
Local Rotational Degrees of Freedom in

Nematic Liquid-Crystalline Side-Chain Polymers

Harald Pleiner and Helmut R. Brand

FB7, Physik, Universität Essen, D 4300 Essen 1, Germany

Macromolecules, 25, 895 (1992)

ABSTRACT: In nematic side-chain polymers the side-chains are oriented in the mean along a

certain direction (the director). Rotations of backbone segments relative to the director are

degrees of freedom characteristic for such polymeric nematic systems. We investigate theoretically

the influence of these relative rotations on the linear mode spectrum. We discuss longitudinal and

transverse sound excitations and propose experiments, in which qualitatively new features due to

these relative rotations are to be expected. We show that recent unexpected findings in director

relaxation experiments can be explained with the help of these new degrees of freedom as well as

by elasticity.

PACS classification:
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1. Introduction and Discussion of Results

Since the first sythesis of liquid-crystalline side-chain polymers,1 the number of

investigations of this new class of material has grown rapidly (cf. Ref. 2, 3 and references

cited therein). Apart from the technological importance of these materials there is also a

profound purely scientific interest in such materials, e.g. they facilitate certain experiments

due to the longer time scales involved in polymeric systems compared to low molecular

weight systems. Here we are interested in the possibility of getting access to rotational

degrees of freedom connected to viscoelasticity with the help of the hydrodynamic liquid-

crystalline degrees of freedom.

In hydrodynamics each degree of freedom is represented by an appropriate dynam-

ical field4 in contrast to phenomenological models for polymers (Maxwell, Jeffries etc.),

where only the conventional fields of simple liquids are used and the additional dynami-

cal complexity is put into frequency dependent transport parameters. The hydrodynamic

method, however, has the advantage that crosscouplings between the dynamical fields are

much more apparent and their derivation is more systematic.5 This is even more important

for liquid crystalline polymers, where additional degrees of freedom have to be accounted

for, as has successfully been demonstrated for nematic side-chain polymers in ref. 6.

Having identified all relevant dynamical variables (i.e. the truly hydrodynamic ones and

those relaxing on a macroscopic time scale) the hydrodynamic method is exact and sets

a framework for microscopic and phenomenological models. It consists of an analytical

gradient expansion in the statics and dynamics. Usually such an expansion exists at least

for the lowest order terms (with the critical dynamics very close to phase transitions as an

exception). In the following we will restrict ourselves to linear hydrodynamics.

In contrast to polymeric main-chain nematics, where the nematic order takes place in
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the backbone itself, in side-chain nematics the nematic order and the polymeric behaviour

are separated spatially and coupled through the flexible spacers between mesogenic units

of the side-chains and backbone segments only. Thus, in a hydrodynamic description

the specific polymeric degrees of freedom (transient elasticity5 ) and the specific nematic

degrees of freedom (director rotations7 ) can still be treated as independent dynamic

variables. Their mutual interaction is then described explicitly by static and dynamic cross-

couplings6 similar to the interaction between temperature and concentration in binary

mixtures.

The physical linkage between side-chains and the backbone has additional conse-

quencies. First, the degree of nematic order (nematic order parameter) is influenced by

backbone fluctuations and, vice versa, any change in the degree of the nematic order may

require some movement of the backbone. Thus, in nematic side-chain polymers the ne-

matic order parameter is an additional macroscopic (i.e. slow) variable6, whereas in low

molecular weight nematics it is fast and discarded in a hydrodynamic description (except

near the phase transition to the isotropic phase). In addition rotations of the side-chains

can influence the orientation of the backbone segment to which they are attached and

vice versa. Since the orientation of the side-chains (the director) can be manipulated by

external fields,7 this gives access to the dynamics of local rotations of the backbone. In

non-mesogenic polymer systems such rotations of the backbone are decoupled from the

macroscopic variables and do not show up explicitly in a hydrodynamic description (App.

A). Thus, the relative rotations between backbone and director are a specific and impor-

tant additional macroscopic degree of freedom of nematic side-chain polymers and the main

body of this manuscript will be devoted to the derivation of the appropriate hydrodynamic

equations (sec. 2) and to the discussion of its influence on standard experimental situa-
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tions like sound propagation, flow alignment and director relaxation (sec. 3). A discussion

of the static properties of these relative rotations for permanently crosslinked polymers

(gels or elastomers) has already been given8 some time ago. A complete listing of the

hydrodynamic equations including the other degrees of freedom is given in App. B.

Investigating the normal mode structure of nematic side-chain polymers including

relative rotations, we find (sec.3) that generally the influence of the latter and their dis-

tinction from (transient) elasticity is most pronounced for high frequency experiments (e.g.

sound propagation), while for quasi-static experiments (flow alignment due to shear flow,

director relaxation in homogeneous magnetic fields) the influence of elasticity and rela-

tive rotations is difficult to disentangle. The velocity of longitudinal sound acquires an

additional dispersion step at the relaxation frequency of the relative rotations, which has

a characteristic sin2(2φ)-dependence on the angle φ between the wave vector k and the

director n̂0. This is in contrast to the dispersion step due to elasticity, which – although

direction dependent too – is present for all directions. For transverse sound (i.e. with the

wave vector perpendicular to the velocity amplitude v) the influence of relative rotations is

manifest except for v ⊥ n̂0⊥ k. In flow alignment and in director relaxation experiments

both, relative rotations and elasticity, enter on equal footing and one measures neither

the (bare) nematic flow alignment parameter nor the (bare) nematic rotational viscosity

by these experiments in polymeric systems. A detailed discussion of these experiments is

given in sec. 3.

2. Hydrodynamic Equations

In elasticity theory9 and in hydrodynamics4 the elastic behaviour of solids is de-

scribed by the displacement field u(r,t), which characterizes the actual position of the
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medium (i.e. of the molecules) compared to its equilibrium one. The displacement field

constitutes three independent additional degrees of freedom (compared to liquids), two of

which combine with vorticity diffusion of liquids to form the transverse sound modes of

solids, while the third one can be interpreted as vacancy diffusion mode4. Since homoge-

neous translations and solid body rotations do not change the elastic energy of the solid,

the strain tensor εij , a symmetric second rank tensor, is usually used to describe elasticity.

It is completely fixed by the displacement field and does not contain additional degrees of

freedom. In the linearized version one has

εij =
1
2
(∇jui +∇iuj). (1)

Local rotations are described by an antisymmetric second rank tensor in linearized theory

Ωij =
1
2
(∇jui −∇iuj), (2)

where, again, Ωij does not introduce additional degrees of freedom.

The elasticity of polymers, however, is only transient, i.e. it is manifest on a short

time scale only, but absent in the long time (stationary) limit. The simplest way to describe

this behaviour hydrodynamically is to use a relaxing strain field as additional (compared

to simple liquids) macroscopic variable5. However, since there is no defined equilibrium

position of the molecules in polymers, the notion of a displacement (from the equilibrium

position) does not make sense anymore and εij is no longer restricted by the special form of

eq.(1). Thus it contains six degrees of freedom, three of which are dynamically related to

the momentum and three are local elastic modes. These strain like fields no longer have a

simple molecular interpretation (in terms of displacements of regular lattices) in polymers,

since the transient elasticity there arises from the complicated and entangled motion on
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the molecular scale, which is even more complicated for side-chain polymers. Nevertheless

we will talk of ”backbone elasticity” etc. in the following as a short hand notation. In

addition Ωij does not obey eq. (2), and again, cannot be simply interpreted as being due

to molecular displacements. In polymers it is related to local torques due to the entangled

molecular motion; we will call it ”local rotation” in the following. For a discussion of the

hydrodynamics of isotropic polymers in terms of εij and Ωij cf. the Appendix A.

For the description of the dynamics of nematic side-chain polymers we recently6

used – besides the usual degrees of freedom of liquids (density, momentum density and

energy density) and the nematic director rotations – the (relaxing) strain field εij and the

(relaxing) order parameter δS as additional hydrodynamic variables in order to describe

the dynamic interplay between the viscoelasticity of the backbone and the nematic order-

ing of the side-chains. As discussed in the Introduction also relative rotations between

local backbone segments and the director are macroscopic degrees of freedom and their

hydrodynamic description will now be given.

Local rotations of the polymeric backbone are described by the antisymmetric tensor

Ωij , which in the case of polymers is not restricted to have the form of eq.(2). In a

nematic (uniaxial) system there are two different cases to be distinguished, namely the

rotation around the preferred direction n̂0,(Ω‖ = n0
i εijkΩij ; summation over repeated

indices is always implied), and two rotations orthogonal to that (Ω⊥i = n0
i Ωij , which implies

n0
i Ω
⊥
i ≡ 0). The former one does not involve a rotation relative to n̂0 and is decoupled from

the other hydrodynamic variables. It is rather similar to the local rotations in isotropic

polymers (cf. Appendix A) and will not be considered in the following. The latter ones

give rise to relative rotations, δni − Ω⊥i , which we are interested in. Here δni describes

rotations of the director from its equilibrium direction, δni = ni − n0
i and (∂/∂t)δni = ṅi.
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By definition Ω⊥i changes sign under the symmetry operation n̂0 → −n̂0.

Since δni −Ω⊥i is not a conserved quantity, the dynamic equations simply read

ṅi − Ω̇⊥i + Y Ω
i = 0, (3)

with n0
i Y

Ω
i = 0 (n0

i Y
Ω
i = niY

Ω
i for the linearized theory). Generally, the quasi-current Y Ω

i

can be written as the sum of the irreversible and the reversible parts, Y Ω
i = Y Ω

i
D + Y Ω

i
R,

which do or do not contribute to the entropy production of the system, respectively. The

time reversal behaviour of the reversible part is opposite to that of δni−Ω⊥i and the most

general form allowed by symmetry is

Y Ω
i

R
= λ⊥(δ⊥ijn

0
k + δ⊥ikn0

j )∇jvk, (4)

where v is the velocity field. The transverse Kronecker symbol δ⊥ij = δij − n0
i n

0
j projects

out the direction parallel to n̂0. There is no coupling in eq.(4) to the vorticity (the anti-

symmetric gradients of the velocity), since a global rotation of the system does not affect

any relative angle between two directions. The (reversible) transport parameter λ⊥ resem-

bles the flow alignment parameter λ in nematics and describes how elongational flow (and

shear flow) influences the relative rotations. Conversely relative rotations lead to back

flow effects in the stress tensor (cf. eq. (8) below). There are also some similarities with

the β-terms,10−12 relating scalar order parameters to elongational flow (and vice versa) in

systems close to various liquid crystalline phase transitions.

Like all transport parameters and static susceptibilities to be defined in the fol-

lowing λ⊥ is a (phenomenological) constant in the linearized theory, while in a nonlinear

generalization it can be a function of all scalar variables, e.g. temperature, pressure, v2

etc., but not of frequency, wave vector or director, since the latter dependencies are made

explicit by the hydrodynamic method.
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The irreversible part of the quasi-current Y Ω
i can be expressed by the thermody-

namic forces via (linear) irreversible thermodynamics.13 In order to obtain the force asso-

ciated with the relative rotations we expand the free energy density into the variables8

f =
1
2
D1(δni −Ω⊥i )2 + D2(δni −Ω⊥i )εijn

0
j + . . . , (5)

where the dots contain the contributions not related to the relative rotations (cf. App.

B). The first term stands for the energy cost of relative rotations, while the second one

denotes the crosscoupling energy between a relative rotation and an elongation-like (tran-

sient) elasticity. Eq.(5) has the same form as for nematic gels8. For polymeric systems

it is not accessible by static experiments, since in that limit polymers are fluid, but at

short time scales the energy cost (5) of relative rotations is manifest. Relative rotations,

that enter the macroscopic dynamics even in the static limit, occur in tilted hexatic liquid

crystals (smectic F and I)14,15 and in mixtures of two uniaxial nematic systems with dif-

ferent directors,16 while relative translations strongly influence the macroscopic dynamics

of incommensurate solids17 and other incommensurate systems.18

The thermodynamic force due to relative rotations is then given by the derivative

of the free energy

L⊥i = D1(δni −Ω⊥i ) + D2εjk n0
j δ⊥ik. (6)

The cross coupling term D2, not only describes that elastic elongations give rise to a non-

vanishing L⊥i (the second part of eq. (6)), but also that relative rotations lead to elastic

stresses Ψij (the thermodynamic force conjugate to the strain εij)

Ψij =
1
2
D2([δni − Ω⊥i ]n0

j + [δnj −Ω⊥j ]n0
i ) + . . . . (7)

For the dots, which contain e.g. the elastic tensor, cf. App. B. Thermodynamic stability

requires D1 > 0, D1c5 > D2
2, where c5 is a shear elastic constant. The thermodynamic
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force conjugate to director rotations (at constant relative rotation), ∇jΦij , is given by the

usual Frank curvature elasticity, Φij = (∂f0/∂∇jni) = Kijkl∇lnk. Physically n0
i εijk Ω⊥j

can be interpreted as a torque due to relative rotations. This thermodynamic force adds

to the stress tensor

σR
ij = −1

2
λ⊥(δ⊥kjn

0
i + δ⊥kin

0
j )L
⊥
k + . . . , (8)

where the dots stand for additional stresses due to the other internal degrees of freedom

(App. B).

With the static relations (6), (7) now at hands we can return to the dissipative parts

of the quasi-currents. Symmetry allows for the following expressions

Y Ω
i

D
= ζ⊥L⊥i + ζ12∇jΦij + ζΩ

ijkΨjk

Y D
i = − 1

γ1
∇jΦij − ζ12L

⊥
i − . . .

XD
ij = (

1
τ
)ijklΨkl + ζΩ

ijkL⊥k + . . .

(9)

where we have also written down some dissipative contributions to the quasi-currents

of the dynamic equations for the director (ṅi + Yi = 0) and for the transient elasticity

(ε̇ij + Xij = 0). The diagonal terms ζ⊥, 1/γ1, 1/τ describe the relaxation of relative

rotations, director reorientation and decay of the transient elasticity, respectively. The

tensor ζΩ
ijk = ζΩ(δ⊥ikn0

j + δ⊥jkn0
i ) is of the typical nondiagonal form that can also be found

in eqs. (4) and (6), and (1/τ)ijkl is structurally isomorphic to the elastic tensor cijkl, cf.

App. B. For the dissipative crosscoupling coefficients, ζ12 and ζΩ the Onsager relations

have already been built in. To guarantee positivity of the entropy production the following

expressions have to be positive, ζ⊥, ζ⊥/γ1 − ζ2
12, and ζ⊥/τ5 − (ζΩ)2. For permanently

crosslinked polymers (elastomers, gels) the elasticity no longer relaxes on finite time scales,

but diffuses. For that case all τ ’s have to be infinite, which implies that ζΩ is zero, and eq.
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(9) is amended by diffusional terms ∼ ∇k∇jΨij . Eq.(9) only contains linear dissipative

effects, while nonlinear effects can be incorporated along the lines of ref. 19.

There are no orientational effects of spatially homogeneous external (electric or

magnetic) fields related to the relative rotations. Only inhomogeneous electric fields couple

to relative rotations giving rise to an additional contribution in eq.(6) to L⊥i of the form

e⊥ijk∇jEk (with a corresponding contribution to the dielectric displacement vector Di =

e⊥kji∇j(δnk − Ω⊥k )) and in eq.(9) to Y Ω
i

D of the form ζel
ijk∇jEk (with a corresponding

contribution to the electric current density Ji = −ζel
kji∇jL

⊥
k ), where the material tensors

e⊥ijk and ζel
ijk are of the form (B.7), below. The flexoelectricity (with respect to relative

rotations) ∼ e⊥ijk is not accessible by static measurements in polymers, while elastomeric

systems are more suitable for investigating static electric effects.20,21 For a more general

treatment of dynamic electric effects within the macroscopic dynamics cf. ref. 22, 23.

3. Experiments

Having finished the exposition of those parts of the hydrodynamic equations that are

related to relative rotations we will now proceed by discussing how the new degrees of free-

dom can be detected and identified by experiments. We propose some future experiments

and discuss the results of a recent one, where the relative rotations lead to qualitatively

new effects, by which their importance for the macroscopic dynamics of nematic side-chain

polymers can be demonstrated.

One suitable standard experiment is the measurement of the velocity of (ordinary

longitudinal) sound waves, c(ω, φ), as function of the frequency and of the orientation

between the wave vector k and the director n̂0 (n̂0·k = cosφ). Without taking into account

relative rotations we have found6 that at high frequencies c is anisotropic and especially
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c(φ = 0) 6= c(φ = π/2). This results from the uniaxiality of the elasticity and from the

order parameter, which couples uniaxially to the velocity, as well as from various crosscoup-

lings among these variables and the other variables contributing to the sound velocity.

At low frequencies the sound velocity is isotropic as for low molecular weight nematic

liquid crystals. This general picture has recently been confirmed experimentally.24−26

For intermediate frequencies there are some dispersion steps, which correspond to the

relaxation frequencies of (transient) elasticity, order parameter and related crosscouplings.

The dispersion steps depend on the orientation φ, and below the lowest one the anisotropy

has vanished.

Taking into account the relative rotations there are additional frequency- and

orientation-dependent contributions to the sound velocity. Neglecting the static (D2) and

dissipative crosscoupling terms (ζΩ) for the moment we find for the dispersion relation of

first sound (up to order ω ∼ k)

ω2

k2
=

iω

iω + D1ζ⊥
λ⊥

2
D1

4ρ0
sin2(2φ) + c0

2(ω, φ) (10)

where c0
2 denotes the contributions, which are not related to relative rotations. The new

contribution due to relative rotations in (10) is generally anisotropic, but vanishes for

both, φ = 0 and φ = π/2. It introduces an additional dispersion step (at the relaxational

frequency of the relative rotations), below which it only adds to the damping of the sound

mode, but no longer to the velocity. Thus, if in experiments an additional dispersion step

is found at some intermediate angle, say φ = π/4, but neither for φ = 0 nor for φ = π/2,

this effect is very likely related to the relative rotations discussed here. This general picture

does not change if the crosscoupling terms ζΩ and D2 are taken into account, only eq. (10)

becomes much more complicated.
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The sin2(2φ) signature of the new contribution is quite characteristic for rotational

degrees of freedom and can be traced back to the special form of the coupling provided

by λ⊥, cf. eq.(4). The contributions to the sound dispersion relation due to director

rotations (as in low molecular weight nematics), would also have the same φ-dependence.

They are, however, of order ω2 ∼ k4 and do not contribute to the sound velocity. The

difference is that director rotations are true hydrodynamic variables, which can only diffuse

but not relax, while the relative rotations are not true hydrodynamic excitations and relax

on a finite time scale. The reason is that director rotations are Goldstone modes of the

spontaneously broken rotational symmetry in nematics,27,28 while the relative rotations are

not connected to a spontaneously broken continuous symmetry nor to any conservation

law.

Other propagative modes in solids (and polymers at high frequencies) are the two

transverse sound modes, where the polarization of the mode (i.e. the velocity v) is per-

pendicular to the wave vector k. In uniaxial systems the two modes (called A and B in

the following) have v‖n̂0 and v ⊥ n̂0, respectively. Without taking into account relative

rotations both modes, A and B, show one dispersion step6 in nematic side-chain polymers,

below which transverse sound ceases to exist as propagative mode and is better described

as vorticity diffusion mode common to liquids. The dispersion step in mode A and B are

generally different from each other (and – for B – dependent on φ, the angle between k

and n̂0) but are both given by some elastic relaxation frequencies (e.g. c2/τ2, 4c5/τ5).

The relative rotations are excited by shear flow, except if n̂0 is perpendicular to the

shear plane. This is easily recognized from eq. (4): Y Ω
i is non-zero only, if either n̂0 · v

or n̂0 · k or both are non-zero. The reason is that relative rotations about n̂0 do not exist

(rotations about n̂0 do not change the angle between n̂0 and the backbone). Thus, relative
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rotations are generally part of the transverse sound modes A and B, except for k ⊥ n̂0 in

case B. Neglecting the crosscoupling terms (D2 and ζΩ) again, which does not alter the

general content of the result, the dispersion relations for transverse sound A and B are,

respectively
iωρ0

k2
+ F1(ω) = 0

iωρ0

k2
+ F1(ω) cos2 φ + F2(ω) sin2 φ = 0

(11)

where

F1 =
1
4

λ⊥
2
D1

iω + ζ⊥D1
+

c5

iω + 4 c5
τ5

+ ν5

F2 =
1
2

c2

iω + c2
τ2

+ ν2

(12)

with k · n̂0 = cosφ. Relative rotations introduce generally a second dispersion step for the

transverse sound velocity at the appropriate relaxation frequency ζ⊥D1, below which they

only contribute to the relaxation. Only for φ = π/2 (case B) this dispersion step is absent.

Thus, performing a propagating transverse sound experiment across a layer with planar

alignment of the director (i.e. n̂0 in the layer plane, k perpendicular), and finding two

dispersion steps (one dispersion step) when the flow excitation is parallel (perpendicular)

to n̂0, will be a strong sign that relative rotations are present as important macroscopic

excitations.

Relative rotations also influence other experiments involving the dynamics of the

director, e.g. director relaxation measurements29−31 and flow alignment angle measure-

ments. However, in these cases relative rotations do not lead to qualitatively new effects, by

which their existence could be demonstrated unambiguously, although their quantitative

effects conuld be rather drastic. These will be discussed in App. C.
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Appendix A: Local Rotations in Isotropic Polymers

As discussed in the Introduction local rotations in polymeric systems are not related

to a displacement field (cf. eq.(2)), but are discribed by an antisymmetric second rank

tensor variable Ωij . It contains three independent fields, which is made apparent by writing

Ωi ≡ (1/2)εijkΩjk. This axial vector (it transforms even under spatial inversions in contrast

to polar vectors, which transform odd) is completely determined by its divergence and curl,

div~Ω and curl~Ω. The former is a pseudo-scalar quantity (odd under spatial inversion),

which cannot couple in an isotropic system to any other macroscopic variable or external

field, and is therefore not considered in the following. The latter two variables will be

discussed here.

The free energy density related to local rotations reads

fΩ =
B1

2
(curl~Ω)2 + B2(curl~Ω)i∇jεij . (A.1)

Eq. (A.1) resembles the free energy expression for relative rotations in nematic systems,

eq. (5), with the very important difference that in (A.1) only gradients of rotations (and

gradients of the elastic strain) enter, while in (5) already homogeneous relative rotations

lead to an increase in energy. Of course, a homogeneous rotation (solid body rotation) must

not alter the free energy of the system. Eq. (A.1) not only gives rise to the thermodynamic

conjugate field with respect to rotations, L̃i, but also to a contribution to the elastic stress

Ψij (cf. eq.(7))

L̃i = B1(curl~Ω)i + B2∇jεij (A.2a)

Ψij = −1
2
B2[∇j(curl~Ω)i + (i→ j)] + . . . (A.2b)

The dynamics of local rotations is described by

∂

∂t
curl~Ω− curl~ω + ~ZΩ = 0 (A.3)
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where ~ω is the vorticity. The dissipative part of the quasi-current, ZΩ
i , is derived from the

dissipation function R

R =
1
2
ξL̃2

i + ξΩL̃i∇jΨij (A.4)

which also gives a contribution to the quasi-current of elastic strains Xij (cf. eq.(9)), due

to the crosscoupling ∼ ξΩ

XD
ij = −1

2
ξΩ(∇jL̃i +∇iL̃j) + . . . (A.5a)

ZΩ
i = ξL̃i + ξΩ∇jΨij (A.5b)

Of course, only inhomogeneous rotations lead to entropy production, since a solid body

rotation is an equilibrium state, while homogeneous temporal changes of relative rotations

(eq.(9)) do increase the entropy.

The local rotations are decoupled from longitudinal sound and do not take part in

the propagation of transverse sound (ω ∼ k), because their coupling to momentum and to

other variables contains too many gradients. This is strikingly different from the behaviour

of relative rotations discussed in the main text.

In solids or permanently crosslinked elastomers local rotations are described by the

displacement field and are not independent from the strain field (eqs.(1), (2)). In low

molecular weight fluids local rotations are completely microscopic excitations (describing

rotations of molecules etc.), which relax on a microscopic time scale, and are thus, not

taken into account in a macroscopic description.
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Appendix B: Complete Listing of Hydrodynamic Equations

The relevant macroscopic variables describing the dynamics of nematic side-chain

polymers include (mass) density ρ, momentum density gi, energy density ε, elastic strain

εij , director rotations δni, nematic order fluctuations δS, relative director - backbone

rotations δni−Ω⊥i , and in the case of solutions the concentration c. The following complete

list of linear equations for these variables is a conjugation of the appropriate equations of

refs. 5, 6 and of sec. 2. Assuming that all internal and microscopic variables not listed

explicitly above are in thermodynamic equilibrium on the relevant time and length scales,

changes of the macroscopic variables are linked to changes of the entropy density σ by the

Gibbs relation

Tdσ = dε− µdρ− µcdc− vidgi −WdS −Φijd∇jni −Ψijdεij − L⊥i d(ni −Ω⊥i ). (B.1)

This equation defines the thermodynamic conjugate quantities temperature T , chemical

potential µ, relative chemical potential of the mixture µc, velocity vi, ”order parameter

field” W , ”molecular field” ∇jΦij , elastic stress Ψij and the ”relative molecular field” L⊥i

as partial derivatives of the energy with respect to the acssociate variable. The relations

between these two sets of fields constitute the static part of the macroscopic equations

δT =T0C
−1
V δσ − (αsρ0)−1δρ + βσδc + χσ

ij εij + bσ δS (B.2a)

δµ =ρ−2
0 κ−1

s δρ + (αsρ0)−1δσ + βρδc + χρ
ij εij + bρ δS (B.2b)

δµc =γ δc + βσδσ + βρδρ + χc
ij εij + bc δS (B.2c)

vi =ρ−1
0 gi (B.2d)

W =a δS + χS
ij εij + bσ δσ + bρ δρ + bc δc (B.2e)

Φij =Kijkl∇lnk (B.2f)
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Ψij =cijkl εkl + χρ
ij δρ + χσ

ij δσ + χc
ij δc + χS

ij δS

+
1
2
D2[(δni −Ω⊥i )n0

j + (i↔ j)] (B.2g)

L⊥i =D1(δni − Ω⊥i ) + D2εjk n0
j δ⊥ik (B.2h)

The δ’s denote deviations from the (constant) equilibrium values, which carry a subscript

zero. The material tensors are of the uniaxial form

zij =z‖n
0
i n

0
j + z⊥δ⊥ij (B.3a)

cijkl =c1δ
⊥
ijδ
⊥
kl + c2(δ⊥ikδ⊥jl + δ⊥il δ

⊥
jk) + c3n

0
i n

0
jn

0
kn0

l + c4(δ⊥ijn
0
kn0

l + δ⊥kln
0
i n

0
j)

+ c5(δ⊥ikn0
jn

0
l + δ⊥il n

0
jn

0
k + δ⊥jkn0

i n
0
l + δ⊥jln

0
i n

0
k) (B.3b)

Kijkl =K1δ
⊥
ijδ
⊥
kl + K2n

0
pεpijn

0
qεqkl + K3n

0
jn

0
l δ
⊥
ik (B.3c)

The elastic constants defined here (cα) are related to those in Voigt notation (cαβ) by

c11 = c22 = c1 + 2c2, c12 = c21 = c1, c13 = c31 = c23 = c32 = c4, c33 = c3, c44 =

c55 = c5, c66 = 2c2, and all other cαβ equal to zero. Thermodynamic stability requires e.g.

c1 + 2c2, c3, c5, c3(c1 + 2c2) − c2
4, 4c5D1 − D2

2 all to be positive. For the conserved and

non-conserved quantities the dynamic equations are

σ̇ +∇iji
σ =

R

T
(B.4a)

ρ̇ +∇igi = 0 (B.4b)

ċ +∇iji
c = 0 (B.4c)

ġi +∇jσij = 0 (B.4d)

Ṡ + Z = 0 (B.4e)

ṅi + Yi = 0 (B.4f)

ε̇ij + Xij = 0 (B.4g)
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ṅi − Ω̇⊥i + Y Ω
i = 0 (B.4h)

The dynamic equation for the energy density follows from eqs.(B.4) and (B.1). The currents

and quasi-currents defined in (B.4) can be written as sum of a reversible part (superscript

R) and a dissipative part (superscript D) leading to zero or positive entropy production

(R ≥ 0), respectively. The two parts of the material equations are

jσR
i = σ0vi (B.5a)

gR
i = ρ0vi (B.5b)

jcR
i = c0vi (B.5c)

σR
ij = p δij +

1
2
(1 + λ)n0

j∇kΦik −
1
2
(1− λ)n0

i∇kΦjk

− λ⊥

2
(L⊥j n0

i + L⊥i n0
j)−Ψij + βijW (B.5d)

ZR = βijAij (B.5e)

Y R
i = −εijk ωj n0

k −
λ

2
(δ⊥ijn

0
k + δ⊥ikn0

j)∇jvk (B.5f)

XR
ij = −Aij (B.5g)

Y Ω
i

R
= −λ⊥

2
(δ⊥ijn

0
k + δ⊥ikn0

j)∇jvk (B.5h)

and

jσD
i = −κij∇jT − ζT

ij ∇kΨjk −DT
ij ∇jµc −DW

ij ∇jW (B.6a)

gD
i = 0 (B.6b)

jcD
i = −Dij ∇jµc − ζc

ij∇kΨjk −DT
ij ∇jT −Dc

ij ∇jW (B.6c)

σD
ij = −νijklAkl (B.6d)

ZD = κwW + ξij Ψij −DW
ij ∇i∇jT −Dc

ij ∇i∇jc (B.6e)

Y D
i = − 1

γ1
∇jΦij − ζn

ijkΨjk − ζ12 L⊥i (B.6f)
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XD
ij = (

1
τ

)ijkl Ψkl + ξijW + ζn
kji∇lΦkl + ζΩ

kjiL
⊥
k

− 1
2
[∇j(ζT

ik∇kT + ζc
ik∇kµc) + (i↔ j)] (B.6g)

Y Ω
i

D
= ζ⊥L⊥i + ζ12∇jΦij + ζΩ

ijkΨjk, (B.6h)

where we have used the abbrevations Aij = 1
2
(∇ivj +∇jvi) and ωi = 1

2
εijk∇jvk. The sec-

ond rank tensors are of the form (B.3a), the viscosity tensor νijkl and the elastic relaxation

tensor (1/τ)ijkl are of the form (B.3b), and the third rank material tensors read

λijk = λ(δ⊥ijn
0
k + δ⊥ikn0

j ). (B.7)

The viscosity constants defined here (να) by the form (B.3b) are related to those of the

Harvard notation28 (νH
α ) by νH

1 = (1/2)(ν1 + ν3)− ν4, νH
2 = ν2, νH

3 = ν5, νH
4 = ν1 + ν2,

and νH
5 = ν4. Positivity of entropy production is guaranteed, if the following expressions

are positive: κ‖, D‖, κ‖D‖ − (DT
‖ )2, κ‖κw − (DW

‖ )2, κwD‖ − (Dc
‖)

2; all these expressions

with subcript ‖ replaced by ⊥; κw, γ1, ζ⊥, 1−γ1τ5(ζn)2, ζ⊥−γ1ζ
2
12, ζ⊥−τ5(ζΩ)2, κw(τ2+

2τ1)− τ1τ2ξ
2
⊥, κw− τ3ξ

2
‖; c1 +2c2, c3, c5, (c1 +2c2)c3− c2

4 for either cα = να or cα = 1/τα.

Eqs. (B.1), (B.5) and (B.6) only show the contributions of lowest possible order in the

gradient expansion. Higher order gradient terms can be incorporated along the lines of

ref. 32.

20



Appendix C: Director Relaxation and Flow Alignment Angle Measurements

Recently, director relaxation measurements29−31 showed a remarkable increase in

the relaxation time of nematic side-chain polymers compared to low molecular weight

systems. The strong dependence on molecular weight indicated that this was a genuine

polymeric effect. Here we want to discuss the origin of this effect within our hydrodynamic

description. Applying a homogeneous magnetic field H to a well oriented nematic sample

generally results in a (homogeneous) reorientation of the director due to the anisotropy of

the magnetic susceptibility. If the latter is positive, χa > 0, the director wants to become

parallel to H and the reorientation force is proportional to the angle θ between n̂0and H,

explicitly7 ∇jΦij = χaH2δni, with | δni |= sin θ ≈ θ. Without the polymeric degrees of

freedom and neglecting backflow (cf. eq.(B.5d)) this leads to a simple exponential decay of

θ with the relaxation frequency (cf. eq.(9)) Γ0 = χaH2/γ1. However in polymeric systems

also the (transient) elasticity and the relative rotations are excited by this reorientation

force (cf. eqs.(9) and (B.6g)). Neglecting again backflow effects one is left with a coupled

system of three linear relaxations, whose eigenfrequencies are related to the relaxation

frequency of the elasticity, of the relative rotations, and of the magnetic reorientation,

respectively. In recent experiments29−31 one has observed the magnetic reorientation,

which is influenced by the effects of elasticity and relative rotations. It turns out to have

the smallest frequency and reads

Γ
Γ0
− 1 = −γ1

(ζn)2ζ⊥ + ζ2
12

1
τ5
− 2ζnζ12ζ

Ω

ζ⊥ 1
τ5
− (ζΩ)2

, (C.1)

where a non-vanishing r.h.s. shows the influence of the polymeric degrees of freedom.

Neglecting ζΩ (the crosscoupling between elasticity and relative rotations) for the moment,

the polymeric influence in eq.(C.1) can be written as the sum of two contributions, coming
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from the coupling between the director and the elasticity in the first part and between

the director and the relative rotations in the second part. Both parts tend to decrease Γ

(i.e. increase the relaxation time), although thermodynamic constraints prevent Γ from

becoming exactly zero. However, these two contributions enter eq.(C.1) on equal footing

and it is impossible at the present stage to decide, which one of the two (or both) is

(are) responsible for the observed (rather drastic) experimental effect. Of course it is

also impossible to disentangle the polymeric effects from the (bare) nematic effect, i.e.

what is measured in experiments is not Γ0, but Γ. In any case this experiment shows

that the polymeric degrees of freedom can have a profound effect on the hydrodynamics

of the system, even at frequencies, which are well below the elastic relaxation frequency

and below the relaxation frequency of the relative rotations, where the polymeric system is

sometimes supposed to behave like a low molecular weight system. By using longer spacers

between the side-chains and the backbone one can expect to reduce the interaction between

nematic and polymeric degrees of freedom (i.e. reduce the influence of the cross-coupling

terms), which for this experiment means that the relaxation time should decrease. But this

experiment is not suitable to disentangle elastic effects from those of the relative rotations.

The flow alignment of the director is another standard experiment in nematic sys-

tems. If a shear flow is imposed on a nematic layer with the flow in the direction of the

original director, then the director turns within the shear plane. Subject to the constraint

|λ |> 1, to be fulfilled by the flow alignment parameter λ (eq. (B.5f)), the turning angle

θ is constant and independent of the shear rate. For low shear rates this picture is as-

sumed to be valid for polymeric systems, too6. Since in this geometry elastic strains as

well as relative rotations are induced by the flow, these polymeric features both enter the

expression for the alignment angle33 (neglecting contributions quadratic in the dissipative
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crosscoupling parameters)

1
cos 2θ

= λ + λ⊥
ζ12

ζ⊥
+

1
2
ζnτ5; (C.2)

for the definition of ζn cf. (B.6f,g). Of course, flow alignment only occurs, if the number

on the r.h.s. of (C.2) is larger than one (or smaller than minus one). This condition may

be harder or easier to meet in polymers than | λ |> 1 in low molecular weight systems,

depending on the signs of the crosscoupling parameters λ⊥, ζ12 and ζn. One can expect

that side-chains with longer spacers reduce the polymeric influence on this characteristic

nematic effect. Again we find that in this quasi-static experiment the influence of poly-

meric elasticity and of relative rotations is not qualitatively different and that a clear-cut

experimental distinction is only possible with high frequency experiments, as e.g. sound

wave propagation discussed above.
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