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Abstract. We study the dynamics of systems with a polar dynamic preferred direction. Examples include
the pattern-forming growth of bacteria as well as shoals of fish, flocks of birds and migrating insects.
Due to the fact that the preferred direction only exists dynamically, but not statically, the macroscopic
variable of choice is the macroscopic velocity associated with the motion of the active units, which are
typically biological in nature. We derive the macroscopic equations for such a system and discuss novel
static, reversible and irreversible cross-couplings connected to a second velocity as a variable. We analyze in
detail how the macroscopic behavior of an active system with a polar dynamic preferred direction compares
to other systems with two velocities including immiscible liquids and electrically neutral quantum liquids
such as superfluid 4He and 3He. We critically discuss changes in the normal mode spectrum when comparing
uncharged superfluids, immiscible liquids and active system with a polar dynamic preferred direction. We
investigate the influence of a macroscopic hand (collective effects of chirality) on the macroscopic behavior
of such active media.

1 Introduction

The collective dynamics of active systems has attracted in-
creasing attention of the physics community over the last
few years. These are (predominantly) biological systems
that are driven out of equilibrium, not by externally ap-
plied driving fields, but internally - typically by chemical
reactions. As long as the internal driving forces are oper-
ating, the units of the active system move, and due to this
motion an ordered spatial structure is created. Examples
are schools of fish or flocks of birds [1–5], pattern forming
growing bacteria (e.g. Proteus mirabilis) [6–14], biological
motors (myosin and actin) [15–20], or general suspensions
of active particles. They are all internally driven by chem-
ical reactions, e.g. the ATP to ADP consumption, the an-
imals’ metabolism, or any other feeding mechanism. If the
internal drive stops, e.g. due to lack of nutrients, the sys-
tem becomes passive, with no motion and no remaining
localized collective spatial structures, anymore [21].

Here we will describe the cooperative dynamics of such
active systems on the macroscopic level by means of hy-
drodynamic equations. In particular, we focus on cases,
where the spatial structure induced by the active units is
of the polar type, i.e. there is a specific preferred direction
in space that allows to discriminate head and tail, or front
and rear, or forward and backward within the structure.
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Quite recently, we have given a similar description for the
case of axial, non-polar spatial order [22].

Orientational order is, of course, also present through
spontaneous breaking of a continuous symmetry in equi-
librium systems, like nematic and polar nematic liquid
crystals, representing the two different cases, non-polar
and polar symmetry mentioned above. In these equilib-
rium systems, the spatial structure is static in nature.
Similarly, static orientational order can be induced in some
systems by strong external (magnetic or electric) fields or
mechanical stresses. In these cases the spatial structure
and its dynamics is described by a second rank orienta-
tional tensor (which can be used to define a director) [23]
or a polar vector [24, 25]. These quantities are static in
the sense that they do not change under time reversal. In
Refs. [26, 27] also active systems have been described by
these quantities.

Here, we will take a different point of view and describe
the active structure as dynamic, created by the motion
of active units. The natural candidate for the variable to
describe the dynamic structure is then (in the polar case)
the velocity of the active entities. Since there is generally
also a non-active background, we are left with two different
velocities, the non-active one and the active one, which
is finite in the active state. Since we will not deal with
the transition from the active to the passive state, we do
not need to provide the (system specific) link between the
feeding process and the active velocity. For an analysis of
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models incorporating such a transition we refer to [28,29].
For a comprehensive discussion of the nonlinear two-fluid
hydrodynamics in passive systems, cf. Ref. [30].

The active polar media analyzed here should also be
contrasted to uncharged superfluids including superfluid
4He and the superfluid phases of 3He. In this case the ad-
ditional hydrodynamic variable characteristic of superflu-
ids, the superfluid velocity, vs, is associated with a spon-
taneously broken continuous symmetry, namely gauge in-
variance [31–36] Therefore there is an additional propagat-
ing normal mode, second sound, that vanishes in the long
wavelength limit, but is associated with a finite velocity. In
this paper we will critically compare similarities and differ-
ences in the normal mode spectrum of active polar media
and superfluids. We find in particular (compare Sec.3 be-
low) that the active systems studied here have only one
pair of left-right propagating modes (sound) in the hy-
drodynamic limit, but show additional non-hydrodynamic
propagating modes at higher frequencies.

To explain our model in more detail, we will set up
the two-fluid active polar hydrodynamics in Sec. 2.1 and
discuss the static (Sec. 2.2, 2.3) and dynamic aspects, sub-
sequently (Secs. 2.4 – 2.6). In section 3 we discuss some
simple solutions of our equations including a discussion of
the changes in the structure of the normal modes when
compared to simple fluids and superfluids. In addition, we
will deal with the case of a chiral polar active system (Sec.
2.7).

2 Nonlinear two-fluid active dynamics

2.1 Relevant dynamic variables

As discussed above, we choose the relative velocity F , be-
tween the active entities and the passive background as
the additional variable describing the active motion and
active polar spatial structure in such systems. This vec-
tor can be decomposed as F = Ff with |F | = F . The
modulus F is non-zero in an active state and is a measure
of how strong the ”degree of activity” is. We assume that
there are no chemical reactions between the active part
and the background. Hence, the masses are conserved and
the respective mass densities, ρ1 and ρ2 obey conservation
laws separately, as does the total density ρ = ρ1 + ρ2

ρ̇1 +∇i j (1)
i = 0 (1)

ρ̇2 +∇i j (2)
i = 0 (2)

ρ̇+∇i ji = 0 (3)

with the total mass current ji = j
(1)
i + j

(2)
i ; dots denote

partial derivatives w.r.t. time.
In the absence of external forces the total momentum

is conserved and the total momentum density, gi, follows
the conservation law

ġi +∇jσtotij = 0 (4)

defining the (total) stress tensor σtotij . Defining the mean
velocity of the system as v = g/ρ and the (mass) concen-
tration of the active part as φ = ρ1/ρ (hence ρ2/ρ = 1−φ)
we have the following relations [30]

g = g1 + g2 ≡ ρ1v1 + ρ2v2 (5)

v1 = ρ−1g + (1− φ)F , (6)

v2 = ρ−1g − φF (7)

where the relative velocity F is related to the momentum
densities and the velocities of the active and background
part, respectively, by F ≡ v1 − v2 = g1/ρ1 − g2/ρ2. Ob-
viously, F transforms as a velocity, i.e. it is a polar vec-
tor (odd under spatial inversion) that changes sign under
time reversal. In Ref. [22] the variable W that describes
a dynamic axial spatial structure also is odd under time
reversal, but even under spatial inversion. There is no con-
servation law connected with F , since relative velocities
give rise to friction and, hence, to dissipation for non-
superfluids.

The kinetic energy density connected with the two ve-
locities and densities can be written as

εkin =
1

2
ρ1v

2
1 +

1

2
ρ2v

2
2 =

1

2ρ
g2 +

1

2
αF 2 (8)

with α = ρφ(1 − φ). Since F 2 = F 2 only contains the
modulus, the orientation of f is energetically not fixed.
Thus, the active polar structure breaks rotational sym-
metry, spontaneously. This also implies that rotations of
f are the appropriate hydrodynamic variables. This is in
complete analogy to the passive case [24]. In the passive
case Eq. (8) has the equilibrium ground state g = 0 and
F = 0. However, the active state is not in equilibrium and
as ground state a stationary one, characterized by a finite
Fs > 0 (and gs = 0) and arbitrary f , can be used. To
accommodate this ground state, a fictitious ”active field”
F act = αFsf can be introduced giving rise to an energy
contribution

εact = −F act · F = −αFsF (9)

Generally, there can be multiple stationary states, and Fs
might depend on space, but we will not consider these
cases.

Finally, since the system is a thermodynamic one, we
use the entropy density σ (with the temperature, T , its
conjugate) to describe thermal effects. The energy density
ε is then not independent, but given by the thermody-
namic Gibbs relation

dε− T dσ = Π dφ+ µdρ+ v · dg + m′ · dF
+Ψij d∇jFi + h′idfi (10)

that relates infinitesimal changes of the variables with
those of the energy density. We have introduced the os-
motic pressure Π and the conjugate to the relative veloc-
ity, m′. The conjugate quantity m′ = α(F −Fsf) is pro-
portional and parallel to the relative velocity and shares
the transformation behavior of the latter. Decomposing
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m′ = m′f , it becomes obvious that m′ · dF = m′ dF
(due to f · df = 0), with m′ describing the stiffness w.r.t.
changes of the degree of activity F .

In the case of a static polar structure, an external elec-
tric field linearly orients this structure. In the present case
of a dynamic ordering, such an external field, F ext has to
be a velocity-type quantity (polar vector odd under time
reversal), e.g. a flow field that acts only on the active enti-
ties. If such a physical external field exists, an additional
term ∼ F ext · dF will appear in the Gibbs relation.

In the Gibbs relation Eq. (10) we have added gradients
of the relative velocity, d∇jFi, that describe deformations
of the polar structure as well as inhomogeneous distribu-
tions of the degree of activity. Since the latter is an intrin-
sic property in an active system, inhomogeneities might
be present, even in a bulk system. An example would be
a finite gradient in the concentration of the nutrient that
fosters active behavior. The conjugate quantity Ψij has
to be a second rank tensor that is even under spatial in-
version and odd under time reversal, such that the en-
ergy is even under inversion and time reversal. Finally, we
have introduced for completeness contributions to energy
changes due to local rotations of the polar structure, dfi,
that arise because of the anisotropy (the fi dependence) of
the material tensors. The so-called molecular field h′i has
the symmetry properties of a velocity and is transverse
with h′ifi = 0.

In order to guarantee the energy to be a scalar quan-
tity, dε has to vanish for any coordinate rotation. De-
scribing the latter by a constant antisymmetric matrix
Ωij = −Ωji, there is dFi = ΩijFj and d∇jFi =
Ωjk∇kFi + Ωik∇jFk resulting in a compatibility condi-
tion for the conjugate quantities [37]

h′ifj + Ψki∇jFk + Ψik∇kFj = h′jfi + Ψkj∇iFk + Ψjk∇kFi.
(11)

There are no contributions from the momenta and veloc-
ities, since g ‖ v and F ‖m′.

Since the modulus of F is a non-conserved variable and
its orientation is the hydrodynamic symmetry variable, it
makes sense to decompose it in the Gibbs relation. Ne-
glecting surface effects (i.e. allowing for partial integration
in the volume integral of the total energy E ≡

∫
ε dV ) one

can put the Gibbs relation into a form suitable to derive
bulk hydrodynamic equations

dε = T dσ +Π dφ+ µdρ+ v · dg +mdF + hi dfi (12)

The explicit forms of m and hi are given in Eqs. (29) and
(30), below. Note that m is a time-reversal symmetric,
scalar quantity, while hi transforms like a velocity and is
perpendicular to fi. The conjugate quantities are obtained
by partial derivation of the total energy density, which is
discussed in the subsequent section. The full expressions
of the conjugate quantities are listed in Sec. 2.3.

Finally, we will provide an expression for the thermo-
dynamic pressure, p, that enters the hydrodynamic stress
tensor. From the definition p = −∂E/∂V it is clear that
the pressure contains all intensive quantities, like mass,
momentum, entropy, and energy, but not the extensive

ones, like concentration or relative velocity [30]

p = −ε+ Tσ + ρµ+ ρ−1g 2 (13)

and its gradient can be written as (Gibbs-Duhem equa-
tion)

∇i p = σ∇iT + ρ∇iµ+ gj∇ivj −Π∇iφ
−m′∇iF − Ψkj∇i∇jFk − h′j∇ifj (14)

Neglecting surface effects in the Navier-Stokes equation,
the three last contributions can be simplified to −m∇iF−
hj∇ifj .

2.2 Statics

In a hydrodynamic description statics is the phenomeno-
logical relation between the thermodynamic conjugates
and the variables of the system. What is left in present
case is the connection between the scalar quantities
T, µ,Π and the (”molecular”) field hi on the one hand,
with the state variables σ, ρ, φ and with∇jFi on the other.
This is most easily done by adding three contributions to
the energy, the gradient energy, εgrad, the state energy,
εstate, and the mixed one, εmix. Standard symmetry con-
siderations [37] lead to

εgrad = 1
2Kijkl(∇jFi)(∇lFk) (15)

εstate = 1
2cρρ(δρ)2 + 1

2cσσ(δσ)2 + 1
2cφφ(δφ)(δφ)

+ cρφ(δρ)(δφ) + cρσ(δρ)(δσ) + cσφ(δσ)(δφ) (16)

εmix = (σσijk∇kσ + σρijk∇kρ+ σφijk∇kφ)(∇iFj) (17)

This energy has been written in terms of deviations from
the stationary state with δρ ≡ ρ − ρs, δσ ≡ σ − σs, and
δφ ≡ φ − φs, where the stationary values ρs, σs, and φs
are assumed to be constant.

The generalized Frank tensor Kijkl has to contain an
even number of fi factors due to time reversal and spatial

inversion symmetry, while the mixed tensors σfijk contain
an odd number for the same reason. In particular we find

Kijkl = 1
2K1

(
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk

)
+K2fpεpijfqεqkl (18)

+ K3flfjδ
⊥
ik +K4fifjfkfl +K5fifkδ

⊥
jl

+ 1
4K6

(
fiflδ

⊥
kj + fjfkδ

⊥
il + fifjδ

⊥
kl + fkflδ

⊥
ij

)
with δ⊥ij = δij − fifj . It has the same structure as in
the nematic and static polar case, as well as in the axial
dynamic one. The first three terms are the proper Frank
ones, K4 and K5 relate ∇iF with each other, while K6

describes couplings between ∇iF and ∇jfi. The energy
εst contains the standard thermodynamic susceptibilities,
like compressibility, specific heat, thermal expansion etc.
The mixed gradient terms have the same structure as in
the dynamic axial case [22]

σfijk = σx1fifjfk + σx2fjδ
⊥
ik + σx3

(
fiδ
⊥
jk + fkδ

⊥
ij

)
(19)

where x can be either ρ, σ or φ.
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In contrast to the dynamic axial case, there is no
static cross-coupling between the momentum and order,
∼ gi∇jFk, due to the polar nature of F . Because of the
time reversal properties of F , there is no linear gradient
term of the form ∇iFi possible in the free energy. Such a
term is present in the passive polar case and responsible
for the possibility of inhomogeneous splay phases [38]. In
addition, in the dynamic polar case, there are no couplings
between δF , fi∇iF , and divf with the state variables, as
is the case in the static polar case [24].

An external electric (E) or magnetic (H) field inter-
acts with the dynamic polar structure in the same way as
with a nematic order, i.e. through dielectric and diamag-
netic anisotropy and flexo- and order-electricity, respec-
tively

εf = 1
2χ

E
a (F ·E)2 + 1

2χ
H
a (F ·H)2 + ζijkEi∇jFk (20)

with ζijk = ζ1fifjfk + ζ2fkδ
⊥
ij + ζ3(fiδ

⊥
jk + fjδ

⊥
ik). An ex-

ternal flow field that acts only on the active entities, if it
exists, will add a term, −χextF ext · F , to εf .

Finally, the total energy density reads

ε = εkin + εact + εgrad + εstate + εmix + εf (21)

It has been set up as a sum of bilinear expressions in the
variables. Nevertheless, the resulting state equations are
highly nonlinear, because i) the preferred direction fi in
the material tensors is a dynamic variable, ii) all material
coefficients are a function of the scalar state variables, ρ, σ,
and φ, and iii) the kinetic energy is manifestly nonlinear.

2.3 Equations of State

According to their definition in the Gibbs relation Eqs.
(10) or (12), the thermodynamic quantities are obtained
by partial derivation of the total energy, e.g. by Ψij =
∂ε/∂∇jFi. Again, we assume that the values of the con-
jugate quantities in the stationary state (Ts, µs, and Πs)
are constant. We only need to consider the deviations from
the stationary state (denoted by ”δ ”, when necessary)

Ψij =

(
∂ε

∂∇jFi

)
...

(22)

= Kijkl∇kFl + σρijk∇kρ+ σσijk∇kσ + σφijk∇kφ

δT =

(
∂ε

∂σ

)
...

−
(
∂ε

∂σ

)
|s ...

= cσσδσ + cρσδρ+ cσφδφ− σσkji∇i∇kFj (23)

δµ =

(
∂ε

∂ρ

)
...

−
(
∂ε

∂ρ

)
|s ...

= cρρδρ+ cρφδφ+ cρσδσ − σρkji∇i∇kFj −
1
2v

2

+φ(1− φ)F ( 1
2F − Fs) + 1

2φs(1− φs)F
2
s (24)

δΠ =

(
∂ε

∂φ

)
...

−
(
∂ε

∂φ

)
|s ...

= cφφδφ+ cφσδσ + cφρδρ− σφkji∇i∇kFj
+ρ (1− 2φ)F ( 1

2F − Fs) + 1
2ρs(1− 2φs)F

2
s (25)

where the dots mean, all other variables (out of
{σ, φ, ρ, gi, Fi,∇jFi}) are held fixed, and the subscript ”s”
denotes the value in the stationary state of that quantity.
In the expressions containing σxkji we have integrated by
parts.

There are specific dynamic-active contributions to the
state equations in the last lines of Eqs. (24) and (25),
which are quadratic in F . They arise from the state vari-
able dependence of α in the kinetic energy Eq. (8). There
is no such contribution in the temperature. These terms
are nonlinear, but come without a (possibly small) phe-
nomenological parameter and are only possible in the case
of active and dynamic order. There are comparable con-
tributions in the axial dynamic case [22].

When deriving mi, the conjugate to Fi, one has to
take into account that the material tensors are written for
convenience in terms of fi rather than Fi. In particular we
get (suppressing external fields for the moment)

mi =

(
∂ε

∂Fi

)
...

= α(Fi − fiFs) + F−1δ⊥ijh
′
j (26)

with

h′i ≡ +

(
∂ε

∂fi

)
Fi,...

=
∂Kqjkl

∂fi
(∇jFq)(∇lFk)

+
∑

x=ρ,σ,φ

∂σxqjk
∂fi

(∇kx)(∇qFj) (27)

Decomposing Fi = Ffi the Gibbs relation Eq.(10)
takes the form

dε = T dσ +Π dφ+ µdρ+ v · dg + fiΨijd∇jF
+(m′ + Ψij∇jfi)dF + FΨijd∇jfi
+δ⊥ik(h′k + Ψkj∇jF )dfi (28)

where mi and Ψij follow from Eqs. (26) and (22), respec-
tively.

Integration by parts leads to Eq. (12) with the conju-
gates

m =

(
∂ε

∂F

)
fi,...

= α(F − Fs)− fi∇jΨij (29)

hi =

(
∂ε

∂fi

)
F,...

= δ⊥ik(h′k − F∇jΨkj) (30)

that contain the longitudinal and transverse parts of
the vectors h′i and ∇jΨij , respectively; the dots contain
{σ, φ, ρ, gi}.

If electric and magnetic fields are present, the con-
jugates acquire additional contributions according to the
field energy εf

m → m+ χEa F (E · f)2 + χMa F (M · f)2 (31)

hi → hi + δ⊥ikfjF (χEa EjEk + χMa MjMk) (32)

and in addition

h′i → h′i +
∂ζkjq
∂fi

Eq∇jFk (33)

Ψij → Ψij + ζkjiEk (34)
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Of course, external field not only influence the stiffness of
the polar structure, but alsom, the stiffness of fluctuations
of the degree of activity.

2.4 Dynamic Equations

Dynamic equations come in two classes, either conserva-
tion laws for the conserved quantities or balance equations
for the non-conserved ones. These equations contain the
currents and quasi-currents, respectively, which are the
sum of a reversible and an irreversible part. This distinc-
tion refers to their time reversal behavior and is linked
to the entropy production: the reversible parts are non-
dissipative with zero entropy production, while the irre-
versible ones are dissipative with positive entropy produc-
tion. The latter can be derived from a Lyapunov func-
tional the dissipation function R, which is closely related
to the entropy production R/T . Within linear irreversible
thermodynamics R is a bilinear function of the thermo-
dynamic forces, which are generally the gradients of the
conjugate quantities discussed in the preceding section.
The phenomenological coefficients of that function are the
transport parameters of the system.

The reversible parts of the currents do not follow from
a Lyapunov functional, but either follow from general sym-
metry, invariance, or thermodynamic principles or are de-
rived phenomenologically from the zero entropy produc-
tion requirement. The latter come with phenomenological
parameters and a well-known example is the flow align-
ment coefficient in ordinary nematic liquid crystal. There
is a considerable number of such reversible transport pa-
rameters in magnetic nematic materials [39, 40] and dy-
namically ordered axial systems [22]. The symmetry re-
lated parts are generally nonlinear, but do not come with
a (possibly small) phenomenological parameter. Examples
are the isotropic pressure contribution in the stress ten-
sor, the advective transport contributions to the dynamics
that describe, in the Eulerian picture, temporal changes
of a quantity at a fixed point in space due to material
flow(transport contributions), and the convective parts of
the time derivative describing the rotational behavior of
vectors and tensors (involving the local vorticity).

In a two-fluid description it is a priori not fixed, which
one (or which combination) of the two velocities present
should be chosen in the transport terms. There are phe-
nomenological reversible currents of the form of transport
terms that influence the effective advective velocity [30].
To fix the transport term, special (mostly unproven) mod-
els have to be employed. On the other hand, one is not
completely free in choosing the advective velocity or the
convective part, and a certain choice might have conse-
quences for other properties [30]. One restriction is the
zero entropy production requirement of such terms.

Here we will start with a consistent ansatz, where all
quantities are advected by the mean velocity v and are
convected by curlv. In the reversible dynamics section we
show how phenomenological contributions in the currents
might lead to a different effective transport velocity (and

convection vorticity) for the particular variables. This pro-
cedure is also compatible with our choice of the total mass
current being identical to the total momentum density,
j = g = ρv, which has the further consequence that gra-
dients of the chemical potential ∇iµ cannot be the source
of phenomenological contributions to any current. Under
these provisos the dynamic equations read

ρ̇+∇igi = 0 (35)

σ̇ +∇i(σvi) +∇ijσi =
R

T
(36)

φ̇+ vi∇iφ+ ρ−1∇ijφi = 0 (37)

ġi +∇j(vjgi + δijp+ σthij + σij) = 0 (38)

Ḟi + vj∇jFi − Fjωij +Xi = 0 (39)

where the latter can be decomposed

Ḟ + vi∇iF +X = 0 (40)

ḟi + vj∇jfi − fjωij + Yi = 0 (41)

with X = fiXi and Yi = F−1δ⊥ikXk. In the stress tensor
there is an additional non-phenomenological, thermody-
namic term

σthij = +
1

2
(Ψjk∇kFi + Ψik∇kFj) (42)

whose structure resembles the Ericksen stress in ordinary
nematics and which has been symmetrized [37] making use
of Eq. (11). To achieve this goal it is crucial that the con-
vective part of the F dynamics is expressed by a vorticity
based on the mean velocity, ωij = (1/2)(∇jvi −∇ivi). As
will be shown below, however, the effective relevant vortic-
ity may be different due to some phenomenological parts
of Xi.

The dissipative and reversible parts (superscripts D
and R, respectively) of the phenomenological currents de-

fined in Eqs. (36) – (41), {jσi , jφi , σij , Xi} (or rather X,
Yi) will be discussed subsequently.

2.5 Dissipative Dynamics

For dissipative processes the entropy production
∫
R/TdV

has to be positive. Using Eq.(10), this requires

R = −jσ,Di ∇iT − jφ,Di ∇iΠ ′−σDijAij +Y Di hi +XDm > 0
(43)

with Π = ρΠ ′ and the symmetrized velocity gradient
Aij = 1

2 (∇ivj + ∇jvi). Note that Ωij ≡ 1
2 (∇ivj − ∇jvi)

does not enter Eq.(43), since rigid rotations must not pro-
duce entropy.

Eq.(43) also reveals the stationary state conditions

∇iT = ∇iΠ ′ = Aij = hi = m = 0 (44)

where the latter conditions mean fi = const. The dissi-
pation function R is a time reversal-symmetric scalar and
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can be written

2R = κij(∇iT )(∇jT ) +Dij(∇iΠ ′)(∇jΠ ′)
+2DT

ij(∇iΠ ′)(∇jT ) + νijklAijAkl

+µTijkAij∇kT + µΠijkAij∇kΠ ′

+bDδ⊥ij hi hj + ξ′m2 +O(∇m,∇h) (45)

including heat conduction, diffusion and thermodiffusion
material tensors (κij , Dij , D

T
ij , respectively), which are all

of the uniaxial form

πij = π⊥δ
⊥
ij + π‖fifj (46)

for π ∈ {κ,D,DT }. The cross coupling between flow and
temperature and osmotic pressure gradients are specific
for dynamic polar systems and the transport tensors µxijk
(x ∈ {T,Π} are of the same form as the σxijk in Eq. (19).
For dynamic axial structures, such couplings are only pos-
sible in the chiral case.

The viscosity related to gradients of the mean velocity
is expressed by the tensor νijkl, which is of the conven-
tional uniaxial (nematic) structure with 5 different vis-
cosity coefficients [41]. Orientational relaxation of the po-
lar structure is described by the transport coefficient bD,
while the friction due to the existence of a relative velocity
(or in other words, the relaxation of the degree of activ-
ity, F ) is characterized by ξ′. The two latter processes are
both governed by a scalar quantity (rather than a tensor),
since structure rotations are strictly transverse and the
relative flow (is by definition) strictly longitudinal.

Although there are already dissipative processes re-
lated to hi and m, we will list here additional viscosity-
like dissipative effects that are characteristic for 2-fluid
systems

O(∇m,∇h) = νFFij (∇im)(∇jm) + νffijkl(∇jhi)(∇lhk)

+νFfijk (∇im)(∇jhk) + νFijk(∇im)Ajk

+νσfijk(∇iT )(∇jhk) + νφfijk(∇iΠ ′)(∇jhk)

+νfijkl(∇jhi)Akl (47)

with

νFFij = νFF⊥ fifj + νFF⊥ δ⊥ij (48)

νffijkl = 1
2ν

ff
1 (δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk) + νff2 fpεpijfqεqkl

+νff3 flfjδ
⊥
ik (49)

νFfijk = νFf (fiδ
⊥
jk + fjδ

⊥
ik) (50)

νσfijk = νσf (fiδ
⊥
jk + fjδ

⊥
ik) (51)

νφfijk = νφf (fiδ
⊥
jk + fjδ

⊥
ik) (52)

νFijk = νF1 fifjfk + νF2 fiδ
⊥
jk + 1

2ν
F
3 (fjδ

⊥
ik + fkδ

⊥
ij) (53)

νfijkl = νf1 δ
⊥
ijfkfl + 1

2ν
f
2 fj(fkδ

⊥
il + flδ

⊥
ik) + νf3 δ

⊥
ijδ
⊥
kl

+ 1
2ν

f
4 (δ⊥ikδ

⊥
jl + δ⊥il δ

⊥
jk) (54)

From Eqs. (43) and (45) we get the dissipative
parts of the phenomenological currents (disregarding

O(∇m,∇h))

jσ,Di = −∂R/∂∇iT
= −κij∇jT − ρ φ(1− φ) dTij∇jΠ ′ (55)

jφ,Di = −∂R/∂∇iΠ ′

= −ρ dij∇jΠ ′ − ρ φ(1− φ) dTij∇jT (56)

σDij = −∂R/∂Aij = −νijkl∇lvk (57)

Y Di = ∂R/∂hi = bDδ⊥ij hj (58)

XD = ∂R/∂m = ξ′m (59)

where we have introduced the usual form of the diffu-
sion (Dij = ρ dij) as well as the thermo-diffusion tensor
(DT

ij = ρ φ(1−φ) dTij). The ratios dT∗ /d∗ (with ∗ ∈ {⊥, ‖})
and dT∗ /κ∗ are called the Soret and the Dufour coefficients,
respectively (the latter being neglected usually in liquids).
The last equation describes the relaxation of the ampli-
tude F of the relative velocity to its stationary value Fs,
which is characteristic for active dynamic processes.

Although the dissipation function given above is bilin-
ear in the forces, the dissipative currents contain nonlin-
earities due to the (implicit and explicit) dependences of
transport tensors on the variables.

2.6 Reversible Dynamics

The phenomenological reversible currents (superscript R)
are most easily derived by writing down all symmetry-
allowed contributions to the various currents and make
then sure that the entropy production is zero

R = −jσ,Ri ∇iT − jφ,Ri ∇iΠ ′−σRijAij +Y Ri hi +XRm = 0.
(60)

The reversible currents have the same time reversal be-
havior as the time derivative of the appropriate variable.
They are either even under spatial inversion, σRij , X

R, or

polar vectors, jφ,Ri , jσ,Ri , Y Ri , where the latter is transverse
to f . Typically, zero entropy condition is achieved by can-
cellation of two mutual cross coupling terms, in particular
we find

jσ,Ri = β‖fim+ β⊥δ
⊥
ijhj (61)

jφ,Ri = γ‖fim+ γ⊥δ
⊥
ijhj (62)

σRij = aijm+ λijkhk (63)

Y Ri = δ⊥ij(β⊥∇jT + γ⊥∇jΠ ′ + β1∇jm) + λkjiAjk

+ β3δ
⊥
ikfj(∇jFk)m+ β4δ

⊥
ikfjωkjm (64)

XR = β‖fi∇iT + γ‖fi∇iΠ ′ + aijAij + β1δ
⊥
ij∇jhi

− β3δ
⊥
ikfj(∇jFk)hi + β4δ

⊥
ikfj ωjkhi (65)

with aij = a‖fifj +a⊥δ
⊥
ij and λijk = λ(δ⊥ikfj +δ⊥jkfi). The

latter is the flow alignment term describing orientational
changes of the preferred direction due to shear flow (and
vice versa back flow) as is well known from (passive) ne-
matic liquid crystals. The former couples compressional
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flow to changes of the degree of activity and vice versa. It
has the form σij ∼ fifj(F − Fs) resembling the so-called
active terms in the nematic and static polar description
of active systems. There are (reversible) cross couplings
linking the heat and concentration currents to changes of
the degree of activity (β‖, γ‖) and to orientational defor-
mations (β⊥, γ⊥), which in turn lead to temporal changes
of the degree of activity and to structure rotations due to
temperature and osmotic pressure gradients. These cou-
plings are specific for dynamic polar ordering and occur
for dynamic axial structures only in the chiral case.

There are also reversible cross couplings between the
structure and the degree of activity, both linear (β1) and
nonlinear (β3, β4). The latter have been kept in Eq. (64),
since they are relevant for the question of transport con-
vection velocities.

2.7 Chirality and Macroscopic Hand

Biologically active systems are very often chiral - i.e.
they are characterized by a pseudoscalar quantity, q0,
that changes sign under spatial inversion. As a result a
mirror image of such a system is not equivalent to the
original (structures cannot be aligned by rotations and
translations, only). In the bulk this leads frequently to a
helical superstructure as a consequence of the collective
handedness. However, even in monolayers, which are of
high biological relevance as well [42], consequences of a
macroscopic hand have been found and analyzed exper-
imentally [42] as well as studied theoretically [43, 44].
Even for isotropic systems containing chiral objects
consequences of a macroscopic hand are of interest [45].

In the present context of an active system with a polar
dynamic preferred direction the reduced symmetry (C∞
compared to the achiral C∞v case) allows additional terms
in the chiral internal energy

εchir = ε+ q0K̃2(f · [∇× F] +
1

2
q0) (66)

−q0(f · [∇× F] + q0)(τφδφ+ τσδσ + τρδρ)

where ε is the achiral energy given by Eq. (21). The two
types of contributions represent the linear twist giving rise
to helical structures in the bulk, and the static Lehmann-
type terms coupling structure rotation with concentration,
entropy density and density changes, respectively. The
same types of chiral contributions are present in (passive)
cholesteric as well as in chiral non-polar dynamic active
systems. They also exist for polar cholesterics for which
they have never been discussed in the literature so far.
However, the splay-twist coupling term, (∇iFi)Fj(∇ ×
F )j , the hallmark of (passive) polar cholesterics [46], is
not possible in the present class of active systems, due to
time reversal symmetry.

The dissipative dynamics also shows additional chiral
contributions

Rchir = R+ q0 εijkfkhj (ψφ∇iΠ ′ + ψσ∇iT + ζm∇im
+ ζAflAil + ζhfl∇lhi) (67)

where R is the achiral entropy production given in Eq.
(45). The chiral terms in the first row are of the standard
dynamic Lehmann type [47]1, where constant gradients of
the scalar variables give rise to rotations of the preferred
direction 2, well-known from (passive) cholesterics as well
as from chiral non-polar dynamic active systems. In the
former system the analogue to the ∇im is a gradient of
the strength of the nematic order parameter S. In addi-
tion, such terms also exist in polar cholesterics, for which
Lehmann-type effects have never been studied in the lit-
erature. The second row constitutes dissipative couplings
among flow and orientation. The first term in the second
row has an achiral analogue for uniaxial magnetic gels [40]
as well as for an axial dynamic preferred direction [22]. It
describes e.g., for a chiral monolayer with planar orienta-
tion of f , that an in-plane shear flow leads to a rotation
of f out of the plane. The last term in the second row is
of higher gradient order than the orientational relaxation
(∼ bD) in Eq. (45), but of lower order than the νff term
in Eq. (48).

Finally, reversible couplings between flow and temper-
ature and concentration gradients are possible in the chiral
case

jσ,R,chiri =
q0
2
gσfj(flεijk + fkεijl)Akl (68)

jφ,R,chiri =
q0
2
gφfj(flεijk + fkεijl)Akl (69)

σR,chir,1ij =
q0
2
fl(fjεilk + fiεjlk)(gσ∇kT + gφ∇kΠ ′) (70)

not possible in the achiral currents Eqs. (61)-(63). In ad-
dition, there is a reversible flow contribution to the stress
tensor

σR,chir,2ij = q0fp(εikpν
R
jl + εjkpν

R
il + εjlpν

R
ik + εilpν

R
jk)Akl

(71)
with νRij = νR⊥δ

⊥
ij + νR‖ fifj . There is an equivalent, albeit

achiral, reversible flow coupling in non-polar dynamic ac-
tive systems [22].

3 Simple solutions, the structure of the
normal modes, and comparison with other
systems

3.1 Transport and convection velocities

The system of dynamic equations has been set up by
choosing the mean velocity as transport velocity for all
variables. This leads to a thermodynamic valid descrip-
tion, which however might not be the physically relevant
one. Assuming the two-fluid systems consists of two only

1 From the analysis of ref. [47] it became clear that the orig-
inal experiments of Otto Lehmann on cholesterics droplets in
a temperature gradient [48] revealed a mixture of static and
dissipative dynamic cross-coupling effects.

2 A possible coupling to an electric field, ψeEi, is not con-
sidered here.
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weakly interacting subsystems. one would expect all vari-
ables belonging to subsystem ”1” (”2”) to be advected and
convected with velocity v1 (v2). Fortunately, our choice
for the transport velocity is not unique, since the phe-
nomenological currents derived above can change the ef-
fective transport velocity for some of the variables. E.g.
the γ‖ term on Eq. (62) allows to write the concentration
dynamics Eq. (37) as

φ̇+ vj∇jφ+ γ‖(1− 2φ)Fj∇jφ+ . . . (72)

where the . . . contain all contributions not related to the
transport of φ. For the mass currents of the individual
densities, Eqs. (1) and (2), this means

j
(1)
i = ρ1v

(1)
i + (γ‖ − 1)αFi + . . . (73)

j
(2)
i = ρ2v

(2)
i − (γ‖ − 1)αFi − . . . . (74)

For γ‖ = 0 the transport velocity is v for both of them,
while for γ‖ = 1 the densities ρ1 and ρ2 are advected with
velocity v1 and v2, respectively. This is indeed a choice
that is used in many simple 2-fluid models. For the con-
centration φ the transport velocity in this case is the skew
velocity vsk = (1 − φ)v1 + φv2. In real systems with
0 ≤ γ‖ ≤ 1 the transport velocity is a material property
and cannot be fixed a priori by general symmetry proper-
ties.

The transport velocity of the heat transport can only
be tuned by a nonlinear effect: Assuming a temperature
(entropy) dependence of the reversible transport parame-
ter, β‖ = β0

‖ + β1
‖σ, allows to write Eq. (36) as

σ̇ +∇jσ(vj + β1
‖Fj) + . . . (75)

leading to an effective transport velocity, e.g. v1, vsk, or
v2, for ρ β1

‖ = ρ2, ρ2−ρ1,−ρ1, respectively. Since the heat

transport cannot simply be attributed to a specific subsys-
tem, choosing the mean velocity as the transport velocity
(β1
‖ = 0) might be reasonable, if the actual value of β1

‖ is

unknown.
Similarly, the transport and convection properties of

F (or rather f) are modified by the phenomenological re-
versible currents. Inspection of Eq. (64) reveals that in
Eqs. (39) and (41) the effective transport and convec-
tion velocities are v + β3mf and v(1 − β4m/F ), respec-
tively. These are nonlinear effects, since m depends on
F − Fs and on the distortions of the polar structure. By
choosing β3 = (1/ρ1) − (1/ρ2), the advection velocity is
vsk + (ρ1 − ρ2)Fsf . This choice also has implications to
the advection of the individual momenta g1 and g2. In
particular, for a passive system (Fs = 0) it means they
are advected by v1 and v2, respectively [30] as is assumed
in many simplified ad-hoc models. In an active system,
however, such a simple advection behavior is not possible.
Similarly, for β4 = ρ/(ρ1ρ2) in a passive system, neither
the relative velocity nor the individual momenta g1 and
g2 are convected at all, while in an active one this is not
possible.

Generally, in a two-fluid system the advection and con-
vection velocities are material dependent. In an active sys-
tem, by tuning Fs, the transport and convection velocities
can be varied in an even wider range.

3.2 Normal mode structure and comparison

The normal mode structure of a system reflects its linear
dynamic properties. In most cases it is accessible by exper-
iments and allows an easy connection with the theoretical
description. For the active polar system there are 9 dy-
namic variables, which are coupled on the static as well as
the dynamic level. It is obvious that the resulting ninth-
power algebraic equation, whose solutions are the desired
dispersion relations of the modes, cannot be discussed an-
alytically in any straightforward manner. Since the hydro-
dynamic description is basically a gradient expansion, it is
appropriate to discuss the normal mode structure in terms
of increasing powers of gradients involved.

There is one spatially homogeneous relaxation mode
in the system present, the relaxation of the degree of ac-
tivity F (t) − Fs ∼ exp(−ξt) with ξ = ξ′α, cf. Eqs. (26),
(40), and (59). A similar relaxation mode is found in the
conventional (passive) two-fluid models (of e.g. immisci-
ble binary mixtures), where a friction force proportional
to the velocity difference of the two subsystems leads to a
homogeneous relaxation of this velocity difference to zero
for long times [30]. There is no homogeneous relaxation
mode in the two-fluid description of superfluids, since the
broken-symmetry origin of the second (superfluid) veloc-
ity leads to an effective conservation behavior and does
not allow for a relaxation [31].

In a second step we discuss the inhomogeneous modes
in lowest gradient order. In this order, no dissipative ef-
fects are present. We assume all variables (or rather their
deviations from the stationary values indicated by the sub-
script ”s”), including ∇iF , to have a time and space de-
pendence proportional to exp i(ωt−k ·r). Linearizing the
complete set of equations, nontrivial solutions (with finite
amplitudes) are only possible for certain frequency val-
ues ω = ω(k), the dispersion relations. In lowest order
ω(k) ∼ k we are conveniently left with 5 dynamic equa-

tions for e.g. ρ̇, φ̇, σ̇, div v̇, and ∇‖ṁ, if we assume for
the moment the aij tensor in Eqs. (63) and (65) to be
isotropic (a⊥ = a‖). After some algebra we find for four
modes

ω4 − ω2
(
c2⊥k

2 + α′Q2k
2
‖

)
+ω k2k‖α

′Q1 + k2k2‖α
′Q0 = 0 (76)

where α′ = φs(1 − φs). The coefficients Q0,1,2 are com-
binations of products between static susceptibilities (e.g.
Eq. (16)) and the reversible transport parameters γ‖ and
β‖, cf. Eqs. (61), (62), and (65). The expressions are too
bulky to be given here in detail.

Several qualitative conclusions can be drawn from Eq.
(76). First, the modes are anisotropic. For k‖ = 0 (where
‖ refers to the direction parallel to fi) there is first sound
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ω1,2 = ±c⊥k⊥, but no second sound, ω3,4 = 0. The trans-
verse sound velocity

c2⊥ = c20 − 1
2ρsF

2
s (1− 2φs) + α′a2⊥ (77)

is different from the ordinary isotropic fluid sound velocity
with c20 = ∂p/∂ρ|σ due to the presence of activity. If the
wave propagation has a longitudinal component k‖, there
is a kind of second sound ω3,4 = c3,4k‖, where one can get
an analytical expression for c3,4 in the limit k‖ � k⊥

c3,4 =
α′

2c2⊥

(
Q1 ±

√
Q2

1 − 4c2⊥Q0

)
. (78)

As long as Q2
1 > 4c2⊥Q0 these are two truly propagating

waves, while in the opposite case they are overdamped.
Note that c3 6= −c4 indicating the broken time reversal
symmetry in an active non-equilibrium state with a finite
velocity F s. This is already manifest in Eq. (76), where
the linear frequency term (∼ Q1) destroys the ω → −ω
symmetry. There is no second sound in conventional (pas-
sive) two-fluid models and in superfluids second sound is
a Goldstone mode that is always propagating.

First sound is anisotropic and the longitudinal sound
velocity is different from the transverse one, c⊥, and from
the ordinary isotropic sound velocity, c0. For k⊥ = 0 first
sound takes the form ω1,2 = c1,2k‖ with

c1,2 = ± c⊥ ±
α′

2c⊥

(
Q2 −

Q0

c2⊥

)
− α′ Q1

2c2⊥
(79)

if one assumes that c⊥ is the dominating contribution. The
broken time reversal symmetry due to the active velocity
F s is reflected by c1 6= −c2.

We note that first sound is also becoming anisotropic
in superfluid 3He-A, when the phase transition to the
isotropic phase is approached from below and the mod-
ulus of the order parameter is added to the hydrodynamic
description as a macroscopic variable [49].

There is a fifth, but trivial, mode ω5 = 0, since
ρ̇/ρs − σ̇/σs − (β‖ρs/γ‖σs)φ̇ ≡ 0 in order ω ∼ k. Re-
laxing the condition aa = a‖ − a⊥ = 0 introduces a sixth
dynamic equation (for ∇‖v̇‖), but does not change any of
the qualitative results given above. Only another trivial
mode ω6 = 0 (due to ∇‖div v̇ − ∆v̇‖ + (aa/γ‖)∆φ̇ ≡ 0)
is introduced and the coefficient functions Q0,1,2 become
even more involved.

Other, transverse variables, like ḟi do not contribute
to the sound spectrum in order ω ∼ k, but are affected
by (first) sound excitations via ḟ ∼ k⊥(β⊥δT + γ⊥δΠ

′ +
β1δm) according to Eq. (64). This feature is unknown in
ordinary nematics, while shear alignment, the orientation
of the preferred direction fi in simple shear flow, is the
same as in nematics.

In order ω ∼ k2 the dissipative effects come into play,
generally leading to complex contributions to the mode
frequencies of the form ∼ ik2. However, on this level all
variables are coupled and it is impossible to give an ex-
plicit analytical discussion of the modes.

3.3 Flow induced heat current

Here we will discuss experimental consequences of a re-
versible coupling term between symmetrized velocity gra-
dients, Aij and the heat current, which is allowed for a
chiral system with a polar dynamic preferred direction.
From eq.(68) we obtain assuming f ‖ ẑ

jσ,R,chiri = q0gσεizkAkz (80)

One immediately realizes that only for shear or elonga-
tional flows applied in a plane containing the polar dy-
namic preferred direction a heat current arises. And this
heat current is perpendicular to the flow plane. For exam-
ple, for a shear flow in the (y, z)-plane, ∇kvj = 2Sδkyδjz
with the shear rate S, we find

jσ,R,chirx = −q0gσS (81)

There is the opposite effect that a temperature gradient
perpendicular to the preferred direction (∇iT = 2Γδix)
introduces (elongational) flow in the plane perpendicular
to it, σyz = σzy = q0gσΓ . We note that a macroscopic
hand or collective chirality, as indicated by the presence
of the factor q0, is a prerequisite for these effects to oc-
cur. For nonchiral systems such effects are not allowed by
symmetry. The effects are reversible meaning the reversal
of the shear velocity will result in a reversal of the heat
current, and vice versa. We would also like to emphasize
that this analysis is not restricted to the coupling of an
extensional flow to the heat current, but is expected to
arise equally well for concentration currents or for electric
currents in case the effect of electric fields is taken into
account.

It is instructive to compare the scenario just discussed
with a similar one that can be found in tetrahedratic sys-
tems, which show octupolar order [50] and thus break
parity symmetry in their ground state. For such (achi-
ral) tetrahedratic systems it has been shown [51, 52] that
there are also reversible dynamic contributions coupling
Aij to the entropy current etc., which take the form [51]

jσ,R,octi = Γ2TijkAjk (82)

with Tijk the tetrahedratic order parameter. A simple
shear flow applied in the plane perpendicular to one of
the tetrahedral directions leads to a heat current parallel
to this tetrahedral direction, e.g. applying the flow in the
(y, z)-plane, that is Ajk = Sδjyδkz with the shear rate S,
we find [51], making use of Fel’s normalization of Tijk [50]

jσ,R,octx = Γ2
4S

3
√

3
(83)

Thus the picture emerging for tetrahedratics is quite com-
plementary to that found for a chiral system with a dy-
namic polar preferred direction. While in the latter case
a shear flow applied in the plane containing the polar dy-
namic preferred direction leads to a heat current perpen-
dicular to this plane, for tetrahedratic systems the heat
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current is parallel to the chosen tetrahedratic direction
and perpendicular to the shear flow.

Furthermore it appears important to stress that for
systems with a polar dynamic preferred direction the re-
versible coupling discussed only exists for a system with
a macroscopic hand. Without chirality such a coupling is
ruled out by symmetry. This observation could pave the
way for finding clear-cut experimental evidence for the
role played by chirality as a collective effect in biological
systems.

4 Summary

By introducing a (second) active velocity we have de-
veloped in this manuscript a macroscopic description of
active systems with dynamic polar order. This approach
is conceptually different from descriptions that use static
(polar) nematic order parameters ( [26, 27] and quite re-
cently [53]). As a result, we find a normal mode structure
quite different compared to the static descriptions, as well
as linear couplings between (active) flow and e.g. densities
and concentrations due to the genuine two-fluid transport
derivatives. On the other hand, we get, quite similar to
the static case, a direct linear relation between the stress
tensor and the structure tensor. This prominent ”active”
term is responsible for many active effects, meaning that
our approach is able to describe those effects, as well. In
addition, we also deal with explicit chiral systems, which
are important for many active systems. In particular, we
find an active flow-induced heat current specific for the
dynamic chiral polar order.

The present general description of active dynamic po-
lar order should be applicable to systems, where two differ-
ent velocities, for the active and the passive part, are im-
portant. Among those one can think of bird flocks or insect
(locust) swarms flying in windy air, fish schools moving in
water currents, or bio-convection of bacteria colonies in a
solvent background. In our general treatment of dynamic
polar order we have taken the stationary active velocity as
a given quantity, without specifying how it arises from the
physical, chemical or biological driving forces. The latter
are highly system specific and require additional (often
heuristic) modeling, which goes beyond the scope of the
present manuscript. Such a model for the stop-and-go dy-
namics of growing proteus mirabilis bacteria, based on the
active velocity as order parameter, has been developed re-
cently [29].
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