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Thermodiffusion effects in convection of ferrofluids
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Thermal convection in ferrofluids, the colloidal suspension of ferromagnetic particles, is

investigated theoretically. Ferrofluids are treated as binary liquid mixtures with weak
solutal diffusivity but large separation ratio. Due to the pronounced Soret effect of these
materials in combination with a considerable solutal expansion, the resulting solutal
buoyancy forces are dominant and the concentration dynamics cannot be disregarded
for thermal convection. In principle, convective motion sets in at Rayleigh numbers
well below the critical threshold for single-component liquids. But only far above this
(hypothetical) threshold the growth dynamics of the amplitude is fast enough to be
detectable and a nonlinear analysis demonstrates that there it quickly saturates in a
state of stationary convective motion.

1. Introduction A typical property of binary mixture convection is the
formation of concentration boundary layers [1]. This is a consequence of the fact
that the concentration diffusivity D. in mixtures is usually much smaller than the
heat diffusivity x. For molecular binary mixtures the dimensionless Lewis number
L = D./x adopts typical values between 0.1 and 0.01 [2]. If colloidal suspensions
are under consideration, the time scale separation is even more dramatic. In
this context magneto-colloids, also known as ferrofluids, are a canonical example.
These materials are dispersions of heavy solid ferromagnetic grains suspended in
a carrier liquid [3]. With a typical diameter of 10 nm the particles are pretty large
on molecular length scales, resulting in an extremely small particle mobility. This
feature is reflected by Lewis numbers as small as L = 10~* [4]. The smallness of L
leads to a situation where de-mixing effects (if any) take place on time scales far
beyond any reasonable observation time. Thus, in most experiments ferrofluids
can safely be treated as single-component fluid systems.

However, ferrofluids are also known to exhibit a very large separation ratio
1. This observation is due to the pronounced thermo-diffusivity (Soret effect) of
these materials in combination with the fact that the specific weights of the two
constituents (magnetite and water/oil) are quite distinct. Following investigations
of Blums et al. [4], who carried out experiments with a thermo-diffusion chamber,
|t)| can adopt values up to about 100. Recent light scattering investigations of
Bacri et al. [5], reveal ¢-values between around —200 (for ionic ferrofluids) and up
to +30 (cyclohexane carrier) at a volume concentration of 10%. Meanwhile the
Soret effect in ferrofluids has also been studied under the influence of an external
magnetic field [6-8].

A fairly small number of papers deals with convection in ferrofluids. Most
of them treat these liquids as single-component fluids, focusing on the extra drive
associated with the temperature dependence of the magnetization (pyro-magnetic
effect) [9-11]. Quite recently Shliomis and Souhar [12] studied the influence of
the concentration field on thermal convection in ferrofluids without an external
magnetic field. Using linear arguments they predicted a novel kind of relaxation-
oscillation convection to appear at Rayleigh numbers below the single-component
threshold Ra’. Meanwhile, magnetic field related effects have also been investi-



gated in this problem [13]. The purpose of the present work is to investigate in
detail the role of the concentration field within a nonlinear treatment.

Provided no magnetic field is applied, thermal convection in a perfectly inter-
mixed ferrofluid is usually believed [12] to behave as a single-fluid system. How-
ever, our investigation reveals that this is not correct. Rather it is the combi-
nation of both, the weak solutal diffusivity and the pronounced solutal buoyancy
force, which renders the convective dynamics distinct from the pure fluid case. A
Rayleigh-Bénard setup will already become unstable at Rayleigh numbers well be-
low Ra?, but perturbations will grow extremely slowly (i.e. on the creeping solutal
diffusion time scale). On the other hand, near Ra’ convective perturbations are
found to grow and saturate into a stationary convective state on a much faster,
experimentally relevant, time scale.

2. Setting up the problem Let us consider a laterally infinite horizontal
layer of an incompressible ferrofluid (density p, kinematic viscosity v) bounded by
two rigid impermeable plates. The setup is heated from below with a temperature
difference AT between the plates, i.e. along the z-direction. In the present paper
we do not consider magnetic field related effects, thus the evolution equations for
non-magnetic binary mixtures can be adopted. Taking C(r,t) as the concentration
of the solid constituent of the suspension, the dimensionless equations for the Eu-
lerian fields of velocity v(r,t), temperature T'(r, t), and C(r,t) read in Boussinesq
approximation [14-16]

Vv = 0, (1)
ov+(w-V)v = —VW+PrRa[(T—-T)-4%(C—C)|é.+PrvVie, (2
HT + (v-V)T = V2T, (3)
KhC+(v-V)C = L(V?C+V°T). (4)

where gravity is directed along the negative z-axis (—é,.). Here we have scaled
length by the layer thickness h, time by the characteristic heat diffusion time
h?/k, temperature by AT, and the concentration by (Dr/D.)AT. The scale for
the pressure W is k2p/h?. Thereby k, D¢, Dr are the coefficients for heat, concen-
tration and thermo-diffusion, respectively. The quantities 7" and C are reference
values defined as the mean values for temperature and concentration. Apart from
the Prandtl number Pr = v/k and the Lewis number L = D./k there is a third
dimensionless material parameter, the separation ratio v = Dr(./(D.0r), where
Br = —(1/p)0p/0T and B. = (1/p)0p/Oc are the thermal and solutal expansion
coefficient. The dimensionless Rayleigh number Ra = Brgh®AT/(kv) is the con-
trol parameter measuring the strength of the thermal drive. In Eq. (4) we have
suppressed the Dufour-effect (heat current driven by a concentration gradient) as
it is significant in gas mixtures, only.

The equations of motion are to be completed by boundary conditions: Taking
no-slip conditions for the velocity and assuming the bounding plates to be highly
heat conducting and impermeable for concentration currents, we have at the upper
(z =1/2) and the lower (z = —1/2) plates

V—q1/0 = 0, (5)
- 1
le::l:l/2 = TF 3 (6)
(820 + azT)|Z::|:1/2 = 0. (7)

Eq. (7) guarantees that a concentration current cannot penetrate the plates. Ow-
ing to the Soret effect the applied temperature difference enforces a finite concen-
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tration gradient at the boundaries. The dynamic equations (2-4) together with
the boundary conditions (5-7) serve to determine v, T, C, while Eq.(1) allows to
eliminate the pressure W.

3. Nonlinear behavior =~ We solve the nonlinear problem (1-7) by use of
numerical methods. To that end we make the following ansatz of a 2-dimensional
pattern, which is laterally (in x-direction) periodic with wave number &

C(x,2,t)—C = Co(z,t)+ci(z,t)coskz, (8)
T(z,2,t) =T = —z+00(z,t)+01(2,t)coskm, (9)
v(z,z,t) = —€4(1/k)0,wi(z,t)sinkz + é,wy(z,t)coskx.  (10)

with incompressibility already built in. We adopt vertical profiles wy, 6y, 61, Co,
and c¢; in the form

wy(z,t) = A(t)cos® (nz), (11)
01(z,t) = DB (t)cosmz, (12)
Oo(z,t) = F(t)sin2nz, (13)
Co(z,t) = z—0p(z,t)+ i ap, (t)sin (2n 4+ 1) 7z, (14)
n=0
c1(z,t) = —01(z,t) + "i: by, (t) cos2nmz, (15)
n=0

which satisfy the boundary conditions (5-7) identically. They describe two-dimen-
sional convection in the form of parallel rolls along the y axis in an infinite slab
of thickness 1. We point out that for ¢ = 0, the concentration fields decouple
from temperature and velocity. This reduces Egs. (11-13) to the 3-mode model
introduced by Lorenz [17] to mimic the dynamics of convective rolls in single-
component Rayleigh-Bénard convection. At non-zero 1, convection is modified
by the concentration field, but we can adopt the above few-mode expansions for
temperature and velocity without modifications, because the diffusivities for heat
and momentum are large enough to prevent the appearance of strong gradients.
By way of contrast, owing to the small Lewis number, the concentration field
does build up steep boundary layers, which we account for by multi-mode Fourier
series as given in (14,15). For Cy the modes are antisymmetric in z, while for ¢;
symmetric modes are appropriate. The number N of contributing modes are to
be taken large enough to ensure that the results are insensitive against a further
increase of N. For the parameter values considered here, N = 20 turned out to
be sufficient. The equations for the mode amplitudes A, B, F,a,,b, have been
solved by a Runge-Kutta integration. The wave number k, usually taken to be the
mode of maximum linear growth rate A(k, Ra) varies between 3 and 3.5 within the
investigated Rayleigh number regime. However, since the final predictions of our
model do not depend sensitively on the k-value chosen, we have adopted k = 7 in
our simulations. All runs were started form an initial configuration characterized
by a undisturbed linear temperature profile T = T — z, a uniform concentration
distribution 9,Cy = ¢; = 0, and small random velocity fluctuations. In all of our
runs the convective motion was found to settle in a state of stationary convection.
A relaxation oscillation behavior as predicted in Ref. [12] could not be observed.
The times necessary to reach the saturation values are several thermal diffusion
times and increase with decreasing . However, they are still much shorter than
the evolution time of the creeping concentration profile.
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Figure 1: The saturation amplitude Az = A(t — o0) as a function of e =
Ra/Ral —1 for Pr =7 and L =7 x 107°. Ra? is the critical Rayleigh number for
a single-component fluid (¢ = 0, dashed gray line). Dotted lines see text.

Fig. 1 shows the corresponding bifurcation diagram with the dependence of
the saturation amplitude on the reduced Rayleigh number. At £ > 0 the ampli-
tude saturates at a value, which does not significantly deviate from the single-
component case. On the other hand, the influence of the concentration field is
most pronounced for Ra < Ra?. This is a consequence of the competitive interac-
tion between the small Lewis number and the large separation ratio. Decreasing
L makes the curve in Fig. 1 approaching the dashed reference line, whereas rising
1) has the opposite effect, since it amplifies the solutal buoyancy forces. For the
sake of comparison the dotted lines in Fig. 1 show an analytical approximation for
the saturated velocity amplitude based on a seven mode Galerkin approximation
recently introduced by Hollinger et al. (Eq.(4.1b) in Ref. [18]).

When measuring a bifurcation diagram such as Fig. 1, one might conclude that
the bifurcation is imperfect. Indeed, such a behavior was clearly observed in the
experiments of Schwab et al. [11], who recorded the convective heat transport as a
function of Ra. But we learn here that this phenomenon is to be attributed to the
concentration dynamics: the very onset for convection is located at a much smaller
Rayleigh number, Ra. = Ra® (1 + )1 [19], but at Rayleigh numbers slightly
larger than Ra. the linear growth rate of any disturbance remains extremely small.
Thus, trying to detect Ra. in such an experiment would be hopeless as it requires
extremely long observation times.

In contrast, at —0.2 < & < 0.2 the time necessary to wait for the equilibration
of the nonlinear convective state amounts to only a few thermal diffusion times [19]
for v > 1. This statement, which holds in particular also for the concentration
field, demonstrates that the growth of convective perturbations is a fast process
on the (creeping) time scale 1/L of solutal diffusion.

4. Conclusion Thermo-convection of binary mixtures with a weak con-
centration diffusivity and a large separation number has been investigated theo-
retically. By considering the classical Rayleigh Bénard setup it is shown that both
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the linear as well as the nonlinear convective behavior is significantly altered by
the concentration field as compared to single-component systems. Starting from
an initial motionless configuration with a uniform concentration distribution, con-
vective perturbations are found to grow even at Rayleigh numbers well below
the threshold Ral of pure-fluid convection. It turned out that the actual crit-
ical Rayleigh number Ra,. is drastically smaller, but experimentally inaccessible
due to the extremely slow growth of convection patterns for Ra 2 Ra., requiring
extremely large observation times. On the other hand, operating the ferrofluid
convection experiment at Rayleigh numbers Ra. < Ra S Ra?, reveals consider-
able positive growth rates, which lead to a saturated nonlinear state almost as
fast as pure-fluid convection does at Ra > Ral. This result is corroborated by
earlier convection experiments. It does not comply with a recent prediction of
convective self-oscillations conjectured from the interplay between short thermal
and slow solutal diffusion time scales.

Acknowledgements Helpful discussions with M. Liicke and B. Huke are
gratefully acknowledged. This work is supported by the Deutsche Forschungsge-
meinschaft.

REFERENCES
1. B. HUKE, M. LUCKE, P. BUCHEL, CH. JUNG. J. Fluid Mech. vol. 408, (2000) p. 121.
2. P. KOLODNER, H. WiLLIaAMS, C. MAcC. J. Chem. Phys. vol. 88, (1988) p. 6512.

3. R.E. ROSENSWEIG. Ferrohydrodynamics (Cambridge University Press, Cambridge)
1985.

4. E. Brums, A. MEzuLis, M. MAIorROV, G. KRONKALNS. J. Magn. Magn. Mater. vol.
169, (1997) p. 220.

5. J. LENGLET, A. BOURDON, J.-C. BACRI, G. DEMOUCHY. to be published.

6. E. BLums, S. ODENBACH, A. MEzULIS, M. MAIOROV. J. Magn. Magn. Mater. vol.
201, (1999) p. 268.

7. E. BLums. J. Magn. Magn. Mater. vol. 149, (1995) p. 111.

8. S. ODENBACH. J. Magn. Magn. Mater. vol. 149, (1995) p. 116.

9. B.A. FINLAYSON. J. Fluid Mech. vol. 40, (1970) p. 753.

10. A. RECKTENWALD AND M. LUCKE. J. Magn. Magn. Mater. vol. 188, (1998) p. 326.

11. L. ScawaB, U. HILDEBRANDT, K. STIERSTADT. J. Magn. Magn. Mater. vol. 39,
(1983) 113; L. ScHWAB. Konvection in Ferrofluiden (PhD thesis, Munich) 1989.

12. M.I. SHLIOMIS AND M. SOUHAR. Furophys. Lett. vol. 49, (2000) p. 55.
13. M.I. SHLIOMIS AND B. SMORODIN. Book of abstracts ICMF9, Bremen 2001.

14. J. BouUsSINESQ. Théorie Analytique de la Chaleur (Gauthier-Villars, Paris) Vol.II,
(1903) p. 172.

15. J.K. PLATTEN AND G. CHAVEPEYER. Int. J. Heat Mass Transf. vol. 19, (1976) p.
27.

16. H.R. BraND, P.C. HOHENBERG, V. STEINBERG. Phys. Rev. vol. A30, (1984) p.
2548.

17. E. N. LORENZ. J. Atmos. Sci. vol. 20, (1963) p. 130.
18. S. HOLLINGER, M. LUCKE, H.-W. MULLER. Phys. Rev. vol. E 57, (1998) p. 4250.
19. A. RyskiN, H.-W. MULLER, H. PLEINER. to be published.

Received 13.12.2002

55



