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Relative rotations between the coupled subsystems of a complex material can become crucial in continuum mod-
eling. In this paper the authors focus on the macroscopic description of side-chain liquid crystalline elastomers,
where relative rotations between the polymer network and the director orientation associated with the liquid
crystalline component are decisive. They extend the known expression for relative rotations to the nonlinear
regime. This allows the investigation of qualitatively different nonlinear effects determined by these variables,
and they give an illustrative example. The formalism can easily be transferred to the macroscopic description of
magnetic gels and will certainly be helpful in the characterization of other complex systems. c© 2007 American
Institute of Physics.
[DOI: 10.1063/1.2742383]

I. INTRODUCTION

By the term ”relative rotation” we refer to a situation,
in which two or more coupled subsystems of a complex
material are spatially rotated relative to each other, globally
or locally. If such relative rotations lead to contributions to
the energy density of the system under consideration and
influence its macroscopic dynamics, it is frequently possible
to include them as slowly relaxing variables in a generalized
hydrodynamic description of the respective system. The cases
in which such a procedure has successfully been applied
include the macroscopic description of magnetic gels1 and
of side-chain liquid crystalline elastomers (SCLCEs). The
first synthesis of SCLCEs has been reported in 1981. It was
performed by chemically crosslinking polymer chains, to
which low molecular weight liquid crystalline molecules,
the so-called mesogenic units, had been attached as side
groups via flexible spacers2. In the liquid crystalline phase
of low molecular weight materials these mesogenic units on
average orient macroscopically in a certain direction, which
is characterized by the director field n̂(r) (see e.g., Ref. 3).
This macroscopic orientation also occurs in liquid crystalline
elastomers, however more sophisticated techniques of syn-
thesis are necessary to achieve a macroscopic ordering of
the mesogenic units over the whole sample. It was in 1991
when such liquid crystalline monodomain elastomers were
generated for the first time,4 and they were called side-chain
liquid single crystal elastomers (SCLSCEs).
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If the crosslinking density in the elastomers is low enough,
two subsystems can be identified in SCLCEs from a macro-
scopic point of view5. On the one hand the polymer network
shows the mechanical properties of a conventional elastomer,
and on the other hand the entity of the oriented mesogenic
units characterized by n̂(r) brings along the properties of the
respective liquid crystalline phase. Both subsystems are cou-
pled to and interact with each other, which already results
from the chemical binding between the mesogenic units and
the polymer backbone via the flexible spacer.

It was proposed for the first time by de Gennes to account
for this coupling between the two subsystems in liquid crys-
talline elastomers by relative rotations between the polymer
network and the director field6. Two of us later included rela-
tive rotations as macroscopic variables in the generalized hy-
drodynamic characterization of SCLSCEs7. The considera-
tion of relative rotations in the macroscopic description of
SCLSCEs has since turned out to be essential to understand
many of the unique properties of these materials. By means
of relative rotations it can be explained, for example, how me-
chanical deformations of SCLSCEs such as shear can lead to
a reorientation of the director field8. On the other hand it has
been investigated theoretically how the reorientation of the di-
rector field by external electric or magnetic fields can also lead
to a macroscopic deformation of the elastomers via relative
rotations9–11.

All of these properties could be described as linear effects
within a continuum model of SCLSCEs. For this purpose, the
linear expressions for the macroscopic variables characteriz-
ing the thermodynamic state of the system were combined to
symmetry-allowed quadratic terms, which then formed an ex-
pression for the generalized energy density of the system.

If we want to include nonlinear properties of the materials
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into the macroscopic characterization, the generalized energy
density has to be supplemented by higher order terms. How-
ever, also the quadratic terms in the generalized energy density
describe nonlinear effects, when nonlinear expressions are in-
serted for the macroscopic variables. Therefore, a nonlinear
expression for relative rotations has to be derived.

Up to now only a linear expression for the relative rota-
tions in liquid crystalline elastomers has been given within
the framework of a continuum model. In the next section of
this paper we extend this expression to the nonlinear regime
using the approach that applies to the macroscopic descrip-
tion of SCLSCEs. With the help of the resulting formalism
characteristic features of liquid crystalline elastomers can be
described as nonlinear effects in a continuum model. In order
to demonstrate this, in Sec. III and in the appendix we inves-
tigate as an illustrative example the nonlinear reaction of a
nematic SCLSCE to an imposed static shear deformation. We
discuss and summarize our results in the last two sections of
this paper and also give a short perspective.

II. NONLINEAR RELATIVE ROTATIONS

In this section we derive a nonlinear expression for the vari-
ables of relative rotations between the director field and the
polymer network in SCLSCEs. We first perform an extension
of the linear expression up to quartic order in the variables
characterizing the actual state of the system. This procedure
will mainly be appropriate for practical purposes and can sys-
tematically be generalized up to any desirable order. After that
we show how an exact expression for the relative rotations can
be found and we give the result for a two-dimensional system.

When we compare to the ground state of a nematic
SCLSCE, its actual state under the influence of a static exter-
nal field is completely identified by five independent variables.
Namely, these are on the one hand the three components of the
displacement field u(r) = r − a(r), describing local strains
and rotations of the polymer network. r denotes the actual
positions of the volume elements of the polymer network in
the final state, and by the initial field a(r) we specify their
positions in the undeformed state. Obviously we can also take
the components of a(r) as independent variables instead. The
difference between the two choices of u(r) and a(r) is dis-
cussed in section IV.

On the other hand there are two variables that determine
the current state of the director field n̂(r) and thus character-
ize the subsystem showing the liquid crystalline phase. n̂ is
an axial unit vector, such that the states n̂ and −n̂ cannot be
distinguished and only two components of n̂(r) are indepen-
dent. The ground state conformation of the director field will
be denoted as n̂0, whereas in general for finite deformations
this will be a functional of u(r) or a(r),

n̂0 = n̂0(a(r)). (1)

We include this dependence because the mesogenic units are
part of the polymer network and are displaced in the same way
under finite mechanical deformations, in spite of forming a
separate subsystem in a macroscopic description. In general,

the ground state orientation n̂0 at a certain position a(r) is
known as an initial condition, however, what is not known is
the initial field a(r).

A standard procedure of finding the current state of a sys-
tem consists of deriving an expression for the generalized en-
ergy density of the system and of minimizing the correspond-
ing generalized energy. It is of major importance to perform
this minimization with respect to the independent variables
that correspond to the degrees of freedom of the system and
that can completely characterize the current state of the sys-
tem. Following this procedure it is clear that a realistic sit-
uation is described, for which conditions of compatibility as
known from solving problems of elasticity theory are satisfied
automatically.

In our case, the five independent variables given by u(r) or
a(r), and by n̂(r) correspond to these degrees of freedom.
However, an expression for the generalized energy density
cannot be derived from these variables directly. This results
from the fact that homogeneous translations or rotations of the
whole system do not contribute to the generalized energy den-
sity. On the contrary, strain deformations of the polymer net-
work and relative rotations between the polymer network and
the director field can contribute to the generalized energy den-
sity of SCLSCEs. Therefore, in the following we will express
the nonlinear variables of strain deformations and of relative
rotations by the components of u(r) or a(r), respectively, and
of n̂(r).

Deformations of strain are entirely characterized by the
nonlinear strain tensor ε, which is defined by dr2i − da2

i (r) =
2dridrjεij(r) in the Euler notation12. The Euler nota-
tion describes the appropriate approach in a hydrodynamic
picture13,14, and the complete nonlinear expressions for the
components of ε then read

εij =
1
2

[(∂iuj) + (∂jui)− (∂iuk)(∂juk)]

=
1
2

[δij − (∂iak)(∂jak)] . (2)

Here, ε, u and a are functionals of r, and ∂i denotes the partial
derivative ∂/∂ri (i = 1, 2, 3).

In the linear regime, rotations can be described by vectors.
With the two vectors ωn and ωnw denoting local rotations
of the director and the polymer network, respectively, the ex-
pression (ωn−ωnw)× n̂ describes relative rotations between
the two subsystems. This is the way relative rotations were
introduced in6. The use of n̂ and n̂0 in this expression is in-
distinguishable in the linear regime, so we could as well write

Ω̃ = (ωn − ωnw)× n̂0 (3)

for the vector of relative rotations.
In7 the notation was modified and relative rotations were

defined by

Ω̃ = δn−Ω⊥. (4)

This expression refers to the linear regime. Here, δni =
ni − n0,i and Ω⊥i = njΩji, whereas in linear order the latter
expression cannot be distinguished from n0,jΩji. Ω denotes
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n̂0

n̂ = S−1n̂0
R−1n̂0

FIG. 1: The vector of relative rotations characterizes the difference
between two local rotations of the director out of its ground state
conformation n̂0. Actually n̂0 is rotated by S−1 to its local state
n̂. If n̂0 were rigidly coupled to the polymer network, it would be
rotated with the polymer network by R−1.

the antisymmetric tensor of rigid rotations of the polymer net-
work, which we obtain in the linear regime from the distortion
tensor∇u by

Ωij = (∂iuj)− εij =
1
2

(∂iuj − ∂jui) . (5)

The vector Ω⊥ can then be interpreted as the vector of
rigid rotations of the polymer network perpendicular to the
director7. This interpretation only accounts for the linear
regime as we will see in the following.

The consistency of Eqs. (3) and (4) follows from δni =
εijkω

n
j n0,k and ωnw

i = 1
2εijkΩjk, where εijk denotes the

Levi-Cività tensor. Equations (3) and (4) imply that in the
linear regime

niΩ̃i = 0. (6)

In the following we want to derive a nonlinear expression
for Ω̃. According to the way we introduced relative rotations
at the beginning of section I, we now define relative rotations
in SCLSCEs as the difference between two rotations.

On the one hand, when we consider the system in its fi-
nal state, the director has locally been rotated by the rotation
matrix S−1 to its final orientation. In general, for finite defor-
mations, S−1 will be a functional of r and of u(r) or a(r),
which is a consequence of Eq. (1)

n0,i(a(r)) = Sij(a(r), r)nj(r). (7)

Because of this dependence, S−1(a(r), r) can describe how
the mesogenic units have on average been rotated compared
to their ground state orientation (see also section IV).

On the other hand the polymer network has locally been
rotated by the rotation matrix R−1(r). We derive this matrix
from a comparison between the initial state and the final state
of the system

dai = drk (∂kai). (8)

Here, ∂kai describes the local distortions of the polymer net-
work. Using the polar decomposition theorem, ∂kai can be

rewritten as a product of a rotation matrix and a symmetric
matrix as

∂kai = Rij Ξjk. (9)

Altogether we obtain dai = RijΞjkdrk. Ξ tells us, how the
polymer network in its final state locally has to be unstrained,
and R tells us how it locally has to be rotated back to retrieve
its initial state. In Refs. (13) and (14) it was shown how to
obtain Ξ from Eq. (9), and Ξ was given up to quadratic order
in the components of∇u. We now calculate Ξ up to quartic
order and from that derive the rotation matrix R.

With δjk denoting the Kronecker delta we obtain from
RijRik = δjk and from Eqs. (2) and (9):

δjk − 2εjk = ΞijΞik. (10)

Inserting a power expansion of Ξij with respect to ε into
Eq. (10) we obtain

Ξij = δij − εij − 1
2
εikεkj − 1

2
εikεklεlj − 5

8
εikεklεlmεmj

+O ((∇u)5
)

. (11)

Furthermore, by using (Ξ−1)ijΞjk = δik we can show that

(Ξ−1)ij = δij + εij +
3
2
εikεkj +

5
2
εikεklεlj

+
35
8
εikεklεlmεmj +O ((∇u)5

)
. (12)

This expression for Ξ−1 and Eq. (9) can then be used to obtain
the components of the rotation matrix R. As we noted above,
we are interested in the way the polymer network has been
rotated from the initial to the final state and so we give the
components of R−1:

(R−1)ij = Rji =
(
δik + εik +

3
2
εilεlk +

5
2
εilεlmεmk

+
35
8
εilεlmεmnεnk

)
(∂kaj) +O ((∇u)5

)
= δij + εij +

3
2
εikεkj +

5
2
εikεklεlj

+
35
8
εikεklεlmεmj − (∂iuj)− εik(∂kuj)

−3
2
εikεkl(∂luj)− 5

2
εikεklεlm(∂muj)

+O ((∇u)5
)

, (13)

where we have made use of a(r) = r − u(r) to obtain the
final expression.

For a check of consistency we calculate the matrices Ξ̃ and
R̃, defined by ∂kai = Ξ̃ijR̃jk. We multiply this equation
by R̃lk, and from the resulting equation we derive Ξ̃liΞ̃im =
(∂kai)(∂nai)R̃lkR̃mn. With the help of this expression and
together with Eq. (2) we can verify that

Ξ̃ij = R̃ikR̃jl

(
δkl − εkl − 1

2
εkmεml − 1

2
εkmεmnεnl

−5
8
εkmεmnεnoεol

)
+O ((∇u)5

)
. (14)
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Introducing Ξ̃ij into ∂pai = Ξ̃ijR̃jp, taking into account that
R̃jpR̃jl = δlp and convincing ourselves that the inverse of the
expression in parentheses in Eq. (14) is given by Eq. (12) we
obtain R̃ = R. There arises no problem from Ξ̃ 6= Ξ, be-
cause in our description we will use the tensor ε as a macro-
scopic variable to include strain deformations, not Ξ.

We now can define the components of the vector of relative
rotations by

Ω̃i = ni − [nk(R−1)kln0,l] (R−1)ijn0,j (15)

This expression for relative rotations can be interpreted in the
following manner. Relative rotations give the difference be-
tween the way the director has been actually rotated starting
from its ground state orientation (ni = (S−1)ijn0,j) and the
way it would have been rotated if it was rigidly coupled to
the polymer network (R−1). We have illustrated this feature
in Fig. 1. For symmetry reasons the component of Ω̃i that is
perpendicular to (R−1)ijn0,j is taken in Eq. (15).

As Eq. (15) shows, the matrix S in general does not have
to be determined explicitly for practical purposes. This is be-
cause usually for a given problem the two independent vari-
ables that define the current state of n̂(r) have to be found as a
solution to the problem, and because the ground state confor-
mation n̂0(a(r)) is known as an initial condition in general.
In addition, the three components of a(r), or those of u(r),
must be determined in a separate step. Including Eqs. (2) and
(13) we have thus expressed the variables of relative rotations
in the five independent variables describing the current state
of the SCLSCE.

If we only consider the terms in Eqs. (13) and (15) that are
linear in ∇u, we obtain Eq. (4). Thus in the case of small
deformations we recover the expressions for the relative ro-
tations as noted in Refs, 6 and 7 in the linear theory. The
dependences on the coordinates r in the final frame have been
omitted in the notation of the matrices above.

At the end of this section we want to derive an exact ex-
pression for the relative rotations. For this purpose we have
to find an exact expression for R−1, which can then be intro-
duced into Eq. (15).

Since Ξ is symmetric it follows from Eq. (10) that ε and Ξ
are diagonalized by the same matrixR,

ε = R εDRT , Ξ = RΞDRT , (16)

where in our notation diagonalized matrices are marked by
·D and transposed matrices by ·T . Since we know ε from
Eq. (2) we can calculate exact expressions for its eigenvalues
ei (i = 1, 2, 3) and its eigenvectors. From the eigenvalues
ei the eigenvalues of Ξ follow with the help of Eq. (10) as
Xi =

√
1− 2ei (i = 1, 2, 3). The eigenvectors of ε lead us to

an exact expression forR.
Introducing all these ingredients into Eq. (9) we can calcu-

late the exact expressions for the components of the rotation
matrix R

Rij = (∂kai)Rkl((ΞD)−1)lm(RT )mj . (17)

Here, the components of the matrix (ΞD)−1 are simply given
by ((ΞD)−1)ij = X−1

i δij (no summation over i in this for-

mula; i, j ∈ {1, 2, 3}). R−1 then of course follows as
R−1 = RT .

Concerning the existence of the expressions above no prob-
lems arise, and all expressions remain real. First, ε and Ξ are
symmetric and thus can be diagonalized in real space. Next,
we consider the relation dai = drk(∂kai) in the local prin-
cipal frame of ∇a. It reads dai = λ−1

i dri (i = 1, 2, 3; no
summation over i in this formula), λ−1

i being the eigenvalues
of∇a. Rewriting the latter equation by dri = λidai implies
that λi can be interpreted as the stretch of the system parallel
to the ith principal axis (i = 1, 2, 3). For physical reasons
0 < λi < ∞ (for a discussion of this point in the Lagrangian
description see e.g. Ref. 15. Furthermore, in the principal
frame of∇a no rotations occur and thus (∇a)D = ΞD. Due
to this fact Xi = λ−1

i , which includes 0 < Xi < ∞ and
ei <

1
2 (i = 1, 2, 3).

Applying this procedure in the two-dimensional case we
can derive a result which still can be written in a manageable
form:

R−1 =
1
2

(
A− ±A+

∓A+ A−

)(
X−1

1 0
0 X−1

2

)
×
(

A− ∓A+

±A+ A−

)(
∂xax ∂xay

∂yax ∂yay

)
. (18)

Here we used as abbreviations A± =
√

1± α, with α =
(εxx − εyy)/e and e =

√
(εxx − εyy)2 + 4ε2xy . As defined

above, we have Xi =
√

1− 2ei (i = 1, 2), where the eigen-
values of ε read e1;2 = 1

2 (εxx + εyy ∓ e). From the multiple
signs in Eq. (18) the upper sign has to be chosen in the case of
εxy > 0 and the lower one for εxy < 0 at the local position r.
This ensures the right handedness of our coordinate system in
the principal frame.

Introducing the rotation matrix into Eq. (15) then leads us
to an exact expression for the variables of relative rotations in
the two-dimensional case.

III. STATIC SHEAR DEFORMATION OF A NEMATIC
SCLSCE

As already discussed in the introduction relative rotations
play a role of major importance in a continuum model of
SCLSCEs (see e.g. also Ref. 16).Up to now various unique ef-
fects of SCLSCEs have been characterized in a linear macro-
scopic description that directly result from relative rotations
and cannot be explained without these.9–11,16–18

In this section we want to demonstrate that also qualita-
tively different nonlinear effects have to be attributed solely
to relative rotations. For this purpose we investigate the case
of a nematic SCLSCE under a static shear deformation. The
geometry we have in mind is depicted in Fig. 2. In the ground
state the nematic elastomer is oriented such that the mesogenic
units are aligned on average parallel to the x̂ axis. Thus the
director in its ground state conformation reads

n̂0 = (1, 0, 0). (19)
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n̂0

x̂

ẑ

ŷ

FIG. 2: Geometry of the static shear deformation investigated in the
text. The bulk volume element of the nematic SCLSCE is oriented
such that n̂0 ‖ x̂. The shear is applied within the x-z plane as indi-
cated by the arrows.

This conformation is spatially homogeneous and we do not
have to explicitly account for an a(r) dependence of n̂0 ac-
cording to Eq. (1), which simplifies the problem. In order to
parametrize the current state of the director field we set

n̂ =
(

[1− sin2 ny − sin2 nz]1/2, sinny, sinnz

)
. (20)

Here, ny and nz describe the angles between the director ori-
entation and the planes of y = 0 and z = 0, respectively.

On the other hand we have to characterize the deformations
of the polymer network by three independent variables. We
will use the three components of the more intuitive field u(r),
rather than those of a(r).

Furthermore, for illustration, we will only study the bulk
effect of an external shear imposed on the elastomer. In other
words we will neglect influences of the boundaries and only
look for spatially homogeneous solutions of the director reori-
entation and the distortion of the polymer network. For this
reason terms containing components of∇n̂ are not explicitly
listed in the following.

We now want to derive an expression for the generalized
energy density F of the system. By minimizing the general-
ized energy F =

∫
F d3r we then can find the current state of

the elastomer under an imposed shear deformation.

The macroscopic variables that can contribute to the energy
density F are on the one hand ∇n̂ and all the variables al-
ready present in the description of a simple liquid, which are
the mass density ρ, the density of momentum of mass g and
the density of entropy σ. On the other hand we have the com-
ponents of the strain tensor εij given by Eq. (2) and the com-
ponents of the relative rotations Ω̃i given by Eqs. (13), (15),
(19) and (20). In order to obtain an expression for F we com-
bine these variables taking into account symmetry require-
ments such as invariance under parity and under the transfor-
mation n̂ → −n̂. We include the uniaxial symmetry of the
system, which is determined by n̂. Nevertheless, isotropic be-
havior is assumed for all the terms that are solely connected
to the elastic behavior of the polymer network. In this way
we guarantee that the behavior of the nematic SCLSCE we
will predict is directly connected to the influence of the rel-
ative rotations and cannot be found by simply including the
anisotropic elastic behavior of the polymer network. (In the
Appendix we demonstrate that our results are not changed
qualitatively if in addition an anisotropic elastic behavior of
the polymer network is taken into account.)

It is then straightforward to write down a nonlinear convex
expression for the generalized energy density of the system
up to quartic order in the variables ny , nz , and in the compo-
nents of ∇u. However, if in the following for demonstrative
purposes we are only interested in the small-amplitude first
order corrections to the linear theory, quartic terms are negli-
gible and it is a legitimate procedure to only consider terms
up to cubic order. Therefore we do not write down explicitly
a convex expression for the energy density, but quartic terms
rendering the energy density convex can easily be included.
Furthermore, in the illustrative example we will investigate
below, the amplitude of the solution will be imposed onto the
system externally. This additionally guarantees the stability
of our solution.

We obtain

F = F0 + c1 εijεij +
1
2
c2 εii εjj +

1
2
D1 Ω̃iΩ̃i +D2 Ω̃iεijnj +D2,n niΩ̃i njεjknk +D2,tr niΩ̃i εjj + ζ1 εii εjj εkk

+ζ2 εii εjkεjk + ζ3 εijεjkεki + φ1 niεijΩ̃j εkk + φ2 niεijεjkΩ̃k + φ3 niεijΩ̃j nkεklnl + ψ1 Ω̃iΩ̃i εjj

+ψ2 Ω̃iεijΩ̃j + ψ3 Ω̃iΩ̃i njεjknk + hot, (21)

where hot stands for higher order terms not explicitly listed
here.

In the first line F0 incorporates all the terms that contain
variables other than ε and Ω̃. Their influence will not be stud-
ied in this section.

What follows are the quadratic terms with the coefficients
c1, c2, D1 and D2, which are already well known from the

linear theory6,7. There are two new quadratic terms with the
coefficientsD2,n andD2,tr in addition to the linear theory be-
cause in the nonlinear regime Eq. (6) does not apply anymore.

Next we listed the three cubic terms arising from the de-
formation of an isotropic elastic body19 with coefficients ζi
(i = 1, 2, 3), and afterward the cubic terms containing relative
rotations are listed with coefficients φi and ψi (i = 1, 2, 3).
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n̂

x̂

ẑ

FIG. 3: Consequences of a static mechanical shear deformation of a
bulk volume element of a nematic SCLSCE. The director is rotated
within the plane of the applied shear. Additionally dilative and com-
pressive strains occur, where the black arrows indicate one possible
case of the resulting deformations. Relative rotations are the media-
tor between these effects.

The terms ∼ ψ1 and ∼ ψ3 can be thought of as modifications
of the contribution ∼ D1, while the terms ∼ φ1 and ∼ φ3

can be viewed as modifications of the contribution∼ D2. The
components of ε and Ω̃ have to be introduced into the cubic
terms only to linear order, and as a consequence Eq. (6) ap-
plies. For this reason we did not list the cubic terms containing
niΩ̃i.

Before turning to an example we want to recall once again
that nonlinearities arising from Eq. (21) have two different
sources: On the one hand these are the explicitly nonlinear cu-
bic terms in Eq. (21). On the other hand, the quadratic terms
contain nonlinear contributions because the nonlinear expres-
sion for ε and the new nonlinear expression for Ω̃ derived in
the preceding section must be inserted in these terms. That is
the reason why the material parameters c1, D1 and D2 will
significantly contribute to the nonlinear results listed later on.

We now want to analyze the consequences of a shear de-
formation of the bulk of the nematic SCLSCE as indicated
in Fig. 2. Denoting the shear amplitude by A0 and looking
only for homogeneous solutions due to the reasons elucidated
above we make the Ansätze

ux(r) = A0z +A1x, (22)
uy(r) = B1y, (23)
uz(r) = C1z, (24)
ny(r) = ny , (25)
nz(r) = nz . (26)

If we assume the system to be incompressible, which is a good
approximation for the elastomers under investigation, we ob-
tain

B1 =
A1C1 −A1 − C1

1 +A1C1 −A1 − C1
. (27)

Furthermore the terms with the coefficients ζ1, ζ2, φ1 and ψ1

are of higher order due to incompressibility and thus vanish in
our consideration of the problem.

Since we study a spatially homogeneous solution,F is min-
imized simultaneously with F . Thus we can find the actual
state of the system by solving the set of equations ∂F/∂A1 =
0, ∂F/∂C1 = 0, ∂F/∂ny = 0 and ∂F/∂nz = 0. For this
purpose we expand the coefficients in the Ansätze (22)-(26) in
a small parameter ε up to quadratic order,

A0 = A
(1)
0 ε, (28)

A1 = A
(1)
1 ε+A

(2)
1 ε2, (29)

C1 = C
(1)
1 ε+ C

(2)
1 ε2, (30)

ny = n(1)
y ε+ n(2)

y ε2, (31)

nz = n(1)
z ε+ n(2)

z ε2, (32)

and introduce them into the set of equations. Here A(1)
0 ε has

been used as an input. Up to quadratic order in ε we obtain
the following results, which are also depicted in Fig. 3

The director n̂ acquires a z component with an angle

nz = − D1 +D2

2D1
A0. (33)

As we can see this is an effect linear in the shear amplitudeA0,
and indeed this effect has already been predicted by the linear
theory8. Up to the order investigated there is no correction to
this result for nz: n(2)

z = 0. Furthermore, we find that the
director remains oriented within the x-z plane,

ny = 0. (34)

which is not surprising for a spatially homogeneous solution
due to symmetry reasons. It turns out that A(1)

1 and C
(1)
1

vanish identically. Thus, in addition to the reorientation of
the director, we observe a compression and/or dilation of the
SCLSCE parallel to the x̂, ŷ, and ẑ directions, described by

A1 =
A2

0

24c1D2
1

(
4c1D2

1 +D1D
2
2 +D3

2 − 2D2,nD
2
2 − 3ζ3D2

1 + φ2D1D2 + 2φ3D1D2 + ψ2D
2
2 − 2ψ3D

2
2

)
, (35)

B1 =
A2

0

48c1D2
1

(− 16c1D2
1 + 2D1D

2
2 + 2D3

2 + 2D2,nD
2
2 + 12ζ3D2

1 − 4φ2D1D2 − 2φ3D1D2 + 2ψ2D
2
2 + 2ψ3D

2
2

)
, (36)

C1 =
A2

0

48c1D2
1

(
8c1D2

1 − 4D1D
2
2 − 4D3

2 + 2D2,nD
2
2 − 6ζ3D2

1 + 2φ2D1D2 − 2φ3D1D2 − 4ψ2D
2
2 + 2ψ3D

2
2

)
. (37)

The amplitudes given by these strain coefficients are propor- tional to the square of the shear amplitude A0. So they de-
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scribe nonlinear effects, which cannot be predicted by a linear
theory.

We can interpret these results in the following way. Due to
the external mechanical shear deformation the director is re-
oriented, which is a linear effect arising from the coupling be-
tween the polymer network and the director, mediated by the
relative rotations. However, this reorientation of the director
itself acts back onto the polymer network and leads to com-
pressive and/or dilative strains. From that point of view the
nonlinear character of the compressive and/or dilative strain
deformations becomes clear, and again this action of the di-
rector reorientation back onto the polymer network is medi-
ated by the relative rotations. The described effects cannot be
attributed to the anisotropy of the elastic behavior of the poly-
mer network. We excluded anisotropies from all terms of F
that are solely related to the elastic behavior of the polymer
network. All the terms in Eqs. (33)-(37) directly depend on
the coefficients of Eq. (21) that are connected to relative rota-
tions. If in those terms of Eq. (21) containing relative rotations
we furthermore take into account the isotropy of the elastic be-
havior of the polymer network, we have to set D2,n, φ3, and
ψ3 equal to zero. However, this does not affect our results
qualitatively. On the other hand, as already mentioned, in the
Appendix we investigated the effect of an anisotropic elastic
behavior of the polymer network. Up to the inspected order
we do not find a correction to the reorientation of the director
field as given by Eqs. (33) and (34). The corrections to the
expressions in Eqs. (35)-(37) do not change the results given
above qualitatively. We also demonstrate in the Appendix that
concentrating only on the anisotropic elastic behavior of the
polymer network and neglecting relative rotations one does
not recover the compressive and/or dilative deformations de-
scribed above.

The interesting physics mainly occurs in the x-z plane of
the system. In this plane the rotation of the director takes
place, and the relative rotations between the director orien-
tation and the polymer network also occur within this plane.
The compression or dilation in the ŷ direction only results
from the incompressibility condition (27) and influences the
coefficients A1 and C1. We qualitatively obtain the same re-
sult concerning the physics in the x-z plane, if we treat the
system as two dimensional. In this case and up to the order in-
vestigated, including incompressibility of the system, we ob-
tain

nz = − D1 +D2

2D1
A0, (38)

A1 = A2
0

D2

32c1D2
1

(
2D2

2 + 2D2(D1 −D2,n)

+2D1φ3 + 2D2(ψ2 − ψ3)) , (39)
C1 = −A1. (40)

Therefore the director reorients in the same way as described
before. In the two-dimensional case compression or dilation
in x̂ direction coincides with dilation or compression in ẑ di-
rection, respectively. This is the situation indicated by the
arrows in Fig. 3.

IV. DISCUSSION

When we were investigating the static shear deformation of
the nematic SCLSCE in the last section, we used the com-
ponents of the displacement field u(r) instead of those of
a(r) in order to characterize the current state of the polymer
network. This was done, because u(r) gives the more intu-
itive and illustrative variables, and this procedure is also con-
venient when considering static deformations. However, in
anisotropic systems, the use of u(r) should be handled with
care when dynamic deformations are studied because it can
lead to erroneous results. This feature arises from the fact that
the components of u(r) connect the space in which the ini-
tial/ground state of the system is described and the space in
which its final state is characterized13,14. We can simply avoid
this problem by replacing u(r) by r−a(r) in the expressions
of Sec. II. In doing this we correctly distinguish between ini-
tial space and final space.

We then obtain expressions for the macroscopic variables
ε and Ω̃ which are even under parity in the initial as well as
in the final space. For ε this can directly be confirmed from
Eq. (2). Referring for example to Eq. (11) we can convince
ourselves that the same also applies to Ξ. Next, from Eq. (9)
it follows that the inverse rotation matrix of the polymer net-
work R−1 is odd under parity in the initial as well as in the
final space, which is also implied by Eqs. (13) and (17). R−1

connects the two spaces, and more exactly we have to write
it in the form R−1(a(r), r). The other rotation matrix con-
necting initial and final spaces is S(a(r), r), which describes
the local rotations of the director according to Eq. (7). Both
matrices must explicitly depend on a(r) as well as on r be-
cause a local state in the final space is compared to the corre-
sponding one in the initial space: For each volume element of
the elastomer at position r in the final state the matrices must
contain the information of how the polymer network and the
director have been rotated compared to their initial state, in
which the volume element was located at a(r). The states n̂
and −n̂ as well as the states n̂0 and −n̂0 are indistinguish-
able. Inserting Eq. (7) into Eq. (15) we see that the relative
rotations Ω̃ are even under parity in the initial as well as in the
final space. The same applies for the expression of the energy
density [Eq. (21)].

In the last few years there have been several different at-
tempts of finding nonlinear model descriptions of the spe-
cific properties of SCLSCEs. On the one hand, by a gener-
alization of classical Gaussian rubber elasticity to the case
of anisotropic polymer networks, some nonlinearities were
included and the concept of “soft elastic distortions” was
suggested (see e.g. Ref. 20). On the other hand, nonlin-
ear macroscopic descriptions were also proposed (see e.g.
Ref. (21),which again included the concept of soft elastic
distortions22. A number of interesting experiments have been
performed, and several of them have been interpreted in the
context of these models. Examples are the reorientation pro-
cess of the director field of a nematic SCLSCE when the ma-
terial is stretched perpendicularly to the ground state director
orientation23, a thereby emerging stripe instability24, and also
reorientation processes of the director field in swollen nematic
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SCLSCEs when exposed to an external electric field25.
It has been demonstrated in Ref. 26 that the molecular

model formally contains the D1 and D2 terms from Eq. (21)
proposed in Ref. 6, however, the material parameters D1 and
D2 are not independent in this model. Also the terms ∼ ψ2

and ∼ ψ3 are shown to be included but again with dependent
coefficients20. However, the authors of Ref. 20 always use
the linear expression of relative rotations as proposed in Ref.
6.Consequently, these authors conclude that the D1 and D2

terms cannot describe nonlinear effects, and cubic terms such
as the ones ∼ ψ2 and ∼ ψ3 in Eq. (21) must be incorporated
in a macroscopic characterization. On the contrary, by our il-
lustrative example we demonstrated that the D1 and D2 terms
can model such effects already, when an appropriate nonlinear
expression is inserted for the relative rotations27.

Our model qualitatively differs from the one proposed in
Ref. 21 as we explicitly include nonlinear relative rotations
between the polymer network and the director field as vari-
ables when we obtain the generalized energy density of the
system. We derive for the first time a nonlinear expression for
these relative rotations within the framework of a macroscopic
theory, and we formulate it as a function of u(r) (or a(r)) and
n̂(r), which completely describe the state of the material.

Furthermore, we do not incorporate the assumption of “soft
elasticity” in our considerations. It has already been demon-
strated in Ref. 28 by a constitutive model that the experimen-
tal results of Refs. 23 and 24 can also be obtained without
the concept of soft elasticity. In our case, we have shown
qualitatively by our illustrative example that the underlying
effects are also covered by our model description without the
assumption of soft elastic responses. In particular, as already
mentioned, this means that the variables of relative rotations
are explicitly included when setting up the expression for the
energy density, and that the values of the material parameters
are independent of each other. This renders the characteriza-
tion of the materials more general.

V. CONCLUSIONS

In this paper we have shown how the linear macroscopic
description of SCLSCEs can be extended to the nonlinear
regime. For this purpose we have derived the nonlinear ex-
pression for the variables of relative rotations. To achieve this,
the major problem consisted of finding the matrix of local ro-
tations of the polymer network R. We demonstrated how this
matrix can be approximated by a series expansion and how it
can be determined using a local transformation to the principal
system of the strain tensor ε.

Using the example of a static shear deformation of a ne-
matic SCLSCE we demonstrated that relative rotations be-

tween the director orientation and the polymer network are
essential in the macroscopic description of many of the unique
properties of SCLSCEs. Including into this description non-
linear contributions of the relative rotations, we could account
for qualitatively different nonlinear properties of SCLSCEs,
which improves our understanding of these materials. In our
example of shearing a bulk volume element of a nematic
SCLSCE in a plane that contains the director, a reorientation
of the director within this plane occurs as a linear effect. By
including nonlinearities, we found, in addition, compressive
and dilative strains of the bulk volume element as nonlinear
effects arising from the influence of the relative rotations. Fi-
nally, we have shown that our results are consistent with gen-
eral symmetry requirements, and we have related them to the
work already performed in the field.

As a perspective we emphasize that the nonlinear expres-
sions for the relative rotations in Sec. II will also be help-
ful in the macroscopic description of other complex systems.
For example, these expressions can directly be included in the
macroscopic characterization of magnetic gels. In this case
one only has to replace the components of the director n̂ by
those of the unit vector of the local magnetization m1.

Clearly, a nonlinear macroscopic description which in-
cludes the nonlinear contributions of relative rotations will re-
veal more of the unique features of SCLSCEs.
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APPENDIX: STATIC SHEAR DEFORMATION OF AN
ELASTICALLY ANISOTROPIC SCLSCE

In Sec. III we studied the reaction of a nematic SCLSCE to
an imposed static shear deformation. There, we concentrated
on the role the relative rotations play during this kind of de-
formation. Because of that we assumed the elastic behavior
of the polymer network to be isotropic. We now demonstrate
that an anisotropic elastic behavior of the polymer network
does not qualitatively change the results derived in Sec. III.

If we want to include an anisotropic elastic behavior of the
polymer network into our description, we have to supplement
our expression for the energy density (21) by some additional
terms (compare e.g. Ref. 29)

c3 εii njεjknk + c4 niεijεjknk + c5 niεijnj nkεklnl + ζ4 εijεij nkεklnl + ζ5 εii εjj nkεklnl + ζ6 εii njεjkεklnl

+ζ7 εii njεjknk nlεlmnm + ζ8 niεijεjkεklnl + ζ9 niεijεjknk nlεlmnm + ζ10 niεijnj nkεklnl nmεmnnn. (A1)

Following the procedure described in Sec. III, we obtain the results listed hereafter.
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Concerning the reorientation of the director field, Eqs. (33) and (34) are recovered identically. We find, however, that the
amplitudes of the compression and/or dilation of the SCLSCE as given by Eqs. (35)-(37) are slightly modified in the anisotropic
case

A1 =
A2

0

8D2
1(3c1 + 2c4 + 2c5)

(
4c1D2

1 +D1D
2
2 +D3

2 − 2D2,nD
2
2 − 3ζ3D2

1 + φ2D1D2 + 2φ3D1D2 + ψ2D
2
2 − 2ψ3D

2
2

+ 4c3D2
1 + 6c4D2

1 + 2c4D1D2 + 8c5D2
1 + 8c5D1D2 − 4ζ4D2

1 − 3ζ8D2
1 − 2ζ9D2

1

)
, (A2)

B1 =
A2

0

16c1D2
1

(
− 4c1D2

1 +D1D
2
2 +D3

2 + 3ζ3D2
1 − φ2D1D2 + ψ2D

2
2 − 2c4D2

1 − 2c4D1D2 + ζ8D
2
1

+
c1

3c1 + 2c4 + 2c5

(− 4c1D2
1 −D1D

2
2 −D3

2 + 2D2,nD
2
2 + 3ζ3D2

1 − φ2D1D2 − 2φ3D1D2 − ψ2D
2
2 + 2ψ3D

2
2

− 4c3D2
1 − 6c4D2

1 − 2c4D1D2 − 8c5D2
1 − 8c5D1D2 + 4ζ4D2

1 + 3ζ8D2
1 + 2ζ9D2

1

))
, (A3)

C1 =
A2

0

16c1D2
1

(
4c1D2

1 −D1D
2
2 −D3

2 − 3ζ3D2
1 + φ2D1D2 − ψ2D

2
2 + 2c4D2

1 + 2c4D1D2 − ζ8D2
1

+
c1

3c1 + 2c4 + 2c5

(− 4c1D2
1 −D1D

2
2 −D3

2 + 2D2,nD
2
2 + 3ζ3D2

1 − φ2D1D2 − 2φ3D1D2 − ψ2D
2
2 + 2ψ3D

2
2

− 4c3D2
1 − 6c4D2

1 − 2c4D1D2 − 8c5D2
1 − 8c5D1D2 + 4ζ4D2

1 + 3ζ8D2
1 + 2ζ9D2

1

))
. (A4)

However, all terms appearing in these expressions directly de-
pend on those coefficients of Eq. (21) that are directly related
to relative rotations. This means that without including the
variables of relative rotations compressive and dilative defor-
mations are not found in this description at all. The material
parameters ζ5, ζ6, and ζ7 do not enter the expressions listed
above because the respective terms in the energy density are

of higher order due to incompressibility. From Eqs. (A2)-(A4)
the special case of an isotropic elastic behavior of the polymer
network is simply recovered by letting the coefficients appear-
ing in expression (A1) tend to zero.

Overall we find that the results derived in this appendix for
an elastically anisotropic nematic SCLSCE qualitatively coin-
cide with those obtained in the isotropic case in Sec. III.
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