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Abstract: We discuss symmetry properties of various phases that can
result when biaxial objects with at least one polar axis are orientation-
ally ordered and packed on layers. The possibility of spontaneous splay,
bend and twist is also investigated for biaxial nematic, smectic banana
and dolphin phases. We further discuss appropriate order parameters and
expressions for Ginzburg-Landau free energies for some phase transitions
involving these phases.
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SYMMETRIES

Because of their unusual physical properties, fluid biaxial smectic
phases composed of banana-shaped molecules have recently attracted
increasing interest [1–6]. If banana-shaped molecules (i.e. biaxial en-
tities with one polar axis m̂) are organized on layers, the resulting
phases are biaxial and polar i.e. they do not have m̂ → −m̂ in-
variance, while their other two directions (n̂, l̂ ) have n̂→ −n̂ and
l̂ → −l̂ invariance. Without loss of generality, we assume n̂ and l̂
are perpendicular to m̂. In the following, we discuss possible phases
when these directions are untilted relative to the layer normal, k̂, or
tilted once or twice relative to k̂ [7].

1) The Untilted Case: n̂ ‖ k̂, m̂ ⊥ k̂ and l̂ ⊥ k̂ leads to the polar
smectic CP phase [1] of orthorhombic C2v symmetry.
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2) Two Axes Tilted:
a. If n̂ and l̂ are tilted but m̂ stays perpendicular to k̂, the smectic

CB2 phase is obtained. Smectic CB2 still has a two-fold polar
axis (m̂) but no mirror planes i.e. no inversion symmetry. It
has monoclinic C2 symmetry described by the combined n̂, k̂,
l̂ → −n̂, −k̂, −l̂ invariance. The phase is chiral even if the
molecules are achiral i.e. have no asymmetric carbons. There
exists a pseudoscalar, m̂ · (̂l × n̂), which behaves like a scalar
under all operations not involving parity and changes sign as
soon as behavior under parity is invoked. The presence of such
a pseudoscalar allows for the existence of many additional cou-
pling terms, since the behavior under parity can always be fixed
by introducing odd powers of the pseudoscalar. In the context
of the CB2 phase it also expresses the fact that either left or
right-handed helices are possible. Neither the chirality nor the
helical direction in smectic CB2 is fixed by symmetry. The
pseudoscalar can be written more generally as Q

(k)
ij Q

(2)
jk εiklm̂l

with Q
(k)
ij = k̂ik̂j − (1/3)δij and Q

(2)
ij = n̂in̂j − l̂il̂j the orien-

tational order parameter of the layer normal and the biaxial
order parameter of n̂/l̂.

b. If m̂ and n̂ are tilted but l̂ remains perpendicular to k̂, there
is no symmetry axis left, but there is a mirror plane from the
l̂→ −l̂ invariance. Thus the smectic CB1 phase is of monoclinic
C1h symmetry, which is not chiral, with a polar direction in the
k̂-n̂ plane.

3) Three Axes Tilted: If all three axes are tilted such that no pair
of them forms a plane with k̂, then no symmetry is left at all:
triclinic C1 symmetry. This lowest symmetry smectic C phase,
CG, has a polar axis at an arbitrary direction to k̂ and is chiral
even when the molecules composing this phase are achiral. As
in smectic CB2, neither the chirality nor the helical direction in
smectic CG is fixed by symmetry.

Illustrations of the symmetries of these phases can be found in [7–9]
and their special properties are listed in Table I.

The phases without inversion symmetry, CB2 and CG, have 3
linear twist contributions (n̂·curl n̂, m̂·curl m̂, l̂·curl l̂) in the gradient
energy giving rise to spontaneous twist (helices). The existence of a
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polar axis implies the linear splay term div m̂ in the gradient energy.
The general CG phase admits, in addition, the 2 splay terms div n̂
and div l̂, but CB1 only one additional independent one, (k̂ ·m̂)(k̂ ·
n̂)div n̂. In the CG phase there are 6 linear distortion terms of the
’mixed’ type, n̂·curl m̂, m̂·curl n̂, l̂·curl m̂, m̂·curl l̂, l̂·curlm̂, and
m̂ · curl l̂. These terms do or do not contribute to splay, bend or
twist deformations, depending on the specific distortion considered.1

In CB1 there are 4 mixed terms (n̂ · curlm̂, m̂ · curln̂, (m̂× l̂)·curl l̂,
(m̂ × n̂) ·curl n̂), of which only the two latter ones survive the l̂,
n̂ → −l̂, −n̂ invariance of the CB2 phase. These two terms are
non-zero for a helical structure.

phase local untilted comp. spont. spont. spont.
class sym. axes of P splay ’mixed’ twist

C C2h 1 none no no no
CT Ci 0 none no no no
CB2 C2 1 polar 1 (in) 1 2 3
CB1 C1h 1 2 2 4 no
CG C1 0 3 3 6 3

Table I: Properties of the tilted banana phases in comparison with
tilted non-polar phases C and CT.

It should be noted that upon complete linearization in deviations
from a ground state (e.g. δl̂ ≡ l̂− l̂eq) some of the above terms may
not be linearly independent from others. This does not mean that
those terms can be discarded, since the energy density is required at
least to quadratic order.

The existence of linear twist terms generally leads to defect-free
helical or conical-helical structures. Linear splay terms taken sepa-
rately can lead to inhomogeneous textures with large defect areas.
Therefore such textures may not be energetically favorable. Taken
together with linear terms of the ’mixed’ type, linear splay can lead to
bend-splay textures with minimal defect areas [10], so that the gain
by the linear terms may still overcome the defect energy. Examples
are discussed elsewhere [11].

For comparison we have added in Table I the ordinary smectic C
phase of C2h-symmetry, obtained by tilting 2 axes of a non-polar triad

1Note: bend is a vector quantity so cannot appear alone linearly, since scalar
quantities are required for the free energy density.
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with respect to the smectic layering. If all three (non-polar) axes are
tilted, the CT phase with Ci-symmetry (only inversion symmetry left)
results. Without any polar axis and due to the inversion symmetry
left, no linear terms in the gradient energy are allowed.

In biaxial smectic phases, layers can be stacked with the polar
axis oriented alternately or helically from layer to layer giving rise
to ferri- and antiferroelectricity, to heli- and antihelielectricity etc.
For the chiral cases CB2 and CG the stacking can involve alternately
left- and right-handed layers leading to globally achiral phases. Thus,
such stacking can show a global symmetry and behavior that is quite
different from the local one of a single layer. Tilted banana phases
are richer than the known usual biaxial smectics in their stacking
options.

phase sym- polar defect spont. spont. spont.
class metry axes strength splay ’mixed’ twist

Nbx D2h 0 half int. no no no
NI C2v 1 integer 1 2 no
NII C1h 2 integer 2 4 no
NIII C1 3 integer 3 6 3

Table II: Properties of biaxial nematic phases with different numbers of
polar axes.

Besides these smectic C phases (they all have an in-plane nematic-
like degree of freedom - i.e. are 2D anisotropic liquids), some of which
have been detected experimentally, there are other, up to now hypo-
thetical, phases. It is conceivable that nematic-like phases without
layering exist. If only one of the non-polar axes is ordered, an ordi-
nary uniaxial nematic is obtained. If the polar axis is ordered (but
not the other two), one gets a uniaxial polar nematic (Np) phase,
that shows spontaneous splay and may form non-homogeneous tex-
tures [12]. If two (and thus three) axes are ordered, a biaxial nematic
phase (NI) with one polar direction (m̂) is found, that not only gives
rise to linear splay, div m̂, but also to linear ’mixed’-type terms,
m̂·(n̂×curl n̂), m̂·(̂l×curl l̂) [8]. If biaxial dolphin-like objects with
two polar axes (n̂, m̂) are ordered, a phase NII of C1h-symmetry is
obtained (̂l→ −l̂ invariance). There are 2 linear splay terms, div m̂
and div n̂, 4 linear bend-like terms, m̂ · (̂l × curll̂), n̂ · (̂l × curl l̂),
n̂·(m̂× curl m̂), m̂·(n̂× curl n̂), but no linear twist terms, because
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of the inversion symmetry. The (hypothetical) case of 3 polar axes
results in a general C1-symmetric phase (NIII).

Another possibility to prepare phases with low symmetry is to
put biaxial objects that have more than one polar axis into layers.
Even untilted, two polar axes result in C1h-symmetric CQ(′) phases,
while with 3 polar axes no symmetry is left (CR phase), cf. Table
III.

There is a variant of the CP phase, CP′ , where the polar axis is
parallel to the layer normal. This may be hard to achieve in reality,
but it is a theoretical possibility and distinct from the longitudinal
ferroelectric phases previously discussed [13] in that CP′ is biaxial.
While the symmetry of CP′ is the same as that of CP, it can lead to a
different result in one case under the tilt operation. The CG phase is
obtained when tilting either CP or CP ′ twice. Tilting the polar axis
m̂ and the nonpolar axis n̂ while keeping l̂ fixed results in the CB1

phase for both CP and CP′ . In contrast, if the polar direction of CP ,
m̂, stays in the layer planes, while l̂ and n̂ are tilted, the CB2 phase
results, while nothing changes for the symmetry of the CP ′ phase
when the orientation of m̂ is fixed and the orientations of l̂ and n̂
are tilted - i.e. simply rotated in the layer plane.

phase local polar polari- spont. spont. spont.
class sym. axes zation splay ’mixed’ twist

CM D2h 0 no no no no
CP C2v 1 1D in 1 2 no
CP′ C2v 1 1D out 1 2 no
CQ C1h 2 2D in 2 4 no
CQ′ C1h 2 2D 2 4 no
CR C1 3 3D 3 6 3

Table III: Properties of the biaxial untilted smectic phases with
different numbers of polar axes.

The CQ dolphin phase also comes in two variants: unprimed (both
polar directions are in-plane) and primed (only one of the two polar
axes is in-plane). They both have the same symmetry. However, if
they are tilted once, the CQ phase always leads to a C1-symmetric
phase (called CDG), while in CQ′ tilting the two polar axes about
the non-polar one preserves C1h symmetry (leading to a CD1 phase)
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and only tilting about the in-plane polar vector gives rise to a C1-
symmetric general CDG phase.

From a symmetry point of view these untilted smectic phases are
very similar to the biaxial nematic counterparts (Table II), although
hydrodynamically they are different. The smectic phases are all C
phases with two symmetry variables (layer displacement and in-plane
nematic reorientation), while the biaxial nematic ones have 3 orien-
tational hydrodynamic degrees of freedom.

PHASE TRANSITIONS

Among the various phases discussed, there are numerous interesting
phase transitions. We briefly discuss some of them. For a phase
transition, where the macroscopic polarization P arises for the first
time, the order parameter is a vector: P = P0m̂. P0 is the strength
of the ordering, and m̂ the polar axis. The corresponding Ginzburg-
Landau functional reads [7]

Φ = Φ0 +

∫
dτ [aP 2 + cijklPiPjPkPl + dijkl(∇iPj)(∇kPl)

+ eijklPiPj∇kPl + fij∇jPi] (1)

where the form of the material tensors depends on the symmetry of
the starting phase. For the isotropic to Np transition one gets cijkl =
(c/3)(δijδkl + δikδjl + δilδkj), dijkl = d1δikδjl + (d2/2)(δijδkl + δkjδil),
fij = fδij, while eijkl is of the same form as cijkl.

For the smectic A to smectic CP transition, P has to lie in the
plane P ⊥ k̂. As a result, the material tensors above the Kronecker
deltas involving P have to be replaced by δtr

ij = δij− k̂ik̂j, e.g. dijkl =

(d1δ
tr
ik + d3k̂ik̂k)δ

tr
jl + (d2/2)(δtr

ij δ
tr
kl + δtr

kjδ
tr
il ). Similarly, at the N to NI

transition, where the new polar axis m̂ occurs perpendicular to the
non-polar director n̂, the transverse Kronecker is δtr

ij = δij − n̂in̂j .
2

For the polar uniaxial to biaxial transition (Np to NI) the other
non-polar axes order. This is described by a two-dimensional sym-
metric second-rank tensor Q

(2)
ij = η(n̂in̂j − l̂il̂j), with η the strength

of this ordering.

2Note that the Ginzburg-Landau energy does not depend on the azimuthal
orientation of m̂ (w.r.t. n̂ or k̂ for N or CP , respectively), which is a hydrody-
namic Goldstone mode.
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For the smectic phase transitions involving one additional tilt
direction, e.g. smectic CP to CB2, CP to CB1, CB1 to CG, CB2 to CG

and C to CT , the order parameter is simply the tilt angle (ordering
strength), since the tilt direction is already fixed by symmetry (in
contrast to the usual smectic A to C transition). The transition is
described by the Ginzburg-Landau functional (with ψ real)

Φ = Φ0 +

∫
dτ [aψ2 + cψ4 + dij(∇iψ)(∇jψ) + L(1)

g ] (2)

where L
(1)
g contains the linear gradient terms. Eq.(2) shows a ψ →

−ψ symmetry, since tilt in opposite directions is energetically equiv-
alent, but leads to different states. For the smectic CP to CB2 tran-
sition, e.g., opposite tilts denote the discrimination between left-
and right-handed variants, which are indeed energetically equivalent.
Thus these phase transitions can be of second order.

The high (low) symmetry phase is obtained for a > 0 (a < 0).
The tensor dij = d1n̂in̂j +d2 l̂il̂j +d3m̂im̂j +d4Oij is of the monoclinic

form with Oij ≡ n̂il̂j + l̂in̂j for the C and CB2 phases, Oij ≡ m̂i(m̂×
n̂)j + m̂j(m̂× n̂)i for the CB1 phase, and of the orthorhombic form
(d4 ≡ 0) for the CP phase as starting point.

For the CP to CB2 transition ψ (or rather sinψ) is k̂ · l̂, while the
gradient part L1

g contains the new linear twist terms that are non-

zero in CB2 but zero in CP, L1
g = (k̂ · l̂)(k̂ ·n̂)(n̂× l̂)·m̂ (e1 n̂·curl n̂+

e2 m̂·curl m̂+e3 l̂·curl l̂). For the CP to CB1 transition sinψ = k̂ ·m̂
and L

(1)
g = (k̂ · l̂)(k̂ · m̂) [e1 (m̂× l̂) · curl m̂ + e2 m̂ · curl (m̂× l̂)] +

e3 (k̂ · n̂)(k̂ · m̂) div n̂. At the CB1 to CG transition sinψ = k̂ · l̂ gets
non-zero as well as one additional splay, three twist and two ’mixed’-
type terms L

(1)
g = (k̂ · l̂)(k̂·n̂)(n̂× l̂)·m̂ (e1 n̂·curl n̂+e2 m̂·curl m̂+

e3 l̂ ·curl l̂)+(k̂ · l̂)(k̂ ·m̂)(e4 div l̂+e5 n̂·curl l̂+e6 l̂ ·curl n̂), while for
CB2 to CG sinψ = k̂ ·m̂ and two new linear splay and 4 ’mixed’-type
contributions arise L

(1)
g = (k̂ ·m̂)(k̂ · l̂)[e1div l̂+e3(m̂× l̂) · curl m̂]+

(k̂ ·m̂)(k̂ ·n̂)[e2 div n̂+e4(m̂×n̂) ·curl m̂]+(k̂ ·m̂)[e5(k̂× l̂) ·curl l̂+
e6(k̂×n̂) ·curl n̂]. At the C to CT transition no linear gradient terms

are possible, and L
(1)
g = 0.

The phase transition from CP to a CG phase involves two tilts,
one is a rotation about l̂ and the second about m̂. Since finite
rotations about different axes are generally non-commutative, the
result depends on the sequence of the rotations. Thus one cannot
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use two scalar tilt angles as order parameters for that transition, as
two scalars always commute. Since two subsequent rotations about
different axes can always be described as an effective rotation (about
some other axis) the orientation of the triad in CG is given by the
general orientational order parameter QG

ij and QP
ij is the orientational

order parameter in the CP phase. We choose Qij ≡ QG
ij − QP

ij as
order parameter for the CP − CG transition. It contains two angles
defining the orientation of the effective rotation axis (w.r.t. k̂), one
rotation angle, and 2 ordering strengths denoting a possible jump
in the uniaxial as well as biaxial order parameter modulus at that
transition.

We obtain for the free energy

Φ = Φ0 +

∫
dτ [aQijQij + bijklmnQijQklQmn (3)

+cijklmnpqQijQklQmnQpq + dijklmn(∇iQjk)(∇lQmn) + L(1)
g ]

where L
(1)
g contains all the new linear gradient terms, which are non-

zero in CG.
The transition from the biaxial nematic phases NI, NII, NIII to

the orthogonal smectic phases CP, CQ, CR, respectively, are charac-
terized by the occurrence of layers. The layer normal, however, is
not arbitrary but fixed to one of the nematic axes (say n̂). Thus
the order parameter is a complex scalar Ψ (just as for the uniaxial
nematic - smectic A transition) and

Φ = Φ0 +

∫
dτ [a|Ψ|2 + c|Ψ|4 + dij(∇̃iΨ)(∇̃jΨ)∗] (4)

(with ∇̃i = ∇i + 2πid−1
0 n̂i, where d0 is the layer spacing) which al-

lows for the possibility that these transitions can be of second order
in mean field approximation. The tensor dij is of orthorhombic (NI),
monoclinic (NII) and triclinic (NIII) form. There are no linear gradi-
ent terms in (4), since the phases involved support the same types
of linear gradient terms (cf. Tables II and III).

For transitions involving the macroscopic polarization as well as
tilt angles (smectic A to CB1 and CB2) one has to combine differ-
ent order parameters. Regarding the smectic A phase (of banana
molecules) as one with nematic order of n̂ (‖ k̂), but disordered l̂
and m̂ (both in the planes of the layers), the transition to CB2 or
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CB1 consists of tilting n̂ (w.r.t. k̂) described by ψ = ψ0exp(iφ) (like
at the smectic A to C transition) and additionally by the occurrence
of a polarization P = P0m̂, perpendicular to k̂ and n̂ (m̂ ‖ k̂× n̂)
or in the n̂/k̂ plane (m̂ ‖ k̂ − n̂(k̂·n̂)), respectively.

If one starts from the nematic phases, one needs order parameters
describing the layering, the polarization (beginning with non-polar
uniaxial nematics) and the tilt directions. The most frequently ob-
served phase transition is from the isotropic phase to a fluid tilted
smectic banana phase requiring all order parameters: nematic, smec-
tic layering, polarization as well as tilt directions.

SUMMARY

The banana and dolphin phases constitute a new class of liquid crys-
talline phases with unique symmetries and thus material properties.
These low symmetry phases also allow for various textures involving
spontaneous splay, bend and twist, although the molecules are achi-
ral. There are new types of phase transitions, of which the most inter-
esting are the ones, where the polar ordering takes place. Here new
effects and unusual textures can be expected. This is also true for
transitions involving the new linear gradient terms discussed above.
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