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Abstract. We investigate the response of prestretched nematic side-chain liquid single crystal elastomers to
superimposed external shear, electric, and magnetic fields of small amplitude. The prestretching direction
is oriented perpendicular to the initial nematic director orientation, which enforces director reorientation.
Furthermore, the shear plane contains the direction of prestretch. In this case, we obtain a strongly de-
creased effective shear modulus in the vicinity of the onset and the completion of the enforced director
rotation. For the same regions, we find that it becomes comparatively easy to reorient the director by
external electric and magnetic fields. These results were derived using conventional elasticity theory and
its coupling to relative director-network rotations.

PACS. 61.30.Vx Polymer liquid crystals – 61.30.Dk Continuum models and theories of liquid crystal
structure – 61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order

1 Introduction

Side-chain liquid single crystal elastomers (SCLSCEs) con-
sist of crosslinked polymer backbones, to which mesogenic
molecules are attached as side-groups via flexible spacer
units [1]. Information about the state of liquid crystalline
order at the time of crosslinking is imprinted into the ma-
terials [2,3]. In this way, through specific routes of synthe-
sis, liquid crystalline order in a macroscopic monodomain
is induced in SCLSCEs [4–6].

Since the first synthesis of nematic SCLSCEs was re-
ported [4], many experiments have been performed to
study their behavior in external fields. They revealed a
unique material-specific property: a coupling of mechan-
ical strain deformations to liquid crystalline order. For
example, strain deformations of nematic SCLSCEs can
induce reorientations of the director [4, 5, 7–9], and, vice
versa, reorientations of the director can lead to elastic dis-
tortions [3,6,10,11]. Experiments performed include inves-
tigations on the stress-strain behavior [4,5,7–9], piezorheo-
metric measurements of the linear shear response [12–
14], as well as investigations of the electro-optical [6] and
electro-mechanical [3,10,11] properties. In the latter case,
the response to external electric fields has been studied
mainly for nematic SCLSCEs swollen with low molecular
weight liquid crystals.

As a recent development in this area, the materials are
exposed to an external field of large amplitude to drive
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them into the nonlinear regime. Then, a second exter-
nal field is superimposed. The small-amplitude response
to this second external field is recorded under the influ-
ence of the first, large-amplitude external field. Current
experimental work includes small-amplitude shear mea-
surements [15] as well as dynamic light scattering mea-
surements [16] on prestretched nematic SCLSCEs. In the
latter case, essentially the response to externally imposed
electromagnetic fields is recorded.

2 Geometries under investigation

Here, we investigate two geometries of this kind (fig. 1).
In both cases, a nematic SCLSCE is considerably pre-
stretched by an external strain field of amplitude A. The
latter is applied in a direction ẑ perpendicular to the initial
director orientation n̂0 (‖x̂). Simultaneously, the sample
contracts laterally by amplitudes B (‖x̂) and C (‖ŷ). To
respect an approximately constant volume of the sample,
C is expressed by A and B [17].

We noted above the material-specific coupling of me-
chanical deformations and director orientation. As a con-
sequence, above a certain threshold strain Ac, the increas-
ing stretching field A leads to a continuous reorientation
of the director n̂ towards the stretching direction [4, 5, 7,
8]. We introduce the angle of director reorientation ϑ =
](n̂0, n̂). This process of director reorientation is con-
nected to a decrease in the slope of the corresponding
stress-strain curve [4, 5, 9]. In addition, the reorientation
process induces shear deformations of amplitude S in the
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Fig. 1. Geometries of the set-ups under investigation. Here,
A, B, and S denote the amplitudes of the corresponding elas-
tic deformations. In the first case (a), an additional external
shear deformation of small amplitude δS is imposed onto the
prestretched material. In the second case (b), an additional ex-
ternal electric field E is applied either in x̂- or in ẑ-direction.

plane of director rotation. We refer to our previous investi-
gation on this kind of set-up [17] for a detailed discussion.

Here, we study the influence of an additional external
field superimposed onto the external strain field A (fig. 1).
First, we consider the effect of an additional shear defor-
mation of small amplitude δS (fig. 1 (a)). The important
point is that the corresponding shear plane coincides with
the plane of director reorientation. In other words, δS acts
to increase or decrease S. Secondly (fig. 1 (b)), an external
electric field of magnitude E is applied either parallel to
n̂0 (‖x̂), or along the stretching direction (‖ẑ).

3 Macroscopic description

To investigate the respective set-up, we use the nonlinear
continuum model introduced in ref. [17]. This model is
based on the variables of relative rotations between the
director n̂ and the network of crosslinked polymer chains
[18,19]. In the nonlinear regime, two variables Ω̃ and Ω̃nw

are necessary to characterize these relative rotations [17].
(More precisely, we describe the relative rotations between
n̂ and a second preferred direction n̂nw imprinted into
the elastic network of crosslinked polymer chains during
the synthesis [17].) Elastic deformations are described by
classical elasticity theory using the Euler strain tensor ε
(compare, for example, ref. [20]). Here, εij = [∂iuj+∂jui−
(∂iuk)(∂juk)]/2, u being the displacement field.

As an expression for the generalized energy density F ,
we use [17]

F = c1 εijεij +
1
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+
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Numerical values of the material parameters c1, D1, D
(2)
1 ,

D
(3)
1 , D2, Dnw

2 , D
(2)
2 , and D

nw,(2)
2 were determined in

ref. [17] for a specific homeotropic sample, and we will
use these values for our numerical calculations. The last
term accounts for the dielectric effects via the dielectric
anisotropy εa [21].

In expression (1) we only included nonlinearities con-
nected with relative rotations. This procedure explicitly
excludes intrinsic nonlinear behavior of the network of
crosslinked polymer backbones in the absence of director
reorientations and relative rotations (there are no terms
of cubic or higher order in ε).

4 Shear deformation of prestretched nematic
SCLSCEs

We now determine numerically the response of a
prestretched nematic SCLSCE to an additional shear of
small amplitude δS. For this purpose, we set E = 0 in
eq. (1).

According to the procedure of corresponding exper-
iments, we perform the calculation in two steps. First,
δS = 0 and the stretching amplitude A is increased step-
wise. For every value of A, we minimize F in eq. (1). That
is, we solve the system of equations ∂F/∂ϑ = ∂F/∂B =
∂F/∂S = 0. In this way, we determine ϑ, B, and S as
a function of A without an additional external shear δS
applied. We include the calculated values for ϑ with in-
creasing prestretching amplitude A in fig. 2. The results
coincide with those presented in ref. [17].

Then, for each value of A, the corresponding values of
B and S are kept fixed during a second step. We vary, for
each value of A, the small amplitude δS of the additional
externally imposed shear. For each pair (δS,A), we mini-
mize F w.r.t. ϑ only, solving ∂F/∂ϑ = 0. Experimentally,
this procedure corresponds to confining the prestretched
sample between the plates of a shear rheometer [15]. Slip-
page along the plate surfaces is inhibited while the exter-
nal shear is imposed.

Inserting the results into expression (1), we obtain
F (δS,A). For each value of A, we find ∂F/∂(δS)|δS=0 =
0, and we can calculate an effective shear modulus for
the prestretched sample, ∂2F/∂(δS)2|δS=0. This effective
modulus as a function of the prestretching amplitude A is
plotted in fig. 3.
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Fig. 2. Angle of director reorientation ϑ as a function of the
prestretching amplitude A, without applying an additional ex-
ternal field. In this case, the system is prestretched in a direc-
tion perfectly perpendicular to the initial director orientation
n̂0.
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Fig. 3. Effective shear modulus ∂2F/∂(δS)2|δS=0 as a func-
tion of the prestretching amplitude A. Here, the system is pre-
stretched in a direction perfectly perpendicular to the initial
director orientation n̂0.

At two different stretching amplitudes, the effective
modulus tends to zero in fig. 3. These points correspond
to the starting point and endpoint of the director reorien-
tation, respectively. If we do not start with a shear am-
plitude S equilibrated for a certain prestretch A, e.g. by
setting S = 0, the system exerts shear forces. This shifts
and modifies the effective modulus in fig. 3. In an experi-
ment (e.g. [15]), a similar situation may for example arise
if the sample is not completely detached from the corre-
sponding shear plates, while the prestretching amplitude
A is being changed.

As a technical check of correctness, we verified the
invariance of our numerical results under the symmetry
transformation (ϑ, δS)→ (−ϑ,−δS).
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Fig. 4. Reorientability ∂2ϑ/∂E2|E=0 as a function of the pre-
stretching amplitude A, where E‖ẑ and ϑ > 0. In this example,
we set εa/ε0 = 2. The system is prestretched in a direction per-
fectly perpendicular to the initial director orientation n̂0.

5 Electric and magnetic field induced director
reorientation in prestretched nematic
SCLSCEs

Although we only consider electric fields E in the follow-
ing, the reasoning is the same for external magnetic fields
H. In the latter case, we must make the replacements
“E → H” and “εa → χa”, where χa is the diamagnetic
anisotropy [21].

We now perform a one-step minimization of F . That is,
for each given pair (E, A), we solve the system of equations
∂F/∂ϑ = ∂F/∂B = ∂F/∂S = 0. Thus we obtain F (E, A).

For each value of A, we find ∂ϑ/∂E|E=0 = 0. There-
fore, we take the second derivative ∂2ϑ/∂E2|E=0 to mea-
sure the reorientability of the director n̂ for a given stretch-
ing amplitude A. An example of ∂2ϑ/∂E2|E=0 as a func-
tion of A for E‖ẑ and ϑ > 0 is plotted in fig. 4. We ob-
tain the same curve for a reorientation ϑ < 0, with the
sign of ∂2ϑ/∂E2|E=0 reversed. Furthermore, E‖x̂ results
in identical curves, with reversed signs of ∂2ϑ/∂E2|E=0,
respectively.

Strikingly, in fig. 4 we find apparent divergences of the
reorientability at the critical values of A. The first appar-
ent divergence takes place at A = Ac, where the director
reorientation starts (ϑ = 0+). The second one coincides
with the completion of director reorientation (ϑ = π−/2).

We show a fit of a curve ∝ (A − Ac)
x to the re-

gion ϑ & 0+ in fig. 5. The best result was obtained for
x = −0.474 and Ac = 0.1031, which reproduces the curve
in an interval of remarkable width. An exponent x = −0.5
still leads to considerable agreement. In order to better un-
derstand this behavior, we can reproduce it from expres-
sion (1) in a more analytical approach. For this purpose,
we solve the equations ∂F/∂B = ∂F/∂S = 0 w.r.t. B and
S and introduce the resulting expressions into ∂F/∂ϑ = 0.
In the case that either E‖x̂ or E‖ẑ, we find an equation
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Fig. 5. Reorientability ∂2ϑ/∂E2|E=0 fitted in the region ϑ &
0+ by a curve ∝ (A − Ac)

x. Again, εa/ε0 = 2 and the pre-
stretching direction is oriented perfectly perpendicular to n̂0.

for ϑ of the form

0 = ϑ
{
a(A− Ãc) + gϑ2

}
+O(ϑ5). (2)

Here, higher orders of A have been neglected. a, Ãc, and
g are combinations of the material parameters contained
in expression (1). Besides, Ãc and g are functions of E2

x−
E2
z , where we call Ac = Ãc(E = 0). For E = 0, this

leads to the very simple picture of a strain induced forward
bifurcation for the reorientation angle ϑ. The branches of
the bifurcation are described by ϑ = 0 and ϑ ∝ ±(A −
Ac)

0.5.

As a further result, we obtain ∂2ϑ/∂E2|E=0 ∝ ±(A−
Ac)

−0.5, where an additional term ∝ (A− Ac)0.5 was ne-
glected. This behavior is reflected by the fitting curves in
fig. 5. Furthermore, we find ∂2ϑ/∂E2

x|E=0 =
−∂2ϑ/∂E2

z |E=0, in accordance with our numerical results.

We performed the same fitting procedure also for the
region ϑ . π−/2. There, we found a behavior character-
ized by an exponent x = −0.449. The corresponding fit-
ting curve represents the numerical data points in a con-
siderably smaller interval. Besides, the width of this in-
terval becomes rather limited for an exponent x = −0.5.
This reflects the fact that the approximation of neglecting
higher order terms in A(≈ 0.3) becomes less reliable for
ϑ . π−/2. Therefore, the range of validity of an equation
analogous to eq. (2) is more limited in the region ϑ . π−/2
and higher order terms in A would have to be included for
a better fit.

The reorientability of the director ∂2ϑ/∂E2|E=0 di-
verges at the same points where the effective shear mod-
ulus ∂2F/∂(δS)2|δS=0 tends to zero. This agrees with the
fact that shear deformations and director reorientations
are linearly related in nematic SCLSCEs [13,22] (see sect. 7
for further discussion).
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Fig. 6. Angle of director reorientation ϑ as a function of the
prestretching amplitude A, without applying an additional ex-
ternal field. Here, the initial director orientation n̂0 slightly
deviates from the perfectly perpendicular orientation ‖x̂ by an
angle of 0.01 rad (0.57◦).

6 Oblique stretching

In the previous sections we considered the nematic
SCLSCE to be stretched exactly perpendicularly to the
initial director orientation n̂0. However, slight deviations
from this condition already change dramatically the cor-
responding results. As an example, we investigate a very
small deviation of the initial director orientation n̂0 from
the perfectly perpendicular orientation ‖x̂ by an angle of
only 0.01 rad (0.57◦). For this case, the angle of director
reorientation ϑ is plotted as a function of A in fig. 6.

Figs. 7 and 8 show the corresponding effective shear
modulus ∂2F/∂(δS)2|δS=0 and the director reorientability
∂2ϑ/∂E2|E=0, respectively. Both quantities now remain
nonzero and finite. This scenario follows from an imper-
fect bifurcation for the angle of director reorientation in
the oblique case (fig. 6). In contrast, a perfect forward bi-
furcation underlies the results of figs. 2, 3, and 4 (note the
difference in scales between the ordinates of figs. 4 and 8;
see also [17]). An experimental curve similar to the curve
in fig. 7 has been presented before [16], where a slightly
oblique stretching was imposed for intrinsic technical rea-
sons.

7 Discussion

Above, for the case of exactly perpendicular stretching, we
observed that the effective shear modulus ∂2F/∂(δS)2|δS=0

tends to zero at the same points where the reorientability
of the director ∂2ϑ/∂E2|E=0 diverges. The physical back-
ground of this scenario is connected with the bifurcation
behavior of the system at the respective stretching ampli-
tudes. At A = Ac, the initial director orientation (ϑ = 0)
becomes unstable w.r.t. a solution of finite director re-
orientation 0 < |ϑ| < π/2 (see fig. 2). Likewise, when we
start at high stretching amplitudes A and then decrease A,
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Fig. 7. Effective shear modulus ∂2F/∂(δS)2|δS=0 as a func-
tion of the prestretching amplitude A. The initial director ori-
entation n̂0 slightly deviates from the perfectly perpendicular
orientation ‖x̂ by an angle of 0.01 rad (0.57◦).
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Fig. 8. Reorientability ∂2ϑ/∂E2|E=0 as a function of the pre-
stretching amplitude A (εa/ε0 = 2). Again, the initial director
orientation n̂0 slightly deviates from the perfectly perpendic-
ular orientation ‖x̂ by an angle of 0.01 rad (0.57◦).

the reoriented state |ϑ| = π/2 becomes unstable w.r.t. the
intermediate solution 0 < |ϑ| < π/2. This leads to the
second bifurcation behavior at |ϑ| = π−/2 (see fig. 2).

The reorientation of the director is initiated by the
coupling of the director orientation to the external stretch-
ing deformation. This coupling is mediated by relative ro-

tations (the D2-, Dnw
2 -, D

(2)
2 -, D

nw,(2)
2 -terms) in eq. (1).

Due to the process of synthesizing the materials, however,
the reorientation of the director n̂ w.r.t. the network of
crosslinked polymer chains is hindered (the D1-, D

(2)
1 -,

D
(3)
1 -terms in eq. (1)) [2–5, 17]. This competition leads

to the described bifurcation behavior. It also induces the
shear deformation S, which in this context acts to reduce
the magnitude of energetically expensive director rota-
tions w.r.t. the polymer network [17].

In the vicinity of the bifurcation points the director
can easily be reoriented by an external field. This feature
can be inferred from the diverging slopes of ϑ(A) in fig. 2.
It is further reflected by the diverging curves in figs. 4 and
5, where the external electric field is used to probe the re-
orientability. Since director reorientations couple linearly
to shear deformations in nematic SCLSCEs [13, 22], the
effective shear modulus in fig. 3 decreases to zero when
the director reorientability diverges. In contrast, the slope
of ϑ(A) remains finite in the remaining regime, distant
from the bifurcation points (see fig. 2). This correspond-
ingly implies a finite reorientability of the director and a
nonzero effective shear modulus in this regime.

Next, we note that the shape of the curve for the ef-
fective shear modulus ∂2F/∂(δS)2|δS=0 in fig. 3 has al-
ready been predicted before [23] on the basis of a dif-
ferent model [24]. Furthermore, a similar curve has been
obtained using a semi-microscopic model based on rubber
elasticity [25]. Very often, the nonlinear behavior of ne-
matic SCLSCEs, i.e. a plateau-like stress-strain relation
at finite prestretch with a vanishing effective elastic mod-
ulus at the beginning and end of the plateau, is called
“semi-softness” [24, 26]. It refers to the notion of “ideal
softness”, where the stress-strain plateau is of zero height
and starts at zero prestretch with the effective elastic mod-
ulus being exactly zero everywhere along the plateau (and
even in the linear regime at zero prestretch). This ideal
Nambu-Goldstone scenario, however, does not take place
in real nematic SCLSCEs. The smallness of Ac ≈ 0.1, the
actual prestretch amplitude for the onset of the plateau,
is then used to view the real behavior as almost ideal or
“semisoft”.

We have demonstrated that corresponding results are
also derived in a general nonlinear elastic framework. The
latter includes nonlinear relative rotations without any as-
sumption or reference to a small parameter in terms of the
linear elastic modulus nor in terms of Ac. In this frame-
work, a similar scenario (plateau-like stress-strain relation
at finite prestretch with a vanishing effective elastic shear
modulus at the beginning and end of the plateau) is ob-
tained even if Ac approaches unity. An example of this
kind is displayed in fig. 9, where for demonstration we
chose different numerical values for the material param-

eters (c1 = 121.0 kPa, D1 = 30.0 kPa, D
(2)
1 = 3.5 kPa,

D
(3)
1 = 2.9 kPa, D2 = 0.0 kPa, Dnw

2 = 0.0 kPa, D
(2)
2 =

−55.5 kPa, and D
(2),nw
2 = −32.0 kPa). We note that

A = 1 corresponds to an infinite stretching deformation.
Therefore we view the pronounced elastic properties of
real nematic SCLSCEs as a manifestation of the profoundly
nonlinear elastic properties of the materials, rather than
due to the vicinity of a hypothetical ideal state.

For a more detailed comparison with other approaches,
we note the following. Concentrating only on the quadratic
terms in the generalized energy density, we obtain as a
condition of thermodynamic stability that 4c1D1− (D2 +
Dnw

2 )2 > 0 [17]. As explained in ref. [26], the transi-
tion from “semi-softness” to “ideal softness” in the linear
regime corresponds to the case where the latter expression
vanishes, 4c1D1−(D2+Dnw

2 )2 → 0. On the one hand, this
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Fig. 9. Example of a stress-strain curve dF/dA|δS=0(A), cal-
culated by our model for the geometry depicted in fig. 1(a) for
a different set of material parameters. In this case, the process
of director reorientation and the corresponding decrease in the
slope of the stress-strain curve occur at comparatively large
prestretching amplitudes A. Again, the effective elastic shear
modulus ∂2F/∂(δS)2|δS=0 tends to zero in the vicinity of the
points where the director reorientation starts and ends.

may occur by D1 → 0, D2 → 0, and Dnw
2 → 0. This, how-

ever, implies that relative rotations have no meaning, or,
in other words, that the director has no memory of its ini-
tial orientation. Definitely, this is not true for real nematic
SCLSCEs. On the other hand, the condition may be sat-
isfied by 4c1D1 = (D2 +Dnw

2 )2 without D1 vanishing. As
a result, one recovers in the linear regime the vanishing
shear modulus predicted by the theory of “soft elastic-
ity” when the shear plane contains the director [26, 27].
However, the statement becomes problematic when defor-
mations and reorientations are not correspondingly small
(compare also ref. [28]).

In our approach, a scenario of “softness” can be recov-
ered in the following way for the complete reorientation
process. One neglects the memory of the initial director
orientation. Therefore the variables of relative rotation be-
come meaningless and one sets D1 = D

(2)
1 = D

(3)
1 = D2 =

Dnw
2 = D

(2)
2 = D

nw,(2)
2 = 0. A supplement to the elastic

part of the energy leads to F = c1εijεij + c2εiiεjj/2 +
c̃5niεijnj . If we choose c̃5 < 0, we recover for our geome-
try the above-mentioned scenario of “ideal softness”: zero
height of the stress-strain plateau during the reorientation
process, starting at zero prestretch. Here, the additional
term c̃5niεijnj acts as an intrinsic force of deformation
that arises from the nematic state of the material (com-
pare refs. [28, 29] for related approaches). Real nematic
SCLSCEs, however, do not show the scenario of “ideal
softness”, therefore we did not include the corresponding
term with the coefficient c̃5.

We would like to include three further remarks. First,
we have demonstrated in ref. [17] that the materials show
an additional intrinsic nonlinear stress-strain behavior due
to nonlinear elasticity. This kind of nonlinear behavior is

not connected to director reorientations. It arises simply
from straining the crosslinked polymer network. Never-
theless, it influences significantly the overall stress-strain
behavior of the elastomers [17]. These nonlinear proper-
ties, which we have neglected above, could force the ef-
fective shear modulus ∂2F/∂(δS)2|δS=0 to remain at a
finite, nonzero level. Secondly, the finiteness of real sam-
ples renders the lateral boundaries to move and change
shape during stretching. That leads to deviations from
the bulk director orientation close to the boundaries. The
conditions for the effective shear modulus to vanish might
therefore not be met close to the boundaries. Furthermore,
within the sample, the critical stretching amplitude Ac
may vary on a macroscopic length scale due to spatial
heterogeneities. If, in an experiment, one simultaneously
probes such macroscopic regions of different Ac, the ob-
served effective shear modulus will not vanish.

Our results are interesting from an experimental and
an applied point of view. Since director reorientations in
nematic elastomers are connected to elastic deformations,
they are candidates for the potential use as actuators
[6,10,30–32]. So far, only swollen nematic elastomers show
a considerable director reorientation at reasonably low ex-
ternal electric field amplitudes [3,6,10,11]. However, fine-
tuned prestretching of nematic elastomers may allow a
considerable electric field induced director reorientation
and resulting elastic deformations also for dry materials.
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4. J. Küpfer, H. Finkelmann, Makromol. Chem., Rapid Com-
mun. 12, 717 (1991).
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