′
‖ and G′

⊥ at 1 Hz around

the NI-transition,

connection there appears to be a second problem with

Fig. 2b [2], which shows that the low frequency behavior

is characterized by G′ = cst and G′′ ∼ 0.65, whereas our

experiments performed within the same frequency range

than those of the Cambridge group show that G′ = cst

and G′′ ∼ ω. It should be noted that all the elastomers we

have investigated show a hydrodynamic behaviour (G′ =

cst;G′′ ∼ ω) in the low frequency limit.

5) The last point concerns the chemistry. The authors

of [2] indicate that the exponent n depends on delicate

aspects of preparation even if exactly the same chemistry

were to be used. To address the influence of modifications

in the chemistry, we have recently performed measure-

ments on a sample similar to sample 1 of [1], for which

the crosslinking process was different with remaining un-

reacted monomers (swelling degree q = 4.3; Tni = 73◦C).

Our results show that there is no change in the ratio

G′
⊥/G′

‖, which is ∼ 2.5 at T ∼ 65◦C, and the value of

Fig. 4. Frequency variation of G′ and G′′ at 40◦C for the

parallel geometry.

n (∼ 0.5). To demonstrate this we present here Figures

3 and 4, which respectively show the temperature depen-

dence of G′
‖ and G′

⊥ at 1 Hz between 30◦C and 120◦C,

and the frequency variation of G′ and G′′ at 40◦C for the

parallel geometry. These results demonstrate that modi-

fications in the chemistry do not change our picture - in

contrast to what has been suggested in the previous com-

ment [2] - and therefore ’soft elasticity’ is not involved.

In contrast to what is stated in [2], the exponent

n ∼ 0.5 is not a direct evidence of soft elasticity. This ex-

ponent is, for example, also observed in the isotropic phase

of samples exhibiting an isotropic to smectic A phase tran-

sition, and in polydomain samples (see section 6.3 in [1]).

To sum up we have argued that all dynamic mechani-

cal experiments performed so far can be described without

invoking the concept of dynamic ‘soft or semi-soft elastic-
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ity’. To explain the dip in G′
‖ in the parallel geometry a

macroscopic description [3, 9] turns out to be completely

sufficient [1]. In particular, the values of G
′

⊥/G
′

‖ and n are,

in a first approximation, not, or at most only very weakly,

system dependent. A second plateau expected from dy-

namic soft elasticity [10,13] has not been observed.

Since hydrodynamics is connected to statics, the re-

sults presented in [1] show no evidence for static ‘soft or

semi-soft elasticity’, suggesting that there is another pos-

sibility to explain the results in Fig.1 of [2].
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