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Collective stop-and-go dynamics of active bacteria swarms
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We set up a macroscopic model of bacterial growth and transport based on a dynamic preferred
direction – the collective velocity of the bacteria. This collective velocity is subject to the isotropic-
nematic transition modeling the density-controlled transformation between immotile and motile
bacterial states. The choice of the dynamic preferred direction introduces a distinctive coupling of
orientational ordering and transport not encountered otherwise. The approach can be applied also
to other systems spontaneously switching between individual (disordered) and collective (ordered)
behavior, and/or collectively responding to density variations, e.g., bird flocks, fish schools etc. We
observe a characteristic and robust stop-and-go behavior. Inclusion of chirality results in a complex
pulsating dynamics.
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For biological systems the description of the collective
motion of self-propelled units giving rise to a large num-
ber of spatio-temporal patterns is one of the central ques-
tions. From a physical point of view the complexity of
biological or active systems on macroscopic and meso-
scopic scales represents a large class of driven nonequi-
librium systems. Collective behavior arises on many dif-
ferent length and time scales including the large scale
spatio-temporal patterns of bird flocks and fish schools
[1–6], the intermediate size spatio-temporal complexity
revealed by various types of bacteria [7–15] as well as
the mesoscopic collective motion shown by microscopic
motors [16–21].

To describe these collective phenomena frequently
reaction-diffusion type models for the various concen-
trations of species involved have been used. Naturally
an important issue arises, namely the question whether
there are other macroscopic variables of interest. Corre-
spondingly the use of modified nematodynamic equations
to describe active systems including nonpolar [22] as well
as polar [23] has been advocated. Another approach sug-
gests the use of dynamic preferred directions [24, 25].
For example, the preferred direction in a bird flock or
a swarm of insects is certainly dynamic and does not
exist statically. As we will argue below a polar dynamic
preferred direction arises naturally as a macroscopic vari-
able to describe the spatio-temporal patterns revealed by
certain types of bacteria. This unconventional choice in-
troduces a distinctive coupling of orientational ordering
and transport not encountered in the case of the static
preferred direction. We think that with its natural ap-
plication also to other systems it could become generic.

In the present Letter we suggest and analyze a model
to capture various aspects of the experimental results de-
scribed by Matsushita’s group for the bacterium Proteus
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FIG. 1. (color online) Top: Growth of the colony after the
“point” inoculation with ρ = 0.2: density snapshots (bright
regions represent high density) of achiral population (a-d).
Bottom: the time dependence of the sample-average magni-
tude of the velocity demonstrates the step-like growth dynam-
ics, which is best seen in the supplemental movies.

mirabilis [11–15]. Especially our model covers various
features of the intricate collective dynamics shown by
Proteus mirabilis including in particular a pulsating dy-
namics of a collective stop-and-go type presented in de-
tail in Ref. [13], where it is confirmed that the pulsing is
not due to biological (internal clock of the bacteria) or
chemical (chemotaxis) factors.

The variables of the model are the density of the nu-
trient (food) f , the density of the bacteria ρ, and their
macroscopic velocity v. Food is considered immobile and
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FIG. 2. Density snapshots (bright represents high density) (compare with Fig. 3a) of the growing colony after a slightly
randomly perturbed line inoculation with ρ = 0.2 (a). Due to the periodic boundary conditions, in (f) the front, after passing
the left boundary, reenters the system from the right. Note the internal waves in (e) and (g) advancing towards the front and
pushing it ahead afterwards. In (h) the whole system is about to be populated; subsequently the front moves continuously.
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(b) chiral

FIG. 3. Growth of the colony after the perturbed line inocu-
lation: the time dependence of the sample-average magnitude
of the velocity demonstrates clear-cut pulses and almost no
dynamics between them; (a) no chirality and (b) Kc = 0.0034.

is thus only consumed by the bacteria,

ḟ = −αρ f̃ , (1)

where ḟ = ∂f/∂t, α is a coefficient determining the rate
of food consumption, and f̃ = f/(fsat+f) is a saturated
nutrient density preventing overconsumption, if food is
in excess with respect to a saturation density fsat.

The dynamic equation for the bacterial density takes
into account the growth due to food consumption as well
as advective and diffusive transport (the latter mainly for
smoothing):

∂ρ

∂t
+ v0∇ · (ρb) +∇ · jD = −ḟ ρsat − ρ

ρsat
, (2)

where b is the velocity order parameter, v0 sets the phys-
ical velocity scale, v = v0b, and jD = −D∇ρ. The stabi-
lizing factor on the right prevents possible uncontrolled
growth of the density above a saturation density ρsat.

The transformation between the vegetative (essentially
immotile) and the motile swarmer cells is modeled by
the analog of the isotropic-nematic (I-N) transition of
the velocity order parameter (similar in spirit to [24])
controlled by the rate of food consumption ḟ (depending
only on ρ if food is abundant):

γ

[
∂b

∂t
+ v0(b · ∇)b

]
= [A(|ḟ | − |ḟ∗|)− Cb2]b + L∇2b

− Kp∇ρ+Kf∇f̃ +Kcp× b, (3)

where γ, the analog of the nematic rotational viscos-
ity, defines the time scale of the velocity field, A and
C are the Landau coefficients of the I-N phase transi-
tion, |ḟ∗| = αf̃ρ∗ is the transition threshold (ρ∗ is the
local threshold density), and L is the analog of a ne-
matic elastic constant. The Kp term – analog of the
pressure term in the Navier-Stokes equation – prevents a
possible build-up of too strong sources and sinks in our
highly compressible bacterial “fluid”. Here we assumed a
“compressibility” relation dρ = dp/Kp. The Kf coupling
mimics the tendency of the bacteria to orient themselves
and move along the food gradient. And finally, the Kc

term representing the lowest order chiral coupling that
is allowed by symmetry, describes the left-right asym-
metry, i.e. the preference of the bacteria to turn left or
right while moving, depending on the sign of Kc; p is the
substrate normal.

In this study, we focus on the expanding growth phase
of the bacterial colony. Starting with an unpopulated
nutrient-rich surface, we inoculate a finite bacterial den-
sity ρ in the center of the domain. Using periodic
boundary conditions we let the colony evolve until it
touches itself after passing the domain boundary. Time,
length and density units may be chosen such that, e.g.,
α = L = ρ∗ = 1. Yet for clarity, we do not introduce
any dimensionless quantities at this stage. As a start-
ing point, the following numerical values of the param-
eters (in arbitrary units) will be used unless stated oth-
erwise: A = 100, C = 1, L = 0.1, v0 = 5, |ḟ∗| = 0.001,
α = 0.012, fsat = 0.5, ρsat = 0.2, D = 0.01, Kp = 10−6,
Kf = 0.01, Kc = 0, and 1/γ = 18. The initial density of
the nutrient will be f = 5, which is already in the excess
regime for the examples presented, for which f is thus not
a decisive variable. Following the experiment we never-
theless keep it as a part of our model to take into account
the decreasing activity on longer time scales. The system
size is 60× 60, calculated on a 142× 142 mesh. The con-
sistency of the results was checked for larger meshes as
well.

First we show a circularly symmetric “point” nucle-
ation of achiral bacteria, which demonstrates a symmet-
rical growth, Fig. 1a-d, with an interesting stop-and-go
behavior of the colony front (see Supplemental Material
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FIG. 4. (color online) Density snapshots (bright represents high density) (compare with Fig. 3b) of the growing colony after
a slightly randomly perturbed line inoculation (the same as in Fig. 2a) in a chiral system with Kc = 0.0034 (compare Fig. 6f
to locate it in the chirality diagram). (a-c) The front typically moves back and forth across the populated region. (d-g) Two
fronts are interestingly passing next to each other. (h) The last calm stage before the whole system gets populated.
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(a) reposing phase
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(b) active phase

FIG. 5. Density profile snapshots (horizontal central cross
sections of density fields like in Fig. 2): (a) reposing phase
with the static front (the peak on the left) and (b) active
phase showing an internal density wave travelling towards the
front. The threshold density ρ∗ is shown dashed.

at [URL will be inserted by publisher] for the movies). To
what extent such a stop-and-go behavior is pronounced
depends on the material parameters, but it turns out to
be a general feature of the model. It emerges that the
periodic growth dynamics corresponds to experimental
observations [13]. Furthermore, in the same paper Mat-
sushita et al. also report on one or more internal waves
that are observed to advance towards the growth front.
Our results also exhibit such waves [26].

The pulsing can be quantified by plotting the time
evolution of the norm of the velocity field, e.g., the av-
erage magnitude of the velocity field, Fig. 1(bottom),
which is a good measure of the velocity of the growth
front. The phases of cessation and activation are re-
lated to the I-N transition of the velocity field mimicking
the density-controlled transition between vegetative and
swarmer cells.

For analytic purposes we inoculate the colony in a
straight line, Fig. 2, and slightly perturb it randomly
to avoid any symmetry induced degeneracy. A left-right
symmetric growth is typically unstable and the growth
to one side usually dominates. Despite its wrinkledness,
the front advances in clear-cut pulses, as demonstrated in
Fig. 3. This remains true even in the chiral case, Figs. 3b
and 4. Although the front gets distorted and exhibits
spatially more complicated dynamics, the pulses and the
calm periods nevertheless persist. A remarkable general

feature of these pulsating processes is the clear distinction
of active and reposing phases (note the almost complete
stopping between the pulses) – a continuous system that
exhibits a rather distinct discrete dynamics.

In the growing colony the density front is always
formed, even if the system is initially homogeneous. In
Eqs. (4)-(6) we will assume f̃ = 1. When ρ is sufficiently
above the threshold density ρ∗, the homogeneous state
becomes linearly unstable against any velocity perturba-
tion with a nonzero wavenumber k, which according to
Eq. (3) grows at a rate

1/τv =
1

γ

[
Aα(ρ− ρ∗)− Lk2

]
(4)

and triggers the density instability via compressible flow
(the second term of Eq. (2)).

A cross section through the front, Fig. 5, reveals its
structure and a qualitative mechanism of repose and ac-
tivity. The density peak of the front is always above
the threshold and the velocity there is held close to zero
by the elasticity, Fig. 5a; the width of the front is pro-
portional to the correlation length of the velocity field,
ξL =

√
L/Aα(ρ− ρ∗). As the bacteria grow the den-

sity of the interior region gradually increases. When suf-
ficiently above the threshold, a travelling pulse is usu-
ally triggered from this region by the above instability,
Fig. 5b. It passes through the original front and finally
comes to rest forming the new static front. Sometimes
there is no internal excitation but merely the original
front that starts moving again. Governed by the growth,
the duration of the reposing phase and thus the time in-
terval between the pulses scales with τρ = 1/α.

In the active phase, advection is dominant and one can
approximately neglect growth and diffusion in Eq. (2). In
one dimension, the resulting continuity equation for the
bacterial density can be rewritten requiring dρ = 0:

dx

dt
=
d(ρv)

dρ
= v + ρ

dv

dρ
, ρ = const, (5)

where dx/dt is thus the speed of the observer following
constant density. In the limit of small γ, one can further
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FIG. 6. (color online) “Dynamograms” showing the growth
dynamics morphology (bright regions represent active stages)
as a function of time (horizontal axis) and the model param-
eters (vertical axis). (a, b) Dependence on 1/γ, the respon-
siveness of the velocity field, for two values of the inoculation
density, ρ = 0.2 (a) and ρ = 0.02 (b); note the time shift in
(b). (c) Dependence on the velocity scale v0, (d) dependence
on L, (e) the role of compressibility, and (f) the influence of
chirality. Late stages (shown partially) exhibit an increased
activity after the whole area has been populated. Taking hor-
izontal cross sections produces velocity profiles like in Fig. 3.

assume that v = v(ρ) = v0
√
αA(ρ− ρ∗)/C, and hence

dx

dt
= v(ρ) +

αAv20
2C

ρ
1

v(ρ)
. (6)

Due to the critical behavior of the second term, the den-
sity values just above the threshold ρ∗ are transported
rapidly – this explains the onset of the density waves
propagating from the interior towards the front. High
density peaks are transported with the velocity close to

(a) t=50 (b) t=220 (c) t=644 (d) t=1240

FIG. 7. Snapshots of the self-organization into a slowly
expanding rotation lattice for a larger chirality parameter
Kc = 0.03 (bright represents high density). (a) Initially the
front is moving back and forth across the populated region
and becomes unstable along its length, forming the rotation
cells in (b). Then the colony is slowly expanding by diffusion
and growth (c, d) and new rotation cells “ignite” gradually
(upper left part of (d)) when the bacterial density increases.
In all the cells the front (seen as the bright patch) undergoes a
synchronous, phase-locked rotation. When a new set of cells
appears at the edge of the colony, the inner cells shrink in
size.

that of the fluid, v(ρ), as dv/dρ in Eq. (5) gets small
with increasing density. A special density value is related
to the extremum of the velocity (6), which is lowest for
ρ = 2ρ∗, defining ρ∗ as the relevant density scale also
above the threshold. We note that the density peaks of
the front are all close to this value quite irrespective of the
parameters including also ρsat. Moreover, for the colony
that is expanding into an unpopulated region the density
saturation does not have any qualitative influence and
can be omitted.

In what follows, we study the influence of the model
parameters on the pulsating dynamics to shed light on
the pulsating region of the parameter space. We per-
form scans of the dynamic profiles like the one in Fig. 3,
varying one model parameter at a time. The result are
two-dimensional “dynamograms”, Fig. 6, the horizontal
cross section of which corresponds to the dynamic pro-
file of activity and repose, while its dependence on the
model parameter is presented along the vertical axis. Un-
less stated otherwise, the initial condition is the same as
in Fig. 2. For comparability we use the same random se-
quence for the initial perturbation in all cases, while we
verified that the dynamograms are virtually identical for
other sequences.

Fig. 6a shows that the pulsing is weakened by decreas-
ing the responsiveness 1/γ of the velocity and eventually
almost vanishes. For a weaker inoculation, Fig. 6b, it is
demonstrated that the pulsating dynamics is still there,
after the initial population has grown to the threshold
level. It is thus not a peculiarity of the initial condition.
The velocity magnitude v0, Fig. 6c, has almost no in-
fluence on the timing of the pulses, yet they gradually
disappear with decreasing v0. Fig. 6d confirms that the
morphology of the dynamics depends on the correlation
length ξL, which increases with increasing L.

It turns out that the compressibility of the bacterial
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“fluid” is essential for the stop-and-go dynamics, which
is in accord with the experimental evidence supporting
the importance of local density variations in this context
[13]. At higher values of Kp the pulsing gets strongly
suppressed, as demonstrated in Fig. 6e, which also shows
that the value Kp = 10−6 we have used throughout this
study is practically zero and fits into the region where
the pulsing is most pronounced.

In all of the presented examples the density of the nu-
trient is in excess, therefore the influence of the Kf pa-
rameter is only minor and will not be presented. We
recall that in this regime the actual control parameter
of the I-N transition in Eq. (3) is the density ρ, Eq. (1),
which is the standard control candidate in many systems
ranging from lyotropic liquid crystals to flocking animals.

As already observed for the chiral system presented in
Fig. 4, it is confirmed by the dynamogram in Fig. 6f that
the pulsing is retained for moderate values of Kc. On
the other hand, in the region of higher Kc, appearing as
faint regular stripes in Fig. 6f, the pulsating dynamics
of the front is replaced by a local circular motion, which
is self-organized into a regular lattice of rotation cells
(see Supplemental Material [27]). This phenomenon has
not yet been observed experimentally and thus presents
a prediction which can be tested in future experiments.

The model has potential applications also for various
other systems, in particular for flocking animals like in-
sects, birds, and fish. While tailored and fine-tuned to
the specific situation, the coupling between orientational
ordering and transport remains its distinct feature. In
the case of birds or fish, for example, one would omit
Eq. (1) and the growth term in Eq. (2), include an ‘in-
terfacial’ tension characteristic for flocking, and set up
a suitable coupling between density gradients and veloc-
ity to model the sudden yet collective direction changes
typical for bird flocks or fish schools: birds do not stop
when flying, but they react to density changes by chang-
ing the flight direction. Recent experimental studies have
reached a number of several thousand birds [5, 6], finally
enabling three dimensional continuum studies of these
systems.
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suyama, H. Sakaguchi, M. Mimura, Physica A 249, 517
(1998).

[16] V. Schaller, C. Weber, C. Semmrich, E. Frey, A. R.
Bausch, Nature 467, 73 (2010).

[17] V. Schaller, C. A. Weber, B. Hammerich, E. Frey, A. R.
Bausch, Proc. Natl. Acad. Sci. U.S.A. 108, 19183 (2011).

[18] R. A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101
(2002).

[19] Y. Hatwalne, S. Ramaswamy, M. Rao, R. A. Simha,
Phys. Rev. Lett. 92, 118101 (2004).
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