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Abstract – Using symmetry arguments we discuss the various possible helical structures that

can show a longitudinal piezoelectric effect. Due to the recent experimental verifi-

cation of such an effect in some elastomeric cholesteric liquid crystals, we propose

that what is called cholesterics could actually represent different helical structures,

which can be more complicated than the conventional (i.e. simple screw) model.
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1. Introduction

Conventionally the structure of cholesteric liquid crystals is described as a twisted nematic

one [1], i.e. there is orientational order in a given layer, where the preferred direction

(the director n̂) rotates helically when going from one layer to the next. This picture is

obtained from a Ginzburg-Landau functional using a uniaxal nematic order parameter and

D∞ symmetry for the molecules (i.e. n̂ to –n̂ symmetry). Due to the lack of inversion

symmetry a contribution to the energy linear in the twist becomes possible, which leads

to the simple helical structure with D2 symmetry (like an infinite screw). The three 2-fold

rotation axes are the helical axis p̂, the director n̂ and p̂×n̂, where the latter two are not

constant in space, but rotate helically. Thus, there is D2 symmetry for every layer locally,

but with two of the rotationally symmetry axes changing directions when going from one

layer to the next. In a coarse grained (”global”) description, averaged over many pitch

lengths, the symmetry is D∞, with the helical axis as preferred direction. This picture is

not changed qualitatively, if a small local biaxiality is introduced perturbatively [2].

Such a simple screw like structure e.g. is responsible for the strong optical activity

(strong optical rotatory power) and the spatially periodic textures well-known in cholesteric

liquid crystals [1,3]. Due to the existence of a two-fold rotation axis locally in every

layer, which is perpendicular to the helical axis, the latter cannot be a polar axis. This

implies that there is no ferroelectricity along the helix axis, nor can be there a longitudinal

piezoelectric effect. According to the Curie principle [4] a nonpolar medium subject to a

nonpolar external force (like an unidirectional stress along the helical axis) cannot exhibit

a polar result (a polarization along the helical axis), which excludes the possibility of a

longitudinal piezoelectric effect. In addition, also the shear-piezo effect (the shear plane
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contains the helical axis, but the resulting polarization is normal to that plane) is zero for

D∞ symmetry in the electrostatic approximation, where curl E must be zero.

Recently, in a series of very thorough investigations [5-7] the existence of a lon-

gitudinal piezoelectric effect has been demonstrated experimentally in some elastomeric

cholesteric liquid crystals. These experiments have been performed on samples of cylindri-

cal shape for which height and diameter were typically of the order of 1cm. The samples

were obtained by cross-linking a nematic liquid crystalline polymer and by swelling it with

a low molecular weight cholesteric liquid crystal. A sufficient amount of static compression

gives rise to a cholesteric monodomain [5-7] with the helical axis parallel to the axis of

the cylinders. Increasing compression gives rise to a static voltage parallel to the heli-

cal axis (longitudinal piezoelectric effect) [5,7]. The variation of this piezoeffect with the

cholesteric pitch and with temperature has been measured and it has been demonstrated

that in the racemate no piezoelectric effect exists [5]. The vanishing effect in the racemate

clearly shows that potential flexoelectric effects due to the presence of deformations of the

director field are absent. We also note, that the measured piezoelectric voltage was strictly

linear in the applied compression once a mondomain had been formed. Thus electrostric-

tive effects, which would be quadratic in the electric field, do not contribute [5]. This has

also been found to be applicable for the measurement of the inverse piezoelectric effect

[6]. Also in this case one does not observe a static linear electromechanical effect in the

racemate.

Obviously, these cholesteric systems cannot be of the conventional D2 symmetry.

The following questions immediately arise: What is the actual structure and symmetry

of these cholesteric phases? Is the unconventional structure typical for elastomeric or

polymeric systems or can it occur in low molecular weight systems as well? In the latter
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case a direct experimental proof for a longitudinal piezo effect seems hardly manageable,

because of the fluidity of such systems. There is, however, an additional hint for non-

standard cholesteric structures due to the report of an electroclinic effect [8,9] in certain

low molecular weight cholesteric liquid crystals, which, again, is not compatible with the

D2 symmetry. The electroclinic response was detected either by switching unwound, large

pitch systems, [8] or by dielectric measurements on wound-up, small pitch systems.[9]

In the following we will discuss using symmetry and Ginzburg-Landau type argu-

ments which unconventional structures are possible and under which conditions (which

may not always be fulfilled in a real situation) they can occur. A discussion of the hydro-

dynamic description of the conventional as well as unconventional structures is given in

Appendix 2.

2. Conic Structures in Low Molecular Weight Systems

Recently we have shown theoretically [10] that a chiralized biaxial nematic can show ei-

ther a conic helical structure or the simple screw structure depending on some material

parameters (Ginzburg-Landau coefficients). In the former case, generally the two orthog-

onal nematic directors, n̂ and m̂, spiral together around the helix axis p̂, but are tilted

out of the plane perpendicular to p̂. Such a conic helical state generally lacks any two-fold

rotational symmetry axis and is of monoclinic (C1) symmetry (Fig.1). Coarse grained over

many pitch lengths it is uniaxial, but polar (C∞ symmetry) with the helix axis as polar

axis. Thus, it shows ferroelectricity (or ferri- or antiferroelectricity) and a longitudinal

piezoelectric effect.

We will show now that even for uniaxial nematics, if chiralized, such a conic

helical structure is possible. The conventional Ginzburg-Landau description [1] of an

isotropic to cholesteric phase transition makes use of the uniaxial nematic order pa-
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rameter Qij = S(ninj − 1
3δij) by expanding the free energy into powers of Qij and its

gradients. Usually, only one chiral term, Qijεikl∇kQlj , is added to the non-chiral ne-

matic terms. Then minimization leads straightforwardly to the simple screw structure

ni(r) = âi cosφ + b̂i sinφ, with φ = q0p̂ · r, where â and b̂ are any pair of orthogonal unit

vectors in the plane perpendicular to p̂ and q0 is the helical wavelength, related to the

pitch d0 = π/q0. However, since the isotropic to cholesteric phase transition is generally

first order, there is no reason to stop the Ginzburg-Landau expansion after the quadratic

order, i.e. the cubic order is necessary, too. In that order additional non-chiral terms

occur, e.g. of the form QQ∇Q, ∇Q∇Q∇Q or ∇∇Q∇Q (for details cf. App. 1), where

the latter are not negligible compared to the former, since we are looking for a spatially

non-homogeneous structure and gradients need not be small.

These cubic terms result not only in a more complicated temperature dependence

of the pitch, but also in the possibility of a conic helical structure ni(r) = (âi cosφ +

b̂i sinφ) cosΘn + (â × b̂)i sinΘn with Θn = const. (cf. App.1). This state can have the

lower free energy compared to the untilted state, if the Ginzburg-Landau coefficients satisfy

certain conditions. There is even a first order phase transition possible between these two

states (which also have different q0). However, for large pitch lengths (small q0) always

the untilted state (the simple screw) occurs.

As in the untilted case [2], also in the conic helical state the helix induces a small

biaxiality, characterized by a second preferred direction, m̂, spiraling about p̂, too. Again

this direction m̂ can be untilted (m̂ ⊥ p̂, i.e. Θm = 0) or tilted (Θm 6= 0) with respect

to the plane perpendicular to the helix axis (Fig.1) depending on some Ginzburg-Landau

parameters (App.1). In the former case (Θm = 0) or if n̂, m̂, and p̂ are coplanar, the

structure is of C2 symmetry locally, with the two-fold rotational axis (symmetry axis)
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perpendicular to p̂. However, only the rotational symmetry axis itself can be a polar

direction since all axes perpendicular to the symmetry axis are subject to the two-fold

rotational symmetry. Thus, there is no longitudinal piezoelectric effect (i.e. parallel to the

helix axis) possible. The (spiraling) polar axis and the accompanying piezoelectric effect

along this axis (which can be detected in large pitch or unwound systems) are averaged

out on length scales large compared to the pitch leading to D∞ symmetry globally (as in

the simple screw case, where n̂ is untilted).

The other possible state, where also m̂ is tilted (m̂ · p̂ 6= 0, 1) and not coplanar

with n̂ and p̂, is locally of the C1 (globally C∞) symmetry discussed at the beginning

of this section, showing a longitudinal piezoelectric effect. Nevertheless, due to the many

conditions to be fulfilled, it seems rather unlikely that uniaxial, low molecular weight

chiralized nematics will be frequently of C1 symmetry locally.

3. Oblique Biaxial Nematic Order

Recently it has been proposed [8] to describe certain chiral nematogens not only by the

usual uniaxial order parameter Qij = S(n̂in̂j − (1/3)δij), but in addition by a second

oblique biaxial one, tij = T (n̂in̂
(2)
j + n̂jn̂

(2)
i − (2/3)δijn̂kn̂

(2)
k ), thus introducing a second

director n̂(2), which is oblique compared to n̂, i.e. n̂· n̂(2)= cos θ 6= 0, 1. It is assumed [8]

that the nematic ordering is still given by n̂ (representing the long molecular axis), while

n̂(2) represents a less anisotropic molecular axis and is averaged out in a perfectly ordered

nematic state, but becomes manifest in the presence of an electric field (as in ref. [8]) or

a helix. Adopting this scenario we will show that the cholesteric state can then support a

longitudinal piezoelectric effect.

The Ginzburg-Landau free energy density for tij can now be written as (note that
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the tensors b to k(ν) in eq.(3.1) are not only functions of δij and εijk as usual, but also of

the conventional order parameter Qij)

f = aQijtij + bijkl tijtkl + cijklm(tlm∇iQjk + Qlm∇itjk) + dijklm tij∇ktlm

+(e(1)
ijklmnpq∇iQjk + e

(2)
ijklmnpq∇itjk)tlm∇nQpq

+(f (1)
ijklmnpqr∇iQjk + f

(2)
ijklmnpqr∇itjk)tlm∇n∇pQqr

+g
(1)
ijklmnp∇itjk∇l∇mtnp + g

(2)
ijklmnp(∇iQjk∇l∇mtnp +∇itjk∇l∇mQnp)

+(h(1)
ijklmp∇iQjk + h

(2)
ijklmp∇itjk)∇ltmp

+(k(1)
ijklmpqrs∇itjk + k

(2)
ijklmpqrs∇iQjk)∇lQmp∇qtrs + O(T 3)

(3.1)

where we have written down only terms up to order q3
0 and T 2, since we expect T to be

small. Terms linear in∇itjk are possible due to the existence of Qij. When evaluating their

precise structure, the tensors b to k(ν) are expanded into the isotropic tensors δij and εijk, as

well as into Qij , whose equilibrium form is given by the usual Ginzburg-Landau expansion

in Qij . Explicitly we have e.g. bijkl = b1δikδjl +b2(Qikδjl +Qjlδik)+b3QijQkl +b4QikQjl,

cijklm = c1εlijδkm + c2Qpkεilpδjm + . . . and dijklm = d1εiklδjm +d2εiklQjm + . . .. Although

a precise physical meaning cannot be given for all the parameters involved in eq.(3.1), the

quantities bν/a are related to the biaxial order due to the presence of n̂
(2)
i , while the others

govern the spatial structure (cf. below).

Assuming a simple screw structure for n̂ (a conic structure as discussed in chap. 2

would not alter the conclusions of this chapter) we make the ansatz

n̂i = δix cos q0z + δiy sin q0z

n̂
(2)
i = δix(cos q0z cos θ − sin q0z cosψ sin θ)

+δiy(sin q0z cos θ + cos q0z cosψ sin θ) + δiz sinψ sin θ

(3.2)

where cos θ = n̂ · n̂(2) is related to the molecular geometry. Since intramolecular energies

are much higher than the orientational energies we are dealing with in the Ginzburg-Landau
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expansions, we can keep fixed the molecular angle θ, when determining the orientation of

n̂ and n̂(2). The angle ψ (yet to be determined) governs the direction of n̂(2) on the cone

around n̂, which is accessible for fixed θ, i.e. ψ = 0 means n̂(2)⊥ p̂ (p̂ is the helix axis,

here taken as the z-direction), while ψ = π/2 makes n̂, m̂, and p̂ coplanar. With the help

of eq.(3.2) and assuming that θ and ψ are spatially homogeneous, the free energy density

(eq.(3.1)) reduces to

f = αT + (β + γ cos2 ψ)T 2 + O(T 3) (3.3)

from which the equilibrium structure is obtained by minimization with respect to T and

ψ. The coefficients α, β and γ are complicated functions of the angle θ, the coefficients

contained in eq. (3.1) and the helical wave length. There are three different helical states

(q0 6= 0) possible, with i) ψ = 0, ii) ψ = π/2 and iii) ψ = ψ0 6= 0, π/2 (Fig.2). The

first structure i) is of C2 symmetry locally with the two-fold rotation axis being the he-

lix axis, i.e. one obtains C∞ symmetry globally when coarse grained over many pitch

lengths. Thus, this is an untilted, polar phase, which supports a longitudinal piezoelectric

effect. The second one also has C2 symmetry, but the rotation axis is normal to the helix

axis (reminiscent of conventional smectic C∗ structures) and does not show a longitudinal

piezoelectric effect (it is of D∞ symmetry globally). The latter structure has C1 symmetry

lacking any rotational symmetry axis. Thus, this structure also supports a longitudinal

piezoelectric effect, but it is a possible equilibrium state only, if higher order terms (at

least cubic in T ) in eq.(3.3) are important (i.e. T is not small), while the structures i) and

ii) are possible also for small T . Within the truncated expansion (3.3) the polar state i) is

stable compared to state ii), if either β and γ are negative, or γ < 0 and β > −γ, or β < 0

and γ > −β, respectively, where however, taking into account the cubic terms in eq.(3.3),
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the stability relation among the three possible states is much more complicated. A polar

axis parallel to the helix axis can be defined by Qkl
~∇tkl or n̂k

~∇n̂
(2)
k , which reads (cf.(3.2))

n̂k∇jn̂
(2)
k = −q0δjz cosψ sin θ (3.4)

showing again that a polar axis exists only for case i) and iii).

4. Biaxial Polymeric Systems

The scenarios outlined in the previous chapters are not only applicable for low molecular

weight liquid crystals, but are valid for side-chain liquid crystalline polymers as well.

However, due to the existence of the polymeric backbone besides the mesogenic side-

chains, there are additional features and scenarios possible. We will not deal here with the

relative macroscopic variables [11,12] characteristic for the presence of both, polymeric and

liquid crystalline subsystems, but rather concentrate on additional equilibrium structures

and their symmetries possible in such hybrid systems.

In the isotropic phase of side-chain polymers generally the orientations of the back-

bone chain as well as those of the side-chains are random and isotropic. However, in

the nematic phase, e.g. the orientational order of the side-chain usually also has an ori-

entational (albeit weak) effect on the backbone [13]. The averaged conformation of the

polymeric chain is no longer spherical, but slightly uniaxial, where the preferred direction

does not necessarily coincide with the nematic direction of the side-chains nor is it re-

lated to the angle between individual side-chains and the local backbone segment. We will

now discuss what structures can be obtained by chiralizing such a weakly biaxial nematic

system.

We will concentrate on two possibilities: Either the averaged angle between the

individual side-chain and the local backbone segment is fixed and preserved upon chiral-
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izing, or the conformational anisotropy of the backbone is more or less unaffected by the

formation of the helix in the side-chain system. In the latter case (conformational biaxial

cholesterics or CBC) the preferred direction of the backbone conformation and the helical

axis generally do not coincide, while in the former case (fixed cone cholesterics, FCC) they

can be expected to be equal.

4.1 CONFORMATIONAL BIAXIALITY.

In the CBC case it is assumed that the mesogenic side-chains form a helix upon chiralization

as they would do without the backbone (i.e. as a low molecular weight system). Thus,

the resulting helix is most probably of the simple screw type, although conic structures

are possible in principle, too (cf. section 2). However, there is in addition the (weak)

conformational anisotropy of the backbone, whose preferred direction, l̂, is independent

from, and generically not parallel with, the helix axis p̂. Since this biaxiality may be weak

(as it is in appropriate nematic phases), it may be difficult to detect the biaxiality directly

in experiments. In the cholesteric phase (even if n̂ is untilted) the symmetry is either C2

locally (for l̂ ⊥ p̂) with the axis of rotational symmetry parallel to the helix axis, or C1

(for l̂ · p̂ 6= 0, 1) everywhere, except in the single planes, where n̂ is either perpendicular

to both, l̂ and p̂, or coplanar with these two globally preferred directions (Fig.3). Thus,

there is a polar preferred direction along the helical axis almost everywhere (in both, the

locally C1 and C2 symmetric case, which give C∞ symmetry globally) and a longitudinal

piezoelectric effect can be expected.

With the simple screw ansatz for n̂ including an arbitrary helical phase φ0, n̂ =

â cos(q0z+φ0)+ b̂ sin(q0z+φ0), and the conformational anisotropy axis l̂ tilted away from

the helix axis, l̂ = p̂ cos θ + b̂ sin θ, one can construct the polar vector (along the helix axis
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p̂, cf. (Fig. 3), here taken as the z-axis) by

n̂i l̂i l̂j∇kn̂j =
1
2
q0δkz sin(2q0z) sin2 θ (4.1)

Obviously this polar direction does not exist for θ = 0 (̂l ‖ p̂), since then the symmetry

is D2 locally (D∞ globally). The polar vector changes sign periodically when going along

the helix axis (the z-axis), thus representing a polarization wave with the polarization

changing sign every half wavelength. Of course, simple coarse graining over many pitch

lengths would eliminate this polar axis, but (naive) coarse graining is a procedure that

never makes sense in polarization wave states or - more classically - in an antiferroelectric

state.

4.2 FIXED CONE CHOLESTERICS:

In the FCC case it is assumed that ψ0, the angle between the direction of the side-chains

and the orientation of the local backbone segment, is fixed in the mean by some local

interactions and does not change very much when the side-chains order in a nematic or

cholesteric structure giving rise to the macroscopic director n̂. To form a helical arrange-

ment of the side-chains keeping the local angle ψ0, a large portion of the backbone has

to be oriented parallel to the helical axis. Thus, a global anisotropy of the backbone

conformation is induced, where the preferred direction due to the backbones, l̂, coincide

with the helical axis. If the local angle ψ0 is accidentally equal to π/2, then the system

is isomorphic to the low molecular weight systems discussed in Chap.2. However, in the

general case ψ0 6= π/2, a conic helical structure arises (Fig.4), as is obtained by minimizing
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the gradient free energy density

f =
B

2
(cosψ0 − l̂ · n̂)2 + C1n̂ · curln̂ + C2(̂l× n̂)i l̂j∇in̂j + C3(̂l× n̂)i l̂j∇jn̂i +

K1

2
(divn̂)2

+
K2

2
(n̂ · curln̂)2 +

K3

2
(n̂× curln̂)2 +

K4

2
(̂l · curln̂)2 +

K5

2
(̂l× curln̂)2

(4.2)

where f is written as the sum of an elastic energy, where the coefficient B denotes the

strength of the interaction to keep the local angle ψ0, and a gradient part obtained from

general symmetry considerations, where Cν and Kν characterize the various chiral and achi-

ral curvature elastic energies, respectively. K1, K2, K3 and C1 are the elastic coefficients

familiar from ordinary cholesterics. With the ansatz n̂ = (â cosφ + b̂ sinφ) sinψ + l̂ cosψ

where φ = q0̂l · r and â, b̂ and l̂ form an orthogonal triad, the equilibrium structure is

found to be always a tilted (conic helical) state, where the cone angle ψ is somewhat dif-

ferent from ψ0, due to the presence of the helix. For small q0 (large pitch) or strong B the

solution can be simplified into

cosψ = cosψ0

(
1 +

K3 + K5

B
q2
0

)
q0 =

C1 + C3

K3 + K5 + (K2 −K3) sin2 ψ0

(4.3)

Eq.(4.3) represents a locally C2 symmetric structure (with the symmetry axis perpendicular

to the helix axis) quite similar to conventional smectic C∗ structures.

However, there is an additional local biaxility due to the different orientations of

the side-chains and the backbone. In contrast to the helix induced (small) biaxiality in

low molecular weight systems, this biaxiality does not vanish with q2
0 and does not have

to be small. The biaxiality induces a preferred direction, m̂(0) ≡ (n̂ × l̂)/ | n̂ × l̂ |, in the

plane perpendicular to n̂. In a homogeneous (i.e. nematic) state this second preferred

direction is also in the plane perpendicular to l̂, while in a helical phase it can be tilted
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out of this plane (m̂(0) 6= m̂ and m̂ · l̂ ≡ cosψm 6= 0, cf. Fig.1 with l̂ instead of p̂) as

we will show in the following. Describing the tilted biaxiality perturbatively by an order

parameter Mij ≡ M(m̂im̂j − m̂
(0)
i m̂

(0)
j ) a Ginzburg-Landau free energy (density) of the

form of eq.(3.1) is obtained, where tij is replaced by Mij and Qij stands for either, the

uniaxial nematic order parameter Qij ∼ (n̂in̂j − (1/3)δij) (with n̂ tilted) or the backbone

order parameter Lij ∼ (l̂i l̂j − (1/3)δij). In terms of M and m̂ this energy can be written

fm =M
{
D1(̂l · m̂)2 + E1m̂ · curlm̂ + E2n̂i (n̂× m̂) · ~∇m̂i + E3m̂i (m̂× n̂) · ~∇n̂i

+ E4l̂i (̂l× m̂) · ~∇m̂i +
1
2
F1(n̂ · curlm̂)2 +

1
2
F2(̂l · curlm̂)2 +

1
2
F3(m̂ · curln̂)2

+
1
2
F4(m̂× curln̂)2 +

1
2
F5(̂l× curlm̂)2 +

1
2
F6(n̂× curlm̂)2 +

1
2
G1(divm̂)2

}
+ M2

{
D2 +

1
2
G2(m̂ · curlm̂)2 +

1
2
G3(m̂× curlm̂)2 + . . .

}
+ O(M3, q3

0)

(4.4)

Using an explicit representation for m̂, n̂, and l̂ (e.g. l̂i = δiz, n̂ and m̂ given by eq. (A.2)

and (A.5), respectively) the free energy is written as

fm =M(D1 sin2 Θm + q0[E1 + E′2 sin2 Θm] + q2
0 [F ′1 + F ′2 sin2 Θm])

+M2(D2 + q2
0[G
′
1 + G′2 sin2 Θm + G′3 sin4 Θm])

(4.5)

Minimizing eq.(4.5) with respect to the tilt order parameter M leads to fm = sin2 Θm(−α̃+

β̃ sin2 Θm + γ̃ sin4 Θm). Minimizing with respect to the tilt angle of m̂, Θm (Fig.1) then

generally gives a non-zero tilt angle. The condition for this to be the case reduces for small

q0 to q0E1 > 0, which is always fulfilled under the usual assumption [2] E1/G2 ∼ C1/K2

(cf. eq. (4.2)) ∼ q0. In that case the tilt order parameter is small of order q2
0 .

This tilted (conic) structure, where both, n̂ and m̂ are tilted, has an overall C1

symmetry (except in the very special case that m̂, n̂, and l̂ are accidentally coplanar).

The polar axis (along the helix axis) can be defined as in eq.(A.7).

There is also the possibility that the local forces, which fix the angle between l̂ and
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n̂, also lead to a preferred angle, ψm0, between l̂ and m̂, which is then generically different

from π/2. In that case eq.(4.4) carries the term MBm(cosψm0 − m̂ · l̂)2 instead of the

term proportional to D1.

Thus we can expect under the FCC scenario to have conic helical structures with C1

symmetry locally, although local C2 symmetry (m̂ ·̂l = 0) with the polar axis perpendicular

to the helix axis cannot be ruled out completely. The former case supports ferroelectricity

and longitudinal piezoelectricity, while the latter does not.

5. Discussion and Conclusion

From the analysis in the last three sections we extract as the major conclusion that there

are several possibilities, both for low molecular weight and for polymeric cholesteric liquid

crystals, to obtain a globally polar structure with C∞ symmetry, where the polar axis

coincides with the helical axis. For such polar cholesteric structures one obtains [14] for

the relation between the macroscopic polarization Pi and the compression of the helix

∇iRi (where Ri is the displacement vector)

Pi = ζ(P )q0pipjpk∇jRk (5.1)

where pi is the polar direction parallel to the helical axis. For polar cholesteric liquid

crystalline elastomers and sidechain polymers above their Maxwell frequency one has in

addition [15]

Pi = ζ
(P )
ijk q0εjk (5.2)

where εjk is the strain tensor associated with the permanent (elastomeric) or transient

(polymeric) network. The associated piezoelectric tensor ζ
(P )
ijk takes for C∞ symmetry the

form

ζ
(P )
ijk = ζ

(P )
1 pipjpk + ζ

(P )
2 piδ

tr
jk + ζ

(P )
3 (pjδ

tr
ik + pkδtr

ij ) (5.3)
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with the transverse Kronecker symbol δtr
ij = δij − pipj projecting into the plane perpen-

dicular to the polar helical axis pi. In a local description of cholesteric structures having

C1 symmetry locally (or locally C2 symmetric ones with the symmetry axis parallel to

the helical axis) one finds again a linear relation between the macroscopic polarization Pi

and deformations of the helix and the network (the latter for polymeric and elastomeric

materials only) similar to equations (5.1) and (5.2) except that now one has - due to the

lower symmetry - a larger number of piezoelectric moduli.

In conclusion we can state that locally C1 symmetric cholesteric structures (or lo-

cally C2 symmetric ones with the symmetry axis parallel to the helical axis) supporting a

longitudinal piezoelectric effect, can occur in low molecular weight systems as well as in

polymeric and elastomeric systems, but it is much more likely to find them in the latter

cases. For the systems, where experimentally a longitudinal piezoelectric effect has been

demonstrated, further investigations are necessary to reveal the detailed structure of their

cholesteric state.
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Appendix 1:

In this Appendix we give a Ginzburg-Landau description of the helix formation at a first

order isotropic to cholesteric phase transition in low molecular weight systems. The uni-

axial orientational order S is not infinitesimally small and is assumed to be given by the

homogeneous part of the Ginzburg-Landau free energy. The gradient part of this free

energy (density), which governs the spatial structure of the state, is expanded up to cubic
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order in Qij = S(n̂in̂j − (1/3)δij) reading

f = a Qijεikl∇kQlj + c1(∇jQij)(∇lQil) + c2(∇jQik)(∇jQik)

+ (b1 δjlδpq + b2 δjpδlq)εmik(∇m∇jQil)(∇pQkq) + d QklQjlεpik∇pQij

+ e1Qkl(∇jQik)(∇jQil) + e2Qil(∇jQij)(∇kQlk)

+ f
(1)
jlpqrs εikm(∇mQkj)(∇lQip)(∇qQrs) + f

(2)
jlpqrs εikm(∇mQjl)(∇pQiq)(∇rQks)

+ gijklmpqrsQij(∇kQlm)(∇p∇qQrs) + O(S4, q4
0)

(A.1)

With the conic helical ansatz

ni(r) = (âi cos[q0p̂ · r] + b̂i sin[q0p̂ · r]) cosΘn + (â× b̂)i sinΘn (A.2)

eq.(A.1) reduces to

f = cos2 Θn

(
q0C +

1
2
q2
0 [D1 + D2 cos2 Θn] +

1
3
q3
0 [B1 + B2 cos2 Θn + B3 cos4 Θn]

)
(A.3)

where the coefficients C, Bν and Dν follow from the parameters and tensors a to g of

eq. (A.1). Minimizing with respect to the helical wavelength q0 and the tilt angle Θn

then leads to two possible equilibrium states with either Θn = 0, the untilted simple

screw structure, or Θn 6= 0, the tilted (conic) structure. The latter can exist only, if the

coefficients in eq.(A.3) fulfil certain complicated conditions. In particular, for small q0, the

conic structure does not exist.

In the untilted case [2] as well as in the conic case the helix introduces a small

biaxiality, i.e. a preferred direction, m̂, in the plane perpendicular to n̂. With a biaxial

order parameter Bij ≡ Qij +Mij with Mij ≡M(m̂im̂j−(1/3)δij), where the biaxial order

M vanishes as q2
0 and Qij is assumed to be given by the procedure outlined above, the

Ginzburg-Landau expansion leads to a free energy (density) for Mij and its gradients of
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the form of eq.(3.1), when tij is replaced by Mij there. In terms of m̂ and n̂ this equation

has the form

fm = F1m̂ · curlm̂ + F2n̂i (n̂× m̂) · ~∇m̂i + F3m̂i (m̂× n̂) · ~∇n̂i +
1
2
G1(divm̂)2

+
1
2
G2(m̂ · curlm̂)2 +

1
2
G3(m̂× curlm̂)2 +

1
2
G4(n̂ · curlm̂)2

+
1
2
G5(n̂× curlm̂)2 +

1
2
G6(m̂ · curln̂)2 +

1
2
G7(m̂× curln̂)2

(A.4)

With the general ansatz

mi(r) =âi(sin[q0p̂ · r] sinψ − cos[q0p̂ · r] sinΘn cosψ)

−b̂i(cos[q0p̂ · r] sinψ + sin[q0p̂ · r] sinΘn cosψ) + (â× b̂)i cosΘn cosψ

(A.5)

and eq. (A.2) this reduces to

fm(ψ) = α′ + β′ cos2 ψ + γ′ cos4 ψ (A.6)

from which one can in principle obtain an equilibrium solution with nonvanishing tilt angle

of m̂, sinΘm ≡ cosΘn cosψ 6= 0 (Fig.1). There is C1 symmetry and a polar axis (along

the helical axis) defined by

q0εijk(n̂ · ~∇)n̂i(m̂ · ~∇)m̂j = −q3
0 p̂k sinΘn sinΘm sinΘn×m (A.7)

if the tilt angles Θn and Θm are non-zero and if n̂ and m̂ are not coplanar with p̂ (in

the coplanar case Θn = π/2 − Θm and n̂ × m̂ is untilted, since sinΘn×m ≡ (cos2 Θn −

sin2 Θm)1/2 = 0). However, due to the smallness of the biaxial order M, all the terms

contributing to γ′ in eq. (A.6) may generally be neglected in the case discussed here

leading to the untilted m̂ – structure, only.

Appendix 2: Hydrodynamic Description

In the bulk of this manuscript we have discussed the conditions for the appearance of

cholesteric structures with a polar axis parallel to the helical axis (C∞ symmetry globally).
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Naturallly the question arises how the macroscopic and hydrodynamic properties of such

a phase differ from those of conventional cholesteric structures (D∞ symmetry globally).

We will concentrate in the following on global properties exclusively, i.e. on length scales

large compared to the pitch for which a ’coarse-grained’ [16] hydrodynamic description

applies. Such an analysis has been given by Lubensky [17] for nonpolar cholesterics. We

modified this description by incorporating into the hydrodynamic equations reversible

dynamic terms [18-24] that exist only for the various types of polar cholesteric phases

considered here. These polar terms (including in particular the material tensor gij or

its anisotropic part ga) provide an additional coupling between the stress tensor and the

molecular field of the director. Since they are of higher order in the gradients than the

non-polar coupling terms, they do not play a significant role, generally, and it seems to

be hard to distinguish experimentally a conventional from an unconventional cholesteric

structure by their presence or absence. Another subtle polar effect (a dissipative dynamic

coupling between the stress tensor and a temperature gradient as well as an electric field)

was mentioned in the App. of Ref. [25].

Static polar coupling effects, such as (longitudinal) piezoelectricity and pyroelectric-

ity, were discussed by the authors for both, low molecular weight liquid crystals [24-26]

and liquid crystalline elastomers [15, 27]. These effects exist only in the polar structures

discussed in this paper and are absent in the conventional cholesteric structures. Of course,

to determine directly whether the systems studied in refs. [5-7] belong to the class of polar

cholesterics, it would be highly desirable to measure a P - E hysteresis loop in order to find

out the precise electric properties of the ground state of these cholesteric liquid crystalline

elastomers. Clearly the same type of experiment is also necessary for the low molecular

weight systems investigated in refs. [8, 9].
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Figure Captions:

Fig.1: Two orthogonal directions n̂, m̂, both spiraling about the helical axis p̂ and both

tilted out of the plane perpendicular to p̂ by the angle Θn and Θm, respectively.

The structure has locally C1 symmetry (except for n̂, m̂, and p̂ being coplanar).

Fig.2: Two oblique directions n̂, n̂(2) (Θ 6= 0, π/2) spiraling about the helix axis p̂, where

i) both are untilted, ii) they are coplanar with p̂, and iii) n̂(2) is tilted and not

coplanar (general case). The symmetry of the structures is locally C2 with the

polar axis parallel (case i) or perpendicular (case ii) to p̂, while case iii) corresponds

to C1 symmetry locally.

Fig.3: The direction n̂ spirals about the helical axis p̂ and is perpendicular to p̂ (simple

screw structure); the direction l̂ of the backbone conformational anisotropy is i)

oblique or ii) perpendicular to p̂. The local symmetry is C1 (case i) or C2 (case ii)

with the symmetry axis parallel to p̂ (except for the planes, where p̂, n̂, and l̂ are

coplanar).

Fig.4: The direction n̂ spirals about the helical axis p̂ including a fixed angle ψ0(ψ0 6=

0, π/2) with the helical axis p̂ . The average preferred direction l̂ of the backbone

is parallel to the helical axis p̂ .
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