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We present a nonlinear macroscopic model in which nematic side-chain liquid single crystal elas-
tomers are understood as materials that show two preferred directions. One of the two directions
is connected to the director of the liquid crystalline phase, the other one becomes anchored in the
polymer network during the procedure of synthesis. The specific properties of the materials arise
from the coupling between these two preferred directions. We take into account this coupling via the
variables of relative rotations between the two directions. For this purpose, we have extended the
variables of relative rotations to the nonlinear regime. In addition, we generalize the concept in such
a way that it can also be used for the description of other systems coupling two preferred directions.
In order to test our picture, we compare its predictions to the experimental observations on nematic
monodomain elastomers. As a result, we find that our model describes the nonlinear strain-induced
director reorientation and the related plateau-like behavior in the stress-strain relation, which are
characteristic of these materials. In addition, our model avoids the unphysical notion of a vanish-
ing or small linear elastic shear modulus. Finally, we demonstrate that ordinary nonlinear elastic
behavior of the materials, i.e. not connected to any reorientation of the director field, also plays an
important role in the appearance of the stress-strain curves and must be taken into account. (©) 2009

American Institute of Physics. [DOI: 10.1063/1.3054295]

I. INTRODUCTION

The first report of the synthesis of a monodomain ne-
matic side-chain elastomer already contained a description of
the most inspiring feature of these materials?: in nematic
side-chain liquid single crystal elastomers (SCLSCEs) macro-
scopic deformation and reorientation of the nematic director
field are closely connected. This fact was revealed when a
nematic SCLSCE was stretched perpendicularly to its origi-
nal director orientation in a stress-strain experiment. At the
same time the orientation of the director field was traced by
monitoring the dichroic ratio. The meantime well-known re-
sult was a continuous reorientation of the director field which
set in at a threshold strain and appeared to be closely con-
nected to a decrease in the slope of the stress-strain curve. In
various later experiments this behavior of the materials was re-
covered. It was also found that the reorientation of the director
can occur via a splitting of the homogeneous director orienta-
tion, when stripe domains are observed>*. Furthermore, it was
demonstrated that, vice versa, a reorientation of the director
field causes macroscopic strain. This was shown by applying
an external electric field to swollen nematic SCLSCEs>~.

Since the early experiments have been performed, the topic
is under thorough discussion from the point of view of model-
ing. In the previous decade the nonlinear elastic behavior has
mainly been described using the semi-microscopic picture
based on anisotropic Gaussian rubber elasticity®, which has
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also been taken as a basis for numerical studies’. This ap-

proach is able to describe the plateau-like feature in the stress-
strain curve at finite strains, where the director rotates from a
perpendicular to a parallel orientation w.r.t. the stretching di-
rection. In this approach there is no nematic degree of free-
dom considered and the nematic ordering simply serves as
providing the uniaxial orientation. The rubber elastic descrip-
tion is based on the assumption of Gaussian phantom chains
and affine deformations on all length scales. This approach,
however, fails to correctly describe the linear elastic proper-
ties of nematic SCLSCE:s. It predicts a vanishing (“soft”) or
very small (“semi-soft”) linear elastic shear modulus, while
oscillating shear measurements clearly show the shear elastic
modulus to be finite and of the order of the isotropic one!'%-12,
The linear “softness” has been linked to a spontaneously bro-
ken continuous shape rotational symmetry'3. This symmetry
is not spontaneously broken in the nematic SCLSCEs avail-
able experimentally so far.

Recently, a biaxial model has been proposed'# to describe
the results of the nonlinear stress-strain experiments. The two
directions in the nematic SCLSCE are assumed to be given on
the one hand by an internal stress imprinted into the material
during the process of synthesis, and on the other hand by the
external stress applied to the material during the stress-strain
experiment. Here, the critical behavior is shifted from the lin-
ear elastic range to that of a finite strain thereby mimicking the
nonlinear elastic plateau. However, no vanishing linear elastic
shear modulus has been found experimentally even at a finite
pre-strain.

Thus, there is a clear necessity for a description that cov-



ers the nonlinear plateau behavior as well as the non-soft (fi-
nite) linear shear elastic property. This could be provided by
a more refined semi-microscopic model or by a macroscopic,
phenomenological approach according to generalized hydro-
dynamics. The former has been discussed in Refs. 15 and 16,
while the latter will be pursued below.

The picture that we propose in this paper is the following.
We think of the materials as being composed of two compo-
nents that both show a preferred direction. These two com-
ponents are coupled to each other: a rotation of one of the
two components with respect to the other one contributes to
the energy density of the whole system. In our case of ne-
matic SCLSCEs, one of the two components is made up by
the entity of mesogens that show the liquid crystalline phase.
The other component is given by the crosslinked network of
polymer backbones which shows an elastic mechanical behav-
ior. Both of the two components feature a preferred direction,
generally in parallel orientation in equilibrium. In our model
these two directions are internal properties of the materials,
which makes a major difference compared to the picture in
Ref. 14.

Our concept is based on an early idea by de Gennes, who
set up a linear expression for the variables of relative ro-
tations between the director of the liquid crystalline phase
and the polymer network'”. Later on, relative rotations have
been introduced as macroscopic variables into a hydrody-
namic description of nematic SCLSCEs by two of the present
authors'®. The concept of relative rotations has since turned
out to be very useful in the macroscopic characterization of
the materials!!-1219-21 Recently, we have extended the ex-
pression of relative rotations to the nonlinear regime, so that
now also the nonlinear behavior of nematic SCLSCEs can be
modeled in this spirit?’. Our characterization is macroscopic
and can be understood as a starting point for a hydrodynamic
description of the materials. We keep it general in the sense
that we do not assign specific values to the material parameters
from the beginning. Therefore it essentially differs from the
approach given in Ref. 8. We will focus our considerations on
the effects connected to the coupling of the two preferred di-
rections in the elastomers. This coupling and relative rotations
between the two preferred directions can lead to a strongly
nonlinear response during stress-strain measurements. In par-
ticular, this response is not connected to the nonlinear purely
elastic response that can be found for the materials in a strain-
regime where no rotation of the preferred directions occurs.
The analysis of experimental results corroborates our concept.

Possible applications of liquid crystalline elastomers as
components of artificial muscles or soft mechanical actuators
have been discussed in the literature>2>-2>, The effect that we
study in this paper may be exploited for practical purposes
in the following way. As we have mentioned above, the re-
orientation of the director of common nematic SCLSCEs can
be initiated by stretching the respective elastomer perpendicu-
larly to its initial director orientation, beyond a certain thresh-
old value. While the director reorientation takes place, the
slope of the corresponding stress-strain curve is strongly de-
creased. This means that then, by small changes of the am-
plitude of the applied stress, large changes of the elongation

of the material can be achieved. The respective SCLSCE
therefore serves as a shape changing device that reacts very
sensitively to variations of the externally applied stress. To
drive the elastomer into this stress-sensitive regime, a pre-
strain has to be imposed. We note at this point that the ini-
tiation of large amplitudes of deformation has also been re-
ported for other kinds of materials under pre-strain®®. On the
other hand, nature has already been making use of the spe-
cial properties of macromolecular materials containing liquid
crystalline components for millions of years. A prominent
example concerns the process of spinning fibers by spiders,
which is connected to the partial liquid crystalline composi-
tion of spider silk?>’. Spider silk itself also features regimes
of stress-sensitive behavior under elevated temperature and/or
relative humidity, when the overall shape of the corresponding
stress-strain curves is considered?s.

We have organized this paper in the following way. In Sec.
IT we will describe in detail our nonlinear picture of nematic
SCLSCEs as materials of two coupled preferred directions.
The elements of our previous nonlinear study of the materials
will shortly be reviewed and implemented into the descrip-
tion. We give an expression for the generalized energy density
of the system and discuss the various contributions. Further-
more, we show that in the linear regime de Gennes’ picture of
the materials is recovered. After that, in Sec. III we present
the predictions of our model and compare them to experimen-
tal observations in the field. In particular, we focus on the
results obtained during recent stress-strain experiments®-3.
Finally, we summarize and discuss our results and give a short
perspective in Sec. IV. We have added an appendix in which
an alternative approach to the variables of relative rotations is
presented. In addition, in the appendix we demonstrate that
this alternative approach leads to an identical description of
the materials when the corresponding terms of the generalized
energy density are investigated.

II. MACROSCOPIC MODEL OF NEMATIC SCLSCES

In this section we present in detail the ingredients of our
model describing the macroscopic physical behavior of ne-
matic SCLSCEs. As we have already explained in Sec. I, in
our picture the materials can be thought of as a combination
of two coupled components. Each of these two components is
associated with one preferred direction.

The preferred direction connected to the component show-
ing the liquid crystalline phase is of course given by the direc-
tor field fi(r). It reflects the average direction of orientation
of the mesogenic units in a mesoscopic volume at a position
r. During strain-induced reorientation processes at constant
temperature, it has been observed that within domains of one
orientation of the director, the scalar order parameter S is ei-
ther slightly decreasing or constant within the experimental
error bar’. Due to this fact, we will not take into account the
scalar degree of ordering S of the mesogens, but only deal
with the orientation of the macroscopic director field.

On the other hand, we can identify a separate, second pre-
ferred direction which is connected to the polymer network,



or, in our language, to the component showing the elastic be-
havior. If the director of a nematic SCLSCE is reoriented dur-
ing a stress-strain experiment or due to an external electric
or magnetic field, it will relax back to its original orientation
after the external force has been released. The original ori-
entation of the director has been imprinted into the polymer
network during the process of synthesis, or, in other words,
it has been frozen in®!. For materials generated by the two-
step crosslinking procedure described in Refs. 1 and 2, it is
easy to identify this direction: during a second crosslinking
step the material is stretched in a certain direction in order
to macroscopically align the director in a monodomain across
the whole elastomer. It has been demonstrated that during
the second crosslinking step some anisotropy gets locked in
the vicinity of the crosslinking points?. But also if the direc-
tor is macroscopically aligned by an external magnetic field*?,
by anisotropic deswelling?, or by surface effects** before the
crosslinking process is completed, the respective original ori-
entation of the director field becomes imprinted into the poly-
mer network. We therefore identify this imprinted direction as
the preferred direction of the network of polymer backbones,
which makes up the second component. We denote this direc-
tion by 2™V (r).

Due to the coupling between the two components it is clear
that a misalignment of the two orientations i(r) and ™% (r)
will contribute to the generalized energy density of the system.
From this misalignment, we will therefore construct nonlinear
macroscopic variables which are suitable for a macroscopic,
hydrodynamic-like description of the systems. Our scope in
this section is to derive an expression for the generalized en-
ergy density characterizing the behavior of the materials.

It is important that the macroscopic variables that contribute
to a hydrodynamic picture vanish when the system is in equi-
librium and no external forces are applied. We take the differ-
ence between the two directions fi(r) — 0™%(r) as a starting
point, however, it cannot be taken directly as the macroscopic
variables we are looking for due to the following reasons of
symmetry.

In low molecular weight nematics the two directions fi(r)
and —i(r) cannot be distinguished. Therefore, an expres-
sion for the generalized energy density characterizing such a
system must be invariant under the symmetry transformation
i(r) < —f(r). For this reason, when deriving an expres-
sion for the generalized energy density, it makes sense to use
macroscopic variables that show a clear behavior of symmetry
under the transformation fi(r) < —i(r).

Returning to nematic SCLSCEs, we have two separate pre-
ferred directions fi(r) and A™¥(r). The generalized energy
density must be invariant under the symmetry transformation
A(r) «— —i(r) as well as under the symmetry transformation
A" (r) < —0"W(r), separately (inversion of fi(r) does not
imply inversion of A™¥ (r) and vice versa). Our macroscopic
variables must show a definite behavior under these transfor-

mations of symmetry.

We thus define two sets of nonlinear relative rotations on the
basis of the difference fi(r) — A"V (r). Taking the component
of this difference that is perpendicular to A% (r), we obtain

as variables of relative rotations

Q(r) :=i(r) — [A(r) - 2™ (r)] A" (r). (1)
Q(r) is odd under the transformation ii(r) < —i(r) and even
under the transformation 2"% (r) < —A™"(r) (we mark the
scalar product by “-””). Systematically taking the component
of fi(r) — A™¥(r) which is perpendicular to fi(r), we obtain
as a second set of variables of relative rotations

Q™ (r) := —0"™(r) + [A(r) - A" ()] Ar). ()

Q™% (r) is even under the transformation i(r) < —i(r) and
odd under the transformation 2™V (r) < —A™V(r). Later we
will comment on the role of the two sets of relative rotations,
and we will show that this formulation is in accordance with

the linear description in the spirit of de Gennes'”.

As a next step, we must connect the orientations of fi(r)
and A"V (r) to those variables which characterize the current
macroscopic state of the system??. In our model, the state of
a nematic SCLSCE is completely defined by the orientation
of the director field fi(r) and by the state of elastic distortion
of the polymer network. Elastic distortions are described in
terms of gradients of a displacement field u(r) in the frame-
work of elasticity theory®.

In order to include the energy density resulting from elas-
tic distortions into our expression for the generalized energy
density of the system, we will have to use the nonlinear strain
tensor in the Euler notation®®. The components of this strain
tensor written in components of u(r) read

1
Eij = § [8Zuj + @-ui — (&-uk)(ajuk)} . (3)

This tensor describes, how the distance between two volume
elements of the elastomer changes during an elastic deforma-
tion. The spatial dependence on r is not explicitly displayed
in the following.

When we want to connect the preferred direction of the
elastic component ™" to the elastic deformation, we start
with the original, undistorted state of the system. Here, we
find that the two macroscopic preferred directions are aligned
in parallel directions. We denote them as fip and ng", re-
spectively. Locally, due to some external force acting onto the
system, the director fi is obtained from fig via a rotation S?2,

n=S- . “4)

In the same way, also ™" is obtained from g™ via a rotation
which we denote as R~1,

A" =R agv. )

The rotation matrix R~ is connected to the local elastic dis-
tortion of the polymer network. This is due to the fact that
every elastic distortion can be separated into a rotation and a
pure strain deformation. We have derived an expression for



R~!in Eq. (13) of Ref. 22, which reads

_ 3
(RY)y; = 6 +ey+ SEikERj T 5EiREREL — €ikOku;
35 3
+ g CikERIEImEm — Oiu; — §5ik5klaluj
5 |4
— §Eik€kl€lmam7.tj +O ((Vu)") . (6)

Thus Egs. (3), (5) and (6) connect A™" to the displacement
field u.

At the beginning of this section we have taken the mis-
alignment 2™V — fi as a starting point for the construction
of the variables of relative rotations. Egs. (4) and (5) together
with the condition A% ||fip will guarantee rotational invari-
ance with respect to the initial state of the system, when we
set up the expression for the generalized energy density.

In the following, using symmetry arguments, we derive this
expression for the generalized energy density of the system.
The macroscopic variables that can contribute to the general-
ized energy density comprise the hydrodynamic variables of
mass density p, density of momentum g, and density of en-
tropy o, as well as the macroscopic variables of strain (3),
relative rotations (1) and (2), and gradient fields like Vii. We
combine these variables satisfying the symmetry requirements
for an energy density, such as invariance under parity and un-
der the transformations Ai™"¥ < —i™" and i < —n, sep-
arately. In addition, we assume that for the investigation of
the stress-strain geometry the strains € and the relative rota-
tions €2 and Q"% play the dominant role. Therefore, only
terms composed of €, Q, and Q™% are taken into consider-
ation. The expression for the generalized energy density we
want to study in the following amounts to

F = cieijeij + Seaeiigj

2

1 ~ o~ ~ o~ ~ o~
+ 5 D10 + DY (2:6:)° + DI (2,6,)°
+ Do nzgzjﬂ + an nwEi‘an

—‘rDé )nisijeijk +D2 w,(2) nw{;‘”é‘]kﬂk , (1)
where summation over repeated indices is implied.

Here, the elastic behavior of the polymer network is as-
sumed to be isotropic, as the first two terms indicate. We
will comment on this point in section IV. The terms with
the coefficients D1, D?), and D§3) include energetic con-
tributions only related to relative rotations. For symmetry
reasons, namely the required invariance under the transfor-
mations A" < —N0"" and 1 < —n, only even powers
of the relative rotations may appear in these terms. Due to
Q.Q; = Q"“’Q"w we did not explicitly add the corresponding
terms containing only the variable Q™" What comes next in
expression (7) are the terms that couple the relative rotations
to the strain of the elastomer. As we can see, the terms with the
coefficients Dy and D3 couple to the strain tensor in a linear

way, whereas the terms with the coefficients Df) and Dy w:(2)
couple to the strain tensor quadratically. An additional term

€ijEij Qkfl  can be included to model an effective change of
the elastic coefficient ¢; with increasing relative rotations be-
tween the director and the polymer network, However, we will
not need this term for the following discussion. For all terms,
strain is only included up to quadratic order. The motivation
for this approach will become clear during Sec. III.

It is straightforward to demonstrate that in the linear regime
of small strains and small relative rotations we recover de
Gennes’ expression for the energy density!’. Taking only
those terms from expression (7) which are quadratic in the
macroscopic variables and substituting i = g + dn as well
as O™ = njv + dn"%, we obtain

lin
F( ) = C1€ij€ij + £C2€4 €55

2
1 ~(lin) & (lin I A (lin
+ §D1 QEZ )QEZ ) + D2 ’I’LZ'EZ'ngl ) (8)

Here, Dy = Dy + D3% and QUin) — §n — Fnov (one has
to take care of the parameterization in the case of antiparallel
alignment of g and fifg™). For isotropic elastic behavior, this
expression of F(#") comcndes with de Gennes’ expression as
noted in Ref. 17. We obtain the conditions of thermodynamic
stability: ¢; > 0, 2¢; + 3c3 > 0, D1 > 0, and

4¢1Dy — D3 = 4c1Dy — (Dy + D5¥)2 > 0. (9)

Furthermore, by construction, from Egs. (1) and (2) it fol-
lows that
AW.Q =0, n-Q"W=0. (10)
I~n the linear regime, this leads t0~the familiar cogdition i -
QUin) — 0, or equivalently A™" - QUin) — 0, f1y - Q1) = 0,
and Ag™ - QUin) = 0,

We have added an appendix, in which we outline an alter-
native approach to the variables of relative rotations. How-
ever, we can show that this alternative approach leads to the
same terms listed in expression (7). In the appendix, we also
discuss in detail the symmetry relations between i and A™"
connected to the distorted state of the elastomer, as well as ng
and Ag" connected to the undistorted state.

III. PREDICTIONS OF THE MODEL AND COMPARISON
TO EXPERIMENTAL RESULTS

In this section, we will analyze the geometry of stretch-
ing a nematic SCLSCE perpendicularly to its original director
orientation using the model introduced above. We include a
semi-quantitative comparison of the predictions of our model
to the results obtained from the corresponding reorientation
experiments. The main goal of this procedure is to reveal
the dominating underlying processes that from a macroscopic
point of view take place during the reorientation of the direc-
tor field.

We begin by specifying the geometry, which is illustrated
in Fig. 1. The z-direction of our Cartesian coordinate system
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FIG. 1: Geometry of the system investigated. An external force Fext
is applied parallel to the Z axis, the initial directions figo and fig" are
oriented in the x-z-plane. The angles between the X axis and g, 0,
ng", and A™% are called Yo, 9, B0, and 3, respectively.

will be oriented parallel to the externally applied stretching
force Fext. Furthermore, the initial directions fig and g%
are chosen to be oriented parallel within the z-z-plane, so we
can denote them as

cos Vg cos By
Ng = 0 , ngV = 0 , an
sin Y sin By

with ¥9 = By + nm, n € Z. When we set ¥g = 0 we
obtain the case of stretching the elastomer exactly perpendic-
ularly to the original director orientation. Then fig and Hg%
are oriented parallel to the x-direction.

It is straightforward to study an inhomogeneous deforma-
tion and to include e.g. heterogeneous initial director orienta-
tions. However, in this paper we will adopt the assumption of
a homogeneous deformation, which includes a homogeneous
orientation of the initial directions fip and fig". One should
rather think of the homogeneous deformation of a characteris-
tic volume element, not of the whole sample, a concept which
we will further motivate later on.

In this spirit, we take as an ansatz for the displacement field

u, = Az+ Sz, (12)
U, = Br+ Tz, (13)
w = Cy. (14)

Here, the amplitudes A, B, C, S, and T reflect the strain de-
formation of the elastomer. We know from the experiments
that the reaction of the director field to the external forces is
mainly determined by a reorientation within the z-z-plane.
Previous calculations in the spirit of our model show that
within this plane the reorientation of the director is closely
connected to a shear deformation of the elastomer!!?2, as has
also been found from other models. In ansatz (12)-(14), we
therefore allow for a shear deformation in the z-z-plane and
discuss its role later.

We start our calculations by deriving an expression for the
matrix R™!, which describes the elastic rotational deforma-
tion of the polymer network. For this purpose, we introduce
ansatz (12)-(14) into Egs. (3) and (6). Up to quartic order in
the deformation amplitudes we obtain

cos 3 0 —sin 8
R = 0 1+0% o0 |, (15)
sin 3 0 cos 3

B=(1+A+A>+A%S— <;+A> 5%+ 0O(5) (16)

with 3 = 83— 00, A= 3(A+B)and S = L(5 - T).
Here, O(5) represents terms of quintic or higher order in the
deformation amplitudes A, B, C, S, and T.

We add four remarks. First, we see from Eqgs. (15) and (16)
that in the absence of any shear deformation (i.e. S =T = 0)
we do not find any elastic rotational deformation. The same
is true for equal shear amplitudes S = T. Furthermore, in
the linear regime we recover the fact that shear and rotational

elastic deformations are equivalent: 3 — 3y = —3(T — ).
Finally, only the shear amplitudes .S and 7" determine the de-
gree of elastic rotational deformation in the case of B = — A

and C = 0 (which is often referred to as a “pure shear” defor-
mation; see, e.g., Ref. 38).

Using Egs. (5), (15), and (16) we can now parameterize
n™ in terms of the deformation amplitudes. On the other
hand, we have to include a further degree of freedom +J, which
is connected to the reorientation of the director i within the
x-z-plane. More precisely, ¥} — ¥Jq is denoting the angle by
which the director has rotated from its original orientation fig
to its final orientation n. We obtain

cos cos 3
n= 0 , n"v = 0 . 17)
sin sin 3

It is a very good approximation to assume that common ne-
matic SCLSCEs do not change their volume during the defor-
mations investigated in the following. We include this feature
by setting

—-A—-B+AB

¢= 1-A_B+AB’

(18)

In particular, this expression for C' implies that up to cubic
order in the strain amplitudes the term with the coefficient co
does not contribute to Eq. (7).

We can now obtain an expression for the energy density
F which is a function only of the strain amplitudes A, B,
C, S, and T, as well as of the reorientation angle J. For
this purpose, we have to introduce expressions (1)-(3), (12)-
(14), and (16)-(18) into Eq. (7). We want to stress at this
point that we will only take into account the strains up to
quadratic order in the generalized energy density (7). The
quadratic term of the strain tensor (3) enters F' only in the
terms with the coefficients Dy and D3*, and Eq. (16) is re-
duced to 3 — By = —3(T — S). This way we make sure



that the nonlinear stress-strain behavior we will recover in the
following originates solely from the influence of the relative
rotations. There will be no terms included in the final form of
expression (7) that can describe a nonlinear elastic behavior
when no reorientation of the director occurs.

In our approach, we then have to minimize the generalized
energy F = [, F'd®r of the system, V being the volume of
the respective sample. This means that we treat the system in a
static way. We consider the respective elongation of the sam-
ple in z-direction to be imposed onto the system externally.
Therefore, since we are dealing with a spatially homogeneous
deformation, the value of the strain amplitude A is considered
to be fixed from outside. For every value of A we determine
the equilibrium state of the system.

Following this procedure, we have to minimize the gener-
alized energy density F' with respect to the strain amplitudes
B, C, S, and T, as well as to the reorientation angle 9J. From
this minimization we obtain the values of B, C, S, T', and ¥
as a function of A. Consequently, also the energy density F'
can be expressed as a function of A. From the change of the
generalized energy density F' with respect to A, that is from
the derivative dF'/d A, we can then deduce the value of the ex-
ternally applied force Fi,¢. Fe,4 is connected to the external
stress amplitude, and it is the cause of the respective elonga-
tion characterized by A. In this way our picture is closed.

Since we want to compare the results obtained from our
model to experimental results, we should address two more
issues before we start to evaluate the expression for F'.

On the one hand, a completely spatially homogeneous de-
formation of the entire sample can of course not be realized
in an experiment. This results already from the geometrical
constraints connected to the respective experimental set-up,
in interplay with the low compressibility of the materials. Es-
pecially near the top and bottom edges, where the samples are
usually clamped during reorientation experiments, the strain
deformation is quite heterogeneous. Because of this, a spa-
tially homogeneous characterization can only describe the be-
havior of one volume element of the sample. Only if the ge-
ometry of the sample investigated is chosen such that most of
the regions of the sample react in a similar way, and only if
the behavior of a characteristic volume element can reflect the
overall behavior of the sample, then this approach is meaning-
ful.

Furthermore, for polymer materials it is difficult to map the
overall boundary conditions of a clamped sample to one vol-
ume element. It seems plausible that shear deformations char-
acterized by T' # 0 play a minor role. This is also suggested
by the observations of the stripe domains, which are oriented
parallel to the direction of the externally applied force®*. As
a consequence, we will set

T=0 19)

during the rest of our considerations. The discussion is not
as clear for shear deformations described by S # 0. Narrow
stripes of alternating shear deformation S > 0 and S < 0, re-
spectively, do not lead to a large deviation from the boundary
conditions imposed by the clamps. We will therefore study the

case of S = 0 first, however, we will also discuss the influence
of a nonvanishing shear deformation .S # 0.

On the other hand, we have to connect the variables the val-
ues of which are measured during the experiments to the vari-
ables that appear in our hydrodynamic-like Eulerian picture.
Usually, in the experiments the value of the current macro-
scopic dimension [ of the respective sample in the direction of
the externally applied force is recorded step by step. Compar-
ing to the initial dimension [y of the sample in this direction,
the ratio

A=— (20)
lo

is determined and taken as a measure of the induced strain.
Sometimes, like for instance in Ref. 29, the so called true
strain € = In(\) is taken as a variable. We will choose our
Cartesian coordinate system such that the externally applied
force is oriented parallel to the z-direction (Fig. 1). Then,
A=A, 1l =1;,and [y = [, o. In the same way we define the
current dimensions [, and [, as well as the initial dimensions
l¢,0 and [, o of the respective sample in the lateral directions.
Stresses are recorded either as true stress

Fext

oxt = 21
Oext Lo, (21)
or as nominal stress
FE(E
ol = (22)
le0ly0

where F.,; again denotes the magnitude of the force exter-
nally applied to the sample edges in z-direction. Underlying
these definitions is, of course, the assumption that the sam-
ple deforms in a spatially homogeneous way. Naturally, from
the experimental point of view the initial dimension [ is con-
sidered to be constant and the current sample dimension [ is
changed.

In the hydrodynamic-like picture, however, the situation is
different. Here, we have to adopt an Eulerian point of view.
Therefore, the current dimension of the sample [ is considered
to be constant, and what changes is the initial dimension /.

Because of [, = [. — Al., in a spatially homogeneous
deformation we obtain

A= — . (23)

Furthermore, from

dF

AF = Fogyd(l, — 1.0) = —Fogydl, o = Lyl 5 d A (24)
we find
F..  dF
Oext lxly dAa ( 5)
F dF
N ext
ext lz,Oly,O ( )dA ( )

Here, the expressions on the left of Eqgs. (25) and (26) are
given as functions of A, the expressions on the right as



functions of A. The connection between both follows from
Eq. (23).

In the following, we will continue our considerations in two
steps. First, we will focus on the reorientation of the director
field. In this context we can elucidate the different roles of the
two sets of relative rotations. After that, we will address the
stress-strain curves. We keep in mind that the reorientation
of the director field and the nonlinear shape of the respective
stress-strain curve are closely connected to each other.

A. Reorientation of the director field

For illustration we will suppress shear elastic deformations
in this subsection, that is we set S = T = (. Therefore, no
rotation of the polymer network occurs and 5 = 3y. Further-
more, we will only take into account the quadratic terms with
the coefficients c1, D1, D2, D3, as well as the term with the

coefficient D§2). Only the linear components of the strain ten-
sor (3) will be included in the beginning, so the strain tensor
adopts the very simple form €., = B, eyy = C, €., = A,
and €;; = 0 for ¢ # j.

As explained before, we then have to solve the system of
equations dF'/dB = dF/dY = 0. For the values of the
material parameters, we choose ¢; = 121 x 10 J] m—3,
Dy =12x 103 Jm™3, Dy = =32 x 10> Jm~—3, Dpv =
—32x103 I m~3, and D§2) =45%x103Tm=3. In general, c;
is obtained from the initial slope of the respective stress-strain
curve before any reorientation of the director takes place. The
choice of the other material parameters can be motivated in
the following way. From a stability analysis for ¥y = 0° we
find that the original orientation of the director ¥ = ¥y = 0°
becomes unstable at a critical strain given by A = A,

Dy

Ac=—or—r.
" 2Dy + Dyv
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With increasing A > A, the director continuously rotates and
reaches an orientation of ¢ = 90° at A = A,.,

8c DY) — (D)2
A=A, — . 28
201 (2D2 + Dgw) ( )

For A > A, the director remains at this orientation of ¥ =
90°. '

We can infer from Eq. (27) that 2Dy + D3% < 0, if a
rotation of the director shall occur (D; > 0). Furthermore,
if the values of Dy and D3" are set and the value of A, is
adopted from an experiment, we can estimate the value of D;.
On the contrary, estimate (28) has to be taken with care. The
experiments show that the strain amplitudes corresponding to
a complete reorientation of the director are rather high so that
nonlinear effects will probably play a major role. Therefore,
Eq. (28) should mainly be considered as an estimate for the
order of magnitude of the value of D§2).

As a result, we obtain the curves depicted in Fig. 2, where
the orientation angle of the director ¥ is plotted against the
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FIG. 2: Angle ¥ between the director orientation and the X axis under
the influence of an externally imposed strain A. The initial director
orientations for A = 0 were given by %(A = 0) = ¥ = 0°, 0.1°,
2°, 10° to 80° in steps of 10°, and 89.9°, respectively. They can
be inferred from the scaling labels on the ordinate (the value ¢ =
0.1° has not been marked explicitly). For 9 = 0° a pronounced
threshold behavior is found.

externally imposed strain A (in the corresponding calcula-
tions the strain amplitudes have been taken into account up to
quadratic order). The different curves correspond to different
initial orientation angles 9 = 0°, 0.1°, 2°, 10° to 80° in steps
of 10°, and 89.9°, respectively, which can be inferred from the
scaling labels on the ordinate (the value of ¥y = 0.1° has not
been marked explicitly). At small and large strain amplitudes
the curves for 99 = 0° and 999 = 0.1° nearly coincide. Signif-
icantly, for an external force applied perfectly perpendicularly
to the initial director orientation, that is for ¥y = 0°, we find a
pronounced threshold at a critical strain A. ~ 0.13. However,
the curve strongly smoothes out already for the small value
of ¥y = 0.1°. Naturally, when the director is already aligned
parallel to the externally applied force (¢Jo ~ 90°), practically
no further reorientation occurs.

It is interesting to note that we find a complete alignment
of the director parallel to the external force direction, that is
¥ = 90° at finite strains, only for the perfectly perpendicular
geometry of ¥g = 0°. In order to understand this point, we
have a look at the terms with the coefficients D and Dénw),
which induce the reorientation of the director field. For the
geometry investigated, they read

DangeijQ + D5 Ve Q0" = Dongeanle (29)

DR " 4 Donse..Q, + DY e,, Qe Qre.

The first two terms after the equality sign are always positive,
whereas the last two terms are always negative. This follows
from definitions (1) and (2), as well as from e,, < 0 and
€., > 0. In general, the energetic penalty arising from the
first two terms in brackets inhibits a complete alignment of
the director parallel to the external force direction. However,
these terms vanish in a geometry in which the external stress



is always oriented perfectly perpendicular to 4™V (J¢ = 0°,
S =T = 0). More illustratively, we can say that the stretch-
ing of the elastomer given by €, > 0 enforces, whereas the
induced contraction described by €., < 0 hinders the director
reorientation via the relative rotations 2. The opposite is true
for the role of the relative rotations 2™%: here the stretching
€., > 0hinders and the induced contraction €., < 0 enforces
the director reorientation. Only in the case of the perfectly
perpendicular geometry without shear deformation, Eq. (29)
only leads to contributions that drive the director to 1 = 90°.
In all the other cases additional contributions leading to the
opposite effect arise. This is the reason for the very different
appearances of the curves in Fig. 2.

For this special case of ¥g = 0° and S = T = 0, we can
also further elucidate the role of the two sets of relative rota-
tions €2 and Q™V.  directly couples to the externally im-
posed strain €,, = A, and this coupling induces the reorien-
tation of the director field. On the other hand, €., > 0 results
in a contraction £,, < 0, which couples to 2™V. Then, Q™"
also enforces the director reorientation. Because of the cou-
pling between Q™% and ¢,,., however, the material parameter
DZ" simultaneously influences the magnitude of the lateral
contraction €.

When we want to compare the shape of the curves in Fig. 2
to the ones obtained during measurements, we have to rescale
the abscissa via Eq. (23), introducing A as a variable. This
procedure stretches the shape of the curves for higher strains,
a tendency which is also observed experimentally*. In our
model, it is possible to fine-tune the shape of the curves es-
pecially for larger angles ©) via the values of the material pa-
rameters Dgz) and DE?’) (and using terms in the expression for
F of even higher order in the relative rotations, if necessary).
We note that for values Dy > 0, D§2> < 0, and D§3) >0
our model predicts a jump of the orientation angle 1} to higher
values at a certain strain amplitude. A related behavior has
been reported, for example, in Ref. 39.

B. Stress-strain curves

In this section we will use our model in order to study the
mechanical stress-strain behavior of nematic SCLSCEs de-
formed in a geometry as described above. For this purpose
we will compare the results of our model with data measured
during recent stress-strain experiments.

We decided to focus on the stress-strain curve shown in
Fig. 3. It was measured by Urayama et al. and it is reproduced
from Fig. 5 of Ref. 29. The authors of Ref. 29 investigated a
thin film of nematic SCLSCE of homeotropic ground state di-
rector alignment. At 70°C the film was deeply in the nematic
state and showed a pronounced decrease in the slope of the
stress-strain curve at intermediate strain amplitudes (Fig. 3).
The reasons for us to focus on these data are of different kinds.
For one thing, the data curve apparently represents a material
which has sufficiently equilibrated for each step of increas-
ing the strain. In particular, besides the stress-strain data also
measurements revealing the orientation of the director field
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FIG. 3: Nominal stress ol%,; versus the true strain ¢ = In()\) mea-
sured for a nematic SCLSCE by Urayama et al. The data points
were acquired for a thin film of homeotropic alignment at 70°C (re-
produced from Fig. 5 of Ref. 29). Reprinted with permission from

Macromol. 40, 7665-7670 (2007). Copyright 2007 American Chem-
ical Society.

as well as measurements on the dimensional shape change of
the sample during the strain deformation are presented for the
same material and thus give a complete picture.

Two important facts can be extracted from the region of
high strain amplitudes in Fig. 3. We can see that the elastomer
reacts in a well defined way to the imposed strain deforma-
tion. A fairly linear relationship has been found between the
nominal stress o2, and the logarithm of the elongation In(\)
for these high strain amplitudes. This especially applies to the
data points in the regime 0.4 < € < 0.5. For € > 0.5 the data
points start to scatter and slightly deviate from this linear re-
lationship. We interpret this fact as the onset of a qualitatively
different behavior at very high strain amplitudes. Therefore
we will restrict our considerations to the regime of € < 0.5.
The authors of Ref. 29 could further demonstrate by infrared
dichroism measurements that in the regime of high strain am-
plitudes (¢ > 0.4) the director reorientation has been com-
pleted and practically no further reorientation occurs. More-
over, the slope of the stress-strain curve is roughly as large as
for low strain amplitudes.

In order to compare with our model, we have to convert the
stress-strain curve from Fig. 3 to the corresponding represen-
tation in terms of the variables A and dF'/dA. We perform
this step with the help of Egs. (23) and (26). As a result, we
obtain the curve depicted in Fig. 4.

Furthermore, we remember that in our approach we have
derived the expression for the generalized energy density F'
by means of a series expansion in the strain tensor €. As
mentioned before, in our calculations pure elastic strain is ex-
plicitly included only to quadratic order. Nonlinear behavior
of the stress-strain curve predicted by our expression for the
generalized energy density I’ always has to be connected to a
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FIG. 4: Stress-strain data from Fig. 3 measured by Urayama et
al. transferred to the representation in terms of A and dF'/dA.

reorientation process of the director field. If the director ori-
entation remains constant w.r.t. the polymer network, we will
find a linear relationship between A and dF'/dA.

A nonlinear behavior of the stress-strain curve in a regime
of constant director orientation has to arise solely from an
intrinsic nonlinear elastic behavior, resulting from stretch-
ing the network of crosslinked polymer backbones. We will
subtract this nonlinear elastic behavior from the stress-strain
curve. For this purpose we have fitted the linear regime of
high strains in Fig. 3 by a straight line. With the help of
Egs. (23) and (26) we could transfer this straight line from
the In(\)-oY, representation of Fig. 3 to the A - dF'/d A rep-
resentation of Fig. 4. We obtain dF'/dA as a power series of
A, dF/dA = ag + a1 A+ az A? + a3 A® + ... As mentioned
above, the authors of Ref. 29 have demonstrated that for these
high strain amplitudes no reorientation process of the director
occurs. The nonlinear contributions in A must therefore re-
sult from nonlinear purely elastic contributions of the polymer
network. Since these effects are not included in the character-
ization by our model, we can exclude them from our consid-
erations: we subtract the values as A% + a3 A3 + ... from the
data points of our stress-strain curve in the A - dF'/d A repre-
sentation. This is possible on the basis of our approach in the
spirit of a series expansion, in which every effect is connected
to a limited number of terms. As a result, we obtain the curve
of data points shown by Fig. 5.

We have to note that, as a consequence of this procedure,
we make a small error in the following sense. Terms, like
for instance €;;¢,,€:€% Y, include the strain to higher than
quadratic order and couple for example to relative rotations.
At low strain amplitudes the term may vanish due to Q=o.
On the contrary, it may lead to a contribution nonlinear in
A for higher strain amplitudes when €2 = const # 0. In
this case, we may subtract the nonlinear influence of this term
from the A - dF'/dA curve only for the higher strain ampli-
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FIG. 5: Same stress-strain data as in Fig. 4 with nonlinear purely
elastic contributions by the network of polymer backbones sub-
tracted. A curve that has been obtained with the help of our model
is also shown. In this case, the amplitude .S of the shear deformation
was free to adjust. The curve is characterized by a specific set of
values of the material parameters involved in our model.

tudes where € = const # 0, not for the lower strain ampli-
tudes of 2 = 0. However, we have checked that the error re-
sulting from these deviations are only minor. For this purpose,
we have repeated the whole procedure, now fitting the linear
regime of small strains of the In(\)-oXY, plot with a straight
line. Eventually, after subtracting the elastic nonlinearities re-
sulting from this regime, we obtained almost the same curve
as before. In short: we have verified that our procedure of
fitting the original stress-strain curve leads essentially to the
same results for both regimes, small and large amplitudes of
strain.

As a first step in order to investigate the stress-strain be-
havior, we suppressed elastic shear deformations completely
by setting S = T = 0. This means that 2"V||a§"™ during
the whole deformation. We solve the equations dF' /dB =
dF/d9¥ = 0, and we obtain B and ¢ as a function of A. As
a result, by choosing appropriate values for the material pa-
rameters, we obtain curves for dF'/dA as a function of A,
which qualitatively correspond to the arrangement of the data
points in Fig. 5. When we choose ©9 = 0° for the angle of
initial director orientation, corresponding to Ai™V||X, we find
pronounced cusps in the A - dF'/dA curve. These cusps are
located at the strain amplitudes where the director orientation
starts and ends. They correspond to the kinks in the curve of
Y9 = 0° in Fig. 2. It is not surprising that such a threshold
behavior occurs in the perfectly perpendicular geometry. We
could demonstrate that a pretilt in the initial director orien-
tation (9 # 0°) smoothes out the stress-strain curves. Si-
multaneously, however, it leads to an increase of the slope in
the intermediate strain region. Spatial heterogeneities of the
materials will also play a major role in this context. They



correspond to a spatial variation of the values of the material
parameters in our model. As a qualitative estimate, we took
simple averages over stress-strain curves obtained for differ-
ent values of only one material parameter. The result indicates
that the curves will be strongly smoothed under the influence
of spatial variations.

Comparing the curves obtained in this way for S = 0 to
the data points, there is a major difference: the length of the
interval of negative slope cannot be quantitatively reproduced.
The reasons for this fact may comprise additional effects in-
duced by spatial heterogeneities, which then would have to be
included in our model. Furthermore, nonlinear contributions
not considered up to now (such as, for example, described by
higher order coupling terms of strain and relative rotations)
can extend the width of the interval. However, the suppres-
sion of the shear deformation by setting S = 0 also plays a
major role, as will be demonstrated in the following.

C. Including shear deformations

When we want to inspect the situation of S # 0, we have to
solve the system of equations given by dF'/dB = dF/dS =
dF/d¥ = 0. As aresult we obtain B, S, and ¥ as a function of
A, noting that the corresponding algebra becomes quite com-
plex. We have investigated the situation of an initial director
orientation given by 19 = 0°. Here, we find that the threshold
strain at which the director reorientation starts shifts to a lower
value. Significantly, the strain interval over which the director
reorientation takes place becomes considerably longer when
the shear amplitude S is free to adjust. An example for the
stress-strain curves we obtain by this procedure is shown in
Fig. 5. The shear amplitude .S connected to the corresponding
deformation is depicted in Fig. 6. We can see that no shear de-
formation occurs below threshold. When the threshold strain
amplitude has been passed and the director starts to reorient,
the shear deformation steeply increases. It steeply decreases
again when the reorientation angle of the director comes close
to 90°. In the reoriented state we find no shear deformation,
as it was the case for the low strain amplitudes.

We have plotted the evolution of the strain amplitude B
corresponding to the resulting contraction in z-direction in
Fig. 7. This is the direction parallel to the original orienta-
tions figp and Hig". The dependence of the amplitude B on
the externally imposed strain A reflects well the experimental
observations?®. For low strain amplitudes A < A, we obtain
the linear isotropic elastic behavior of an incompressible ma-
terial, characterized by B = —%A. As soon as the director
reorientation sets in, however, this behavior changes qualita-
tively. We find that during the reorientation of the director
field the lateral contraction mainly occurs in z-direction and
can be described approximately by B ~ — A. This means that
the elastic deformation occurs mainly in the plane of the di-
rector reorientation. Consequently, the material in this regime
reacts approximately in a two dimensional way, which agrees
well with the experimental observation™?. This kind of de-
formation is often referred to as a “pure shear” deformation’.
When the reorientation process has been completed, we again
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FIG. 6: Shear deformation of a volume element exposed to a strain
A, during which the shear amplitude S is free to adjust.

~0.3—]

FIG. 7: Amplitude B describing the lateral contraction of a volume
element exposed to a strain A, where the shear amplitude S is free to
adjust.

find a behavior close to B = f%A. We would like to stress
at this point that the respective magnitudes of the lateral con-
tractions for A > A, are mainly determined by the influence
of the relative rotations Q™. When this second set of relative
rotations is neglected, the elastic behavior of the materials is
not recovered correctly.

In order to obtain the curves presented in Figs. 5-7, the val-
ues of the material parameters have been set to ¢c; = 121 X
103Tm=3, D; =22.9x103Tm=3, D{¥ =3.5x 103 Tm3,
D'¥ = 09 x 10° I m™3, Dy = —42.0 x 10° J m~3,
Dpv = —42.2x 10 Tm~3, DY) = —53.5 x 10° Tm~3, and
D§2)’m” = —22.0 x 10% T m—3. Here, the value of ¢; follows



from a fit of the initial slope of the stress-strain curve resulting
from the experimental data points. As explained above, the re-
lationship between D;, Dy, and D3* strongly influences the
value of the threshold strain amplitude at which the reorien-
tation of the director starts. Df) and D§3) affect the length

of the reorientation interval and the shape of the curve during

)

this interval to a large extent. The same is true for DSQ and

ng’"w, whereas Do and D3™ mainly influence the shape of
the curve. As has already been mentioned above, the relative
rotations 2™ and therefore the values of the material param-

eters D3™ and D§2)’”w strongly affect the magnitude of the
lateral contractions. We have carefully adjusted the values
of the material parameters. However, small deviations from
these values qualitatively lead to the same results.

Finally, we note that the slope of the stress-strain curve for
high strain amplitudes is lower than for small strain ampli-
tudes. This means that the generalized energy of the system
increases less with increasing strain. If this were not the case,
there would be no reason for the director to remain in the re-
oriented position.

IV. DISCUSSION AND PERSPECTIVE

In this paper we have presented a continuum model which
allows the description of the nonlinear macroscopic behavior
of nematic SCLSCEs. We propose that two preferred direc-
tions n and W™ are important for the characterization of the
materials, one of them connected to the properties of the lig-
uid crystalline phase and the other one to the elastic behavior.
From these two preferred directions, two sets of relative rota-
tions € and Q™" arise. We have shown that for small devia-
tions from the energetic ground state this picture is consistent
with the previous characterization of the materials using only
one set of relative rotations. Furthermore, we have demon-
strated that the experimentally observed process of director
reorientation and the connected decrease in the slope of the
stress-strain curves can be described by our model. In this
context, we have explained that the two sets of relative rota-
tions € and Q™% are necessary so that the overall behavior
of the materials can be recovered correctly. In addition, we
have pointed out that one has to take into account explicitly
the contribution of the nonlinear elastic behavior of the mate-
rials which is not connected to any reorientation of the director
field. This plays a significant role for the interpretation of the
stress-strain curves.

From our investigations, it is difficult to judge to what de-
gree the shear described by S # 0 may be observed for a
volume element which behaves in a representative way. We
have found that both a deformation without shear S = 0 as
well as a deformation including the shear S # 0 can qual-
itatively reproduce the stress-strain behavior observed in the
experiments. When we allow for a shear deformation S # 0
to occur, the interval of the stress-strain curve with lower slope
increases, or in other words, the strain interval during which
the director reorients becomes larger. On the other hand we
have demonstrated that the length of this interval is closely
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connected to the influence of nonlinear terms coupling strain
to relative rotations (in our case the terms with the coefficients

D and D*®)). There is a clear tendency that more non-
linear terms of this kind further increase the length of the re-
orientation interval. Accordingly, the observed stress-strain
curve could also be modeled by a deformation of S = 0.

On the whole we will probably find a mixture of the two
scenarios and intermediate states. We have to be aware, that
the materials which are produced by the common techniques
show a large degree of spatial inhomogeneities. Already by
optical investigation one usually can detect some of these het-
erogeneities. Furthermore, also recent studies using NMR and
calorimetry measurements revealed the same scenario on a
different length scale*®*!. Due to these inhomogeneities and
the interaction of the various volume elements in the poly-
mer material, we will find an elastic deformation which is to a
large degree spatially heterogeneous. In addition, the bound-
ary conditions of clamping the material induce further inho-
mogeneities in the deformation. Therefore, a macroscopically
observed strain behavior will always be an average over vary-
ing strain behavior across the whole sample.

As a consequence, we must conclude that the degree of
elastic shear deformation of one volume element does not
only result strictly from minimizing its generalized energy.
It seems to be more likely that the shear deformation is pre-
dominantly imposed onto the respective volume element by
spatially inhomogeneous deformations. The local, spatially
varying strain deformations have to arrange themselves in a
way such that for the clamped edges of the elastomer we find
the macroscopic displacement imposed from outside. How-
ever, we have shown that both for suppressed shear deforma-
tion S = 0 as well as for the energetically favored shear de-
formation S # 0 the stress-strain curves can qualitatively be
reproduced.

Next, concerning the original data points in Fig. 3, repro-
duced from Ref. 29, we would like to compare the final slope
for high strain amplitudes to the initial slope at low strains.
We find approximately the same value for the two slopes, al-
though the elastomer is stretched perpendicularly to the direc-
tor in the beginning and in parallel direction at the end. Con-
sequently, we may conclude that the overall elastic behavior
of the sample is virtually isotropic with respect to the orien-
tation of the director field. This justifies our choice of the
elastic part of the generalized energy density (7), in which we
neglected anisotropic elastic terms. The remaining difference
between the initial and final slope of the curves in Fig. 5 can
be explained by the influence of the relative rotations.

It is very important to address the slope of the data points
in Fig. 5 for intermediate strain amplitudes as well. Here, we
find a negative slope. On the contrary, we find a pronounced
positive slope when we look at the overall stress-strain curves
in Figs. 3 and 4. This means that in the regime of interme-
diate strain amplitudes the elastomer gains energy due to the
reorientation of the director field on increasing strain defor-
mation. However, during every step of increasing the strain,
the intrinsic nonlinear part of the purely elastic deformation of
the network of polymer backbones costs more energy than is
gained from the process of director reorientation. Therefore,



the slope of the overall stress-strain curve is positive. We have
also analyzed other recently measured stress-strain data in the
same way>’, and we have qualitatively obtained the same re-
sults.

We conclude that the underlying nonlinear elastic behavior
of the network of polymer backbones can to a great extent be
separated from the reorientation process. However, it has a
major influence on the overall appearance of the stress-strain
data. It prevents a plateau-like zero-slope intermediate region
of the stress-strain curves. Due to its dominant contribution, it
also seems to be justified to break down the interpretation of
the stress-strain data to the spatially homogeneous behavior
of one representative volume element: the nonlinear elastic
behavior can mainly be attributed to every volume element of
the material as a local effect, which does not arise from the
nonlocal interaction of the different volume elements. The
experimental data which we have selected in order to test our
model clearly show this trend.

Possibly, oriented elastomer films in which this nonlinear
elastic behavior plays a less dominant role can be produced.
In this case, spatial heterogeneities become important for the
macroscopic response of the system, and the interaction be-
tween different volume elements is certainly essential. Sce-
narios similar to those found for polydomain samples may
occur*?. Then the connection between the homogeneous be-
havior of one volume element and the overall behavior of
the whole elastomer becomes a challenging problem. Phe-
nomenologically, it may be attacked by an averaging approach
in a spirit similar to a Maxwell construction. These issues can
be investigated in future studies on the basis of our model.
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APPENDIX: SYMMETRY RELATIONS AND AN
ALTERNATIVE DEFINITION OF RELATIVE ROTATIONS

In this appendix we discuss an alternative definition of
the variables of relative rotations, which also takes into ac-
count the presence of the two preferred directions in nematic
SCLSCEs. We demonstrate that this alternative definition
leads to the same expression of the generalized energy den-
sity that we derived in section II and used in section III in
order to characterize the behavior of the materials.
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Talking about the variables of relative rotations, it might be
more suggestive at a first glance to start the construction of the
macroscopic variables with a rotation matrix. In our case, the
matrix should describe the rotation of the direction given by
n™" to the direction given by fi. We call this matrix W.

In general, two spaces must be thought of in order to stat-
ically describe a distorted material. One is connected to the
initial, undistorted state and may be called the initial space,
the other one is connected to the distorted state and may be
called final space®37. Symmetry transformations in one of
the two spaces do not imply the respective transformations in
the other space. For example, this means that the transforma-
tion g — —ig, which takes place in the initial space, does
not imply i — —1 in the final space, and vice versa. The
same is true for Ag" and A™".

We can see from definition (4) that S is odd under the sym-
metry transformations Ny <> —ig and fi < —n, separately.
From definition (5) we infer that R is odd under the sym-
metry transformations g%V < —ng" and n™% < —n"v,
separately. A rotation matrix S - R describes how a direction
parallel to ™% is rotated to a direction parallel to ii, however,
this product matrix is odd under fig «++ —fg, ng" < —ng»,
n « —n, and A"V «— —0"%, separately. In order to set up a
hydrodynamic-like, Eulerian picture the variables must be in-
dependent of the initial space. Formally, we thus have to insert
an additional matrix that transforms A" into N according to
ng = T - g%, so that we define W =S - T - R.

W is the matrix we were looking for, which rotates n™%
to n. However, we cannot use the matrix W directly as a
macroscopic variable: as already mentioned in section II, in a
hydrodynamic-like Eulerian picture the macroscopic variables
contributing to the energy density must vanish when the sys-
tem is in equilibrium and no external forces are applied. Sub-
tracting unity from W in order to satisfy this condition leads
to problems, because W is odd with respect to the transforma-
tions i «» —in and ™ < —N"V, separately. Consequently,
the resulting object would not have a clearly defined symme-
try behavior under these transformations. The problem cannot
be solved by simple projections as those which have led to the
definitions (1) and (2).

We therefore propose a different approach. All the infor-
mation stored in the rotation matrix W is given by the direc-
tion of the rotation axis and the angle of rotation. However,
the same information is also provided by the cross product of
n™ and A, so that, alternatively to Egs. (1) and (2), in this
appendix we define as variables of relative rotations

Q2 .= A" x A (30)

Here, “x” denotes the cross product. Consequently, introduc-
ing the Levi-Civita tensor ¢;;, the components of Q21 read

QI = een " ny.. (31)

If we use this definition of the relative rotations, we can show
that expression (7) for the generalized energy density F' is ob-
tained identically.

It is straightforward to verify that

QZQZ _ Q?’w@’;’bul — let@glt. (32)



For this reason, the terms in £’ with the coefficients D1, D£2),

3
and Dg ) are recovered.

Coupling Q2! (o the strain e in lowest order and respecting
the symmetry behavior of F' leads to two terms

nw yalt nw nw
nis,;jejkmk Ql = — [nieijnj —msijnj (le’/lk )]
= —nisiij (33)
and
nw Aalt nw nw nw
n; eijejklnle = Ny &Ny — NiE NG (nknk )
nw Anw
= —n; 61‘ij . (34)
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They correspond to the terms with the coefficients Dy and
D3" in the generalized energy density F'. The terms with the

coefficients D$* and DJ"*®) are obtained in the same way.

Therefore, a characterization of the materials by the two
definitions of relative rotations (1) and (2) on the one hand,
and (30) on the other hand are identical as long as we confine
ourselves to the terms listed in expression (7). In particular,
the analysis presented in section III would be the same if one
uses as an alternative definition of relative rotations expression
(30).
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