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Introduction

The hydrodynamic description of low-
molecular-weight nematic liquid crystals is
well established. Nematic-like degrees of
freedom are not only relevant for truly ther-
modynamic nematic phases, but also play a
role for isotropic phases close to the transi-
tion temperature. To describe these nematic
fluctuations a second rank tensor, the full
nematic order parameter tensor is required,
since there is no director in the isotropic phase
and a scalar quantity by itself cannot describe
the orientation of the transient patches.
In polymeric systems, besides the orienta-
tional degrees of freedom, there are also
elastic degrees of freedom, responsible for
the viscoelastic effects. In side-chain poly-
mers these two aspects are clearly separated,
since the nematic-like behavior refers to the
mesogenic side-chains, while (visco-)elasticity
is related to the backbone chain. For main
chain systems there is a much closer connec-
tion between orientational and elastic aspects,
since both are connected with the polymeric
chain. In the following we will concentrate
on the orientational degrees of freedom and
disregard the elastic aspects. Our goal is to
derive nonlinear macroscopic dynamic equa-
tions for the nematic-like degrees of freedom
using symmetry, thermodynamic and hydro-
dynamic arguments.
We summarize the director hydrodynamics
in a nematic phase and combine this with

the relaxing dynamics of the scalar degree of
order into an effective dynamic equation for
the 2nd rank order parameter tensor. The
nonlinear convective terms are definitely of
the Jaumann type describing the coupling
to rotational flow, but there are in addition
phenomenological (linear and nonlinear) cou-
plings to elongational flow, which can be of
equal importance. The latter, however, have
a very definite structure due to the underlying
director hydrodynamics.
In addition we discuss the form of the dy-
namic equations for orientational fluctuations
in the isotropic phase of semi-flexible or stiff
polymers. Again Jaumann-type convective
nonlinearities are present, however the phe-
nomenological part of the dynamics is rather
different from that in the nematic phase and
it is not possible to use the same set of
equations for the orientational dynamics in
the nematic and the isotropic phase.
Furthermore we give the form of the appropri-
ate orientational-elastic stresses in the stress
tensor. They are completely fixed by the
orientation dynamics and no choices are left.
Thus, there are again different expressions
for the isotropic and the nematic phase. In
particular, a simple stress-optical law is valid
for the isotropic phase only – and only in
linear approximation.
A more detailed exposition of these topics
including comparison with the literature can
be found in [1].

7



Nematic Order

In the uniaxial nematic phase of low mole-
cular weight systems the mean orientation of
long rod-like molecules (or of the normals of
plate-like molecules) is described [2] by a unit
’vector’ n (with n2 = 1) with the additional
condition that all equations have to be invari-
ant under the replacement of n by −n (that
is why n is not a vector in the usual sense and
thus called a director). The dynamic equation
for the director is well known and conveniently
expressed as [3, 4]

ṅi + vj∇jni − nj (Ωji + λ δtr
ikAjk) = − 1

γ1

h⊥i

(1)
where δtr

ik ≡ δik − nink and v is the veloc-
ity field, while Ωkj ≡ (1/2)εijk(curlv)i =
(1/2)(∇jvk−∇kvj) and Akj ≡ (1/2)(∇jvk+
∇kvj) describe rotational and (generalized)
elongational flow, respectively. The ’molec-
ular field’ h⊥i ≡ (δik − nink)δF/δnk can
be inferred from a general free energy F =∫
f dV , with 2f = Kijkl(∇jni)(∇lnk), which

contains (de Gennes and Prost 1993) the
Frank orientational elastic energy (3 coeffi-
cients K1,2,3 in Kijkl). Eq.(1) contains 2 phe-
nomenological parameters: The reactive flow
alignment parameter λ, which describes ori-
entation due to symmetric velocity gradients,
and the dissipative orientational viscosity γ1

representing the orientational diffusion (or re-
laxation in the presence of an external field)
of the director.
The degree S of the orientational order is de-
fined as the quadrupolar mass moment [2]
S = (1/2) < 3 cos2 θ − 1 >, where θ is
the angle between the actual orientation of a
particle relative to the mean orientation and
< . . . > is the ensemble average over the
whole system. In low molecular weight ne-
matics far from the isotropic phase transi-
tion S is assumed, on the relevant time and
length scales, to be relaxed to its equilib-
rium value Seq (which is a function of the
scalar state variables, like temperature and
pressure). However, near the phase transition,

or in polymeric side-chain systems, where the
relaxation of S can become slow enough to
be relevant [5, 6], a dynamic equation for S
is needed. It reads neglecting the thermal and
other possible scalar degrees of freedom [4]

Ṡ + vj∇jS − (β⊥δij + βaninj)Aij =

−κwa (S − Seq) (2)

where the β’s [7] are reactive transport coeffi-
cients describing linear couplings to symmet-
ric velocity gradients, κw is a dissipative one
and a is the static susceptibility of order pa-
rameter fluctuations. The relaxation time is
τ = 1/(aκw). Note that eq.(2) has the most
general form allowed by symmetry and ther-
modynamics up to linear order in the velocity
and its gradients.
Sometimes the director n and the scalar order
parameter S are combined into a tensor order
parameter [2]

Qij =
S

2
(3ninj − δij) (3)

Using eqs.(1,2) for the field-free case we get

Q̇ij + vk∇kQij +QjkΩki +QikΩkj

−λijklAkl = −1

τ
(Qij −Qeq

ij ) +O(∇2) (4)

with Qeq
ij = (Seq/2)(3ninj − δij). The vis-

cous effects due to director rotations are rep-
resented only by O(∇2), since we are mainly
interested here in the nonlinear reversible part
of the dynamics. Apart from the trivial trans-
port term there are two terms relating Qij

with flow, which do not come with a phe-
nomenological parameter, QjkΩki + QikΩkj.
These couplings to rotations are the nonlinear
contributions of a ’corotational’ or ’Jaumann’
derivative, which is the arithmetic mean of
the appropriate ’upper convected’ and ’lower
convected’ terms. In contrast to the ’material
frame indifference’ principle that cannot de-
cide, which linear combination of upper and
lower convected terms is correct, our treat-
ment, based on the proper rotational behavior
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of the director and the scalar order parame-
ter, unambiguously leads to (4). The coupling
to symmetric velocity gradients is again phe-
nomenological, i.e. material dependent ac-
cording to the form of λijkl

3λijkl = λ [Sδikδjl +
1

2
δikQjl +

1

2
δjlQik

− 2

S
QikQjl + i↔ j]

+
1

S
(3β⊥ + βa)Qijδkl +

2

S2
βaQijQkl (5)

which contains 3 phenomenological coeffi-
cients even in linear order (i.e. S taken at
Seq); there are no additional nonlinear coeffi-
cients. The reason is that (4) does not have
the most general form, but has to be com-
patible with the special (uniaxial) form of Qij

(3). The latter also ensures that Qij remains
traceless for all times, since ΩijQij ≡ 0 and
Sδkl +Qkl = 2

S
QjkQjl.

Orientational Fluctuations

In the isotropic phase of low molecular weight
nematogens [2] and stiff polymers [8] orien-
tational fluctuations can become important,
especially as pre-transitional effects near the
phase transition. Since there is no nematic
order in equilibrium (Seq = 0 = Qeq

ij ) a di-
rector does not exist (and thus eq.(1) cannot
be used), but fluctuations of Qij are possi-
ble. Having the same symmetry properties as
Qij in the nematic phase the structure of the
dynamic equation for the orientational fluctu-
ations is that of (4)

Q̇ij + vk∇kQij +QjkΩki +QikΩkj

−λijklAkl = − 1

τ1
Qij +O(∇2) (6)

Again, the nonlinear reversible terms are of
the corotational or Jaumann derivative type,
and there is a phenomenological coupling to
symmetric velocity gradients. In linear order it
has the form ([2] generalized to compressible

flows)

λ
(lin)
ijkl = λ1 (δikδjl + δjkδil −

2

3
δijδkl) (7)

and contains one phenomenological, material
dependent coefficient. Since the phase tran-
sition to the nematic phase is first order (i.e.
no smooth transition at S = 0), the coeffi-
cient λ1 is not related to the coefficients λ or
β⊥,a in (5). In quadratic order there are two
coefficients

λ
(qua)
ijkl = λ2 (δikQjl + δjkQil +

δjlQik + δilQjk −
4

3
δijQkl) + λ3δklQij (8)

while we will suppress here the higher order
terms.
In (6) the relaxation on the r.h.s. is written in
linear approximation. More generally it can be
written as −κ(δF [Q]/δQij) with the Landau
type free energy F [Q] =

∫
f dV where [2]

f =
a

2
QijQij +

b

3
QijQjkQki +

c1
4

(QijQij)
2 +

c2
4
QijQjkQklQli +O(∇2) (9)

and aκ = 1/τ1. Close to the nematic phase
transition a is strongly temperature depen-
dent, a = α(T−T ∗c ) with T ∗c the hypothetical
transition temperature, if the transition were
second order.
Eqs. (6-9) can be compared with well-
known Doi-Edwards equation [8]. The lat-
ter is written in the form of an upper con-
vected model. However, there are additional
model-dependent couplings to symmetric ve-
locity gradients that allow this equation to be
rewritten in the form of our eq.(6), if our co-
efficient are given special values (λ1 = 1/2,
λ2 = 1/2, and λ3 = 0) reflecting the fact
that the Doi-Edwards equation are based on
a special microscopic model. However, the
Doi-Edwards equation cannot be used for the
nematic phase, since it is incompatible with
eq.(4) and the special form of the λ-tensor
(5).
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Stress Tensor

In the preceding sections we discussed nonlin-
ear reversible terms in the dynamic equation
for the orientational order (6) that describe
couplings to flow. In the Navier-Stokes equa-
tion, on the other hand, there must be ap-
propriate counter terms describing couplings
to orientational order, due to the requirement
of zero or positive entropy production, R, in
the case of reversible and irreversible terms,
respectively [3, 4, 9]. Their form can also be
derived from Onsager relations. For the stress
tensor, defined by ġi + ∇jσij = 0, where gi

is the momentum density, this leads to the
expression

σij = vigj + p δij + νijklAkl + σ
(ad)
ij

−λklijψkl +O(∇2) (10)

containing the transport term, the isotropic
pressure, the Newtonian viscosity, and contri-
butions due to additional degrees of freedom
not considered here. In addition there are the
‘rotational-elastic’ stresses described by ψij,
the thermodynamic conjugate to Qij, defined
by ψij = ∂f/∂Qij with f the energy density.
Again, gradients of Qij have been neglected
here. The Jaumann terms in (6) do not at all
contribute to the entropy production (ψijQ̇ij)
and do not need counter terms (i.e. these
counter terms are identically zero). Thus, the
stress tensor is symmetric in its gradient-free
part (while the Ericksen stress containing gra-
dients of Qij is not manifestly symmetric, but
can be made effectively symmetric by a well
known procedure [3]).
Eq.(10) gives the connection between Qij and
the stress that is induced by it. In the isotropic
phase eqs.(7,8,9) give

σ
(Q)
ij = −2λ1aQij − 2(λ1b+ 2λ2a)QikQjk

− δij(λ3a− 2
3
λ1b)QklQkl +O(3) (11)

In linear order, the simple stress-optical law

(σ
(Q)
ij ∼ Qij) is obtained, while in quadratic

order no such simple law is found. Here σ
(Q)
ij

is not even traceless indicating that nonlinear
orientational fluctuations not only couple to
shear and elongation, but also to compression.
In the nematic phase eqs.(5,10) lead to

σ
(Q)
ij = −3

2
(β⊥δij + βaninj)nknlψkl

− 3

2
λS(nkniψkj + njnkψki − 2ninjnknlψkl)

= −1

2
λS(nih

⊥
j + njh

⊥
i )

− a(β⊥δij + βaninj)(S − Seq) (12)

where h⊥i , defined after (1), is∼ O(∇2) in the

absence of external fields. Thus, σ
(Q)
ij does

not have the tensorial structure of Qij and a
simple stress-optical law is not valid. This fact
could be experimentally used to discriminate
fluctuating nematic from director dynamics.
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