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Abstract — We present linear macroscopic dynamic equations for nematic liquid crystalline

side-chain polymers. The visco-elastic degree of freedom of the polymeric backbone is taken into

account by a strain field, which relaxes on a long but finite time scale. Besides the usual director

field to describe the nematic ordering of the side-chains we also keep the nematic order parameter

modulus as a variable, in order to describe the intrinsic connection of the polymeric and nematic

aspects in nematic side-chain polymers. We discuss two experiments where our concept can be

tested.

PACS: 61.41.+e, 61.30.-v, 05.70.Ln

1. Introduction and Motivation

Synthesis of polymers with mesogenic side-chains has lead in the past years to the ap-
pearance of various new liquid crystalline phases.1−8 They are of great interest for potential
applications but also pose a new challenge for basic science. A complete understanding and
description of their macroscopic dynamical behaviour does not exist yet. Here we want to
take one modest step in that direction by discussing the linear macroscopic dynamics of
nematic side-chain polymers. Thus we have to deal with the (linear) visco-elasticity of the
polymeric backbone, the nematic ordering of the side-chains and the (dynamic) interaction
between them. Using long and flexible spacers between the mesogenic group and the chain
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segments, this interaction can be made rather weak, so that the polymeric and the nematic
aspect can be discussed seperately, especially in the static limit. Early considerations of
the liquid crystalline influence on polymeric behaviour (and vice versa) can be found in
Ref. 9 and 10 .

Here we want to use the generalized hydrodynamic method in order to de-
scribe the macroscopic dynamics of polymeric side-chain nematic liquid crystals (pscN).
The hydrodynamic method11,12 uses only general symmetry arguments and irreversible
thermodynamics13 to establish phenomenological dynamic equations.14−17 In the present
case this method has to be generalized by taking into account not only the true hydrody-
namic variables (which become infinitely slow in the homogeneous limit), but also some
slow microscopic variables, which are slow enough to be relevant for the usual hydrody-
namic frequency range. Such additional variables are required in order to give a com-
plete dynamic description for low but finite frequencies in systems, where no clear distinc-
tion between the time scale of hydrodynamic variables and non-hydrodynamic variables is
possible.18−20 Of course, this approach is useful only, if there is only a small number of
slow non-hydrodynamic variables.

In isotropic polymer melts and solutions such non-hydrodynamic variables21 are nec-
essary to describe hydrodynamically the well-known viscoelastic behaviour.22 This arises
because the long polymer molecules entangle in a rather complicate way giving rise to
slowly relaxing stresses and strains,23 in contrast to ordinary liquids, where such internal
stresses and strains relax on a microscopic time scale. Using a non-conserved strain field
as additional variable the linear visco-elastic behaviour of polymers can be described adae-
quately, and the resulting equations include the simple Maxwell model,24 although they
are more general. Throughout this paper we will restrict ourselves to linear visco-elasticity.

The fact that in pscN nematic and polymeric aspects are coupled physically has some
obvious consequences. First all polymeric features as e.g. viscosity, elasticity etc. become
anisotropic (uniaxial) due to the presence of the nematic director. Second all nematic
features get renormalized due to the presence of long polymeric molecules, e.g. curvature
elastic constants or viscosity parameters may change their magnitude (or their relative
magnitude compared to each other). However, this latter kind of interaction between
polymeric and nematic aspects does not change the structure of the dynamic equations.
Here we propose that for the dynamics this interaction also leads to qualitatively new
effects to be described by additional macroscopic variables.

The dynamical interaction between visco-elasticity and nematic order of the side-
chains will explicitly be taken into account by using the nematic order parameter modulus
as an additional non-hydrodynamic, but slow variable. This variable is usually used in
a macroscopic description only for the mean-field dynamics near the nematic to isotropic
phase transition, but is discarded in low-molecular weight nematics (lmwN) away from
the phase transition, because there it relaxes on a microscopic time scale. The situation
is different in polymeric nematics, because of the physical linkage between the backbone
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and the mesogenic unit. Fluctuations of the position of the backbone may influence the
degree of ordering in the nematic side-chains, and vice versa, nematic order fluctuations
cannot relax instantaneously (i.e. in a microscopic time), because the process of ordering
(or disordering) is slowed down by the hindrance due to the backbone.

Since there is no general rule how to choose necessary additional slow non-
hydrodynamic variables, one has to rely on physical intuition and imagination, when se-
lecting the relevant ones. Final proof for the usefulness of a given choice has to come
from the verification of experimental consequences that follow from that choice. The set of
macroscopic variables we have discussed above to be necessary for the dynamic description
of nematic side-chain polymers is in that sense tentative. It is also a minimal set, since
there is the possibility that additional variables are relevant under certain circumstances.
Especially, we do not consider the dynamic interaction of fluctuations of the direction of
the mesogenic side-chains and the (local) direction of the backbone unit, to which it is at-
tached. The statics of this interaction has already been discussed some time ago.25 In the
case of short and stiff spacers between the mesogenic units and the backbone, this interac-
tion requires the introduction of even more slow non-hydrodynamic variables, which will
be discussed elsewhere. Here, however we deal with the case of long and flexible spacers,
which renders the interaction of the nematic preferred direction of the side chains with the
backbone direction weak and allows the fluctuations of the backbone direction to remain
local and to be fast internal chain fluctuations, not to be considered in a macroscopic
description.

2. The Linearized Macroscopic Equations

As already discussed in the Introduction we will focus exclusively on linearized macro-
scopic equations throughout the present paper. In the truly hydrodynamic regime (i.e.
for frequencies ω small compared to all microscopic frequencies 1/τc : ωτc � 1 and for
wavevectors k small compared to all wavevectors associated with microscopic length scales
lc: klc � 1) the densities of the conserved quantities and the variables associated with
spontaneously broken (continuous) symmetries are the appropriate hydrodynamic vari-
ables. Thus, for lmwN the dynamics of the following spatio-temporal fields has to be
considered: the density ρ associated with the law of mass conservation, the density of
linear momentum g (conservation of linear momentum), the energy density ε (energy con-
servation) and the director n̂ (unit vector associated with the broken rotational symmetry
and with n̂ indistiguishable from −n̂). In binary mixtures without chemical reactions the
concentration c of one constituent is an additional hydrodynamic variable.

In pscN the visco-elastic properties of the backbone are described by using the strain
field εij(r, t). This is not a truly hydrodynamic variable as the other variables introduced
above, since it relaxes in a large, but finite time (the Maxwell time). Nevertheless we
keep the strain field in our list of macroscopic variables to account for the empirical fact,
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that polymer melts and solutions behave at low frequencies as simple liquids, but on suffi-
ciently high frequencies like solids. On the other hand in solids the strain field (or rather
the displacement field u, from which it is derived,) is a truly hydrodynamic variable and
does not relax even in the long time limit (it only diffuses), since it is connected with the
broken translational symmetry characteristic for solids. In polymers the strain field may
be regarded as describing strains in the polymeric backbone configuration, which may exist
there for short but finite times, because of the various entanglements of the chains. How-
ever, our use of the strain field is not based on, nor resticted to, any microscopic model of
visco-elasticity. As discussed in the Introduction we will keep the order parameter modulus
S(r, t) in our list of variables, since it describes the intrinsic interaction between the visco-
elastic properties and the nematic properties of pscN. Again this is not a hydrodynamic
variable and relaxes in a finite time.

Our goal is now to derive for all these macroscopic variables balance equations valid
for long wavelengths and for frequencies smaller than all microscopic frequencies. The
Maxwell time and the nematic order relaxation time are considered to be macroscopic
time scales in this context. The approach used to derive such balance equations is linear
irreversible thermodynamics 15. In the macroscopic regime local thermodynamic equilib-
rium guarantees the validity of the Gibbs relation

Tdσ = dε− µdρ− µcdc− v · dg −WdS − Φijd∇jni −Ψijdεij . (2.1)

This relation can be viewed as a local formulation of the first law of thermodynamics. In
deriving eq.(2.1) one has averaged already over many molecules or chain segments, or -
to phrase it differently - each fluid particle contains enough material so that a continuum
approximation is justified. Eq.(2.1) gives a relation between the increments in the macro-
scopic variables and the entropy density σ(r, t). Only gradients of n̂ enter eq.(2.1), since
homogeneous rotations of n̂ do not cost energy.

The quantities multiplying the increments of the thermodynamic variables in the
Gibbs relation are called thermodynamic conjugate quantities or thermodynamic forces.
They express how the energy changes, when one thermodynamic variable is changed while
all the other ones are kept constant. The thermodynamic forces in eq.(2.1) we have not
yet alluded to are the temperature T (r, t), the relative chemical potential of the mixture
µc(r, t), the restoring forces of nematic order changes and director distortions, W and
Φij respectively, and the elastic stress Ψij(r, t), the quantity which is the thermodynamic
conjugate to the strain field εij(r, t). Since εij(r, t) is symmetric, Ψij(r, t) can be chosen
to be symmetric without loss of generality.

The static behaviour of the system is now obtained by connecting the thermodynamic
forces to the macroscopic variables. As we have seen above these forces can be obtained
from the energy, by taking variational derivatives with respect to the variables. For lin-
earized thermodynamics it is then sufficient to expand the energy up to second order in the
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variables. This expansion must preserve all fundamental invariance properties of the sys-
tem under investigation including for example translational and rotational invariance, time
reversal symmetry, symmetry under spatial parity, uniaxiality and n̂ to −n̂ symmetry.

In the present case of pscN we obtain for the energy E =
∫

ε dτ

E = E0 +
∫

dτ
[1
2
cijklεijεkl + (χρ

ijδρ + χσ
ijδσ + χc

ijδc + χS
ijδS)εij

+
1
2
Kijkl(∇jni)(∇lnk) +

a

2
(δS)2 + (bσ δσ + bρ δρ + bc δc)δS

] (2.2)

where E0 contains all the terms already present in a simple liquid and where the summation
convention over repeated indices is implied in eq.(2.2) and all the following equations. The
tensor Kijkl is the usual Frank curvature-elastic tensor, Kijkl = K1δ

tr
ij δtr

kl+K2npεpijnqεqkl+
K3njnlδ

tr
ik, where δtr

ij = δij − ninj . The elastic tensor has the form

cijkl =c1δ
tr
ij δtr

kl + c2(δtr
ikδtr

jl + δtr
il δtr

jk) + c3ninjnknl

+c4(δtr
ij nknl + δtr

klninj) + c5(δtr
iknjnl + δtr

il njnk + δtr
jkninl + δtr

jl nink)
(2.3)

Cross-couplings between elements of the diagonal part of the strain tensor and the density,
entropy density, concentration and nematic order variations are expressed by the static
susceptibility tensors χρ

ij , χσ
ij , χc

ij and χS
ij , respectively, which have the uniaxial form

χij = χ‖ninj +χ⊥δtr
ij . Note that in eq.(2.2) we have to use explicitly the deviations of the

variables from their equilibrium values (e.g. δρ(r, t) = ρ(r, t)− ρeq), while under gradients
or time derivatives this distinction is unnecessary (since (∂/∂t)ρeq = 0 = ∇iρeq etc.).
By inspection of eq.(2.2) we see that there is no static cross-coupling between strains
and director distortions, only between strains and nematic order variations. The latter
cross-coupling describes the possibility to induce stresses (in the back-bone conformation)
by changing the nematic order (i.e. making the side-chains better or worse aligned with
respect to their average direction) or to have a ”force”, which changes the nematic order, if
a strain in the backbone exists. Of course, this static cross-coupling cannot be seen directly
( in an infinitely slow process), since the elastic behaviour disappears on long time scales
in pscN. In high frequency experiments this cross-coupling is manifest, but has to be seen
in addition to the appropriate dynamical cross-coupling, which will be derived below.

As outlined above the generalized forces are evaluated by taking the variational deriva-
tive of the generalized thermodynamic potential with respect to the appropriate variable,
while keeping all other variables constant. We find for example

Ψij =
δE

δεij
|... = cijklεkl + χρ

ijδρ + χσ
ijδσ + χc

ijδc + χS
ijδS (2.4a)

Φij =
δE

δ∇jni
|... = Kijkl∇lnk (2.4b)

W =
δE

δS
|... = aδS + χS

ijεij + bσ δσ + bρ δρ (2.4c)
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We can now proceed to the dynamics of pscN. For the conservation laws for density,
density of linear momentum and concentration we have

ρ̇ +∇igi = 0

ġi +∇jσij = 0

ċ +∇iji
c = 0

(2.5)

where σij is the stress tensor and jc
i the concentration current. As we can read off from

eqs.(2.5) and (2.1) the density of linear momentum serves as both, as a variable and as the
current of the density. The balance equations for the non-conserved fields read

σ̇ +∇iji
σ =

R

T
ε̇ij + Xij = 0

ṅi + Yi = 0

Ṡ + Z = 0

(2.6)

In eqs.(2.6) jσ
i is the entropy current, Yi and Z and Xij are the quasi-currents associated

with temporal changes of the nematic order, the director orientation and the strain field,
respectively. The source term R/T in the dynamic equation for the entropy density is the
entropy production. The second law of thermodynamics requires R > 0 and R = 0 for
dissipative and reversible processes, respectively. To guarantee rotational invariance of the
dynamic equation for the strain field, its quasi-current Xij must be symmetric Xij = Xji.
¿From eqs.(2.5) and (2.6) the conservation law for the energy density follows by making
use of the Gibbs relation (2.1). Having written down already the dynamic equations for all
the other dynamic variables, the form of the energy current is thus fixed completely. To
give the currents and quasi-currents (the fluxes) introduced in (2.5) and (2.6) a physical
meaning it is necessary to connect them with the thermodynamic forces (or thermodynamic
conjugate quantities) taking into account all symmetry properties of the system. In the
present paper we concentrate on the linear connection between forces and fluxes, since we
are focusing on the linearized macroscopic dynamics.

All the currents written down in eqs.(2.5) and (2.6) can be split into dissipative and
into reversible parts, depending on whether they give rise to a finite amount of dissipation
(or positive entropy production) or to a vanishing entropy production (R = 0).

Using general symmetry and invariance arguments (e.g. Galilean invariance) we obtain
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for the linear, reversible parts of the currents

gR
i = ρ0vi

σR
ij = pδij −Ψij +

1
2
λkji∇lΦkl −

1
2
(ni∇kΦjk − nj∇kΦik) + βijW

jcR
i = c0vi

jσR
i = σ0vi

Y R
i = −εijkωjnk −

1
2
λijkAjk

ZR = βijAij

XR
ij = −Aij

(2.7)

where p is the hydrostatic pressure, Aij is the symmetric velocity gradient Aij =
1
2 (∇ivj + ∇jvi) and ωi is the vorticity ωi = 1

2εijk∇jvk. The reversible current for the
strain field reflects the fact that for homogeneous translations (solid body translations)
u̇ = v. In the stress tensor there is the elastic contribution from the transient network
(Ψij), the curvature elastic contribution from director distortions (∇jΦij) and a stress due
to variations of the order parameter modulus (W ). The tensor λijk is the flow alignment
(or back flow) tensor, λijk = λ(δtr

ij nk + δtr
iknj). The quantities ρ0, c0, σ0, and S0 are the

equilibrium values of density, concentration, entropy density, and nematic order, respec-
tively, around which the linearized equations are derived. All the reversible currents given
in eq.(2.7) lead to vanishing entropy production R = 0 .

For the derivation of the dissipative parts of the linearized currents in eq.(2.4) and
(2.5) one expands the dissipation function to second order in the thermodynamic forces and
then obtains the dissipative currents by taking the variational derivatives of the dissipation
function with respect to the forces.

We find for the dissipation function

R = R0 +
∫

dτ
[1
2
(
1
τ
)ijklΨijΨkl +

1
2
γij(∇kΨik)(∇lΨjl) +

1
2
κwW 2 + ξijWΨij

+ (∇jΨij)(ζT
ik∇kT + ζc

ik∇kµc + ζW
ik ∇kW ) +

1
2γ1

(∇jΦij)2 + ζn
kjiΨij(∇lΦkl)

] (2.8)

where R0 is the part of the dissipation function already present in simple fluids. The
strain relaxation tensor τ−1 has the same structure as the elastic tensor (2.3) and con-
tains five phenomenological transport coefficients. This strain relaxation is characteristic
for polymers but is absent for permanent networks (elastomers26,27) or solids. The strain
selfdiffusion described by the tensor γij , which is of the usual uniaxial form (as the other
second rank tensors in (2.8)), can be neglected against strain relaxation in the small k limit.
It corresponds to vacancy diffusion in solids or permeation in smectics, although it is ne-
glected in the usual elasticity theory of solids. There are several dissipative crosscouplings
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in (2.8) between strain or stress in the backbone and the other degrees of freedom. The
most important of these, in the small k limit, are the cross-coupling to director distortions
and order variations, characterized by the tensors ξij and ζn

ijk, respectively, where ζn
ijk has

the same structure as the flow alignment tensor λijk and contains one phenomenological
transport parameter ζn. The meaning of these cross-couplings is that dilations or com-
pressions of the backbone network are dynamically coupled to fluctuations of the nematic
order, while the dynamics of shear strains is coupled to director distortions, both on the
dissipative level. Some of the experimental consequencies will be discussed in Sec.3.

All the terms in eq.(2.8) have been chosen in such a way that they guarantee the
positivity of the entropy production in accordance with the second law of thermodynamics,
if the phenomenological transport parameters satisfy a number of positivity conditions
including τ1, τ2, τ3, τ5, τ

2
4 − τ1τ2, γ‖, γ⊥, κw, κw − τ1ξ

2
⊥, κw − τ3ξ

2
‖, and 1− τ5γ1ζ

2
n being all

positive. In addition all contributions to R transform like a scalar, that is they must
be invariant under translations, rotations, under time reversal and operations including
spatial parity and under n̂ to −n̂ symmetry.

As already mentioned above we get the dissipative parts of the currents by taking the
variational derivative of the dissipation function with respect to the appropriate thermo-
dynamic force. We find for example

ZD =
δR

δW
|... =κwW + ξijΨij − ζW

ik ∇k∇jΨij

−Y D
i =

δR

δ∇jΦij
|... =

1
γ1
∇jΦij + ζn

ijkΨjk

XD
ij =

δR

δΨij
|... =(

1
τ
)ijklΨkl + ξijW + ζn

kji∇lΦkl

−1
2
[∇j(γik∇lΨkl + ζT

ik∇kT + ζc
ik∇kµc + ζW

ik ∇kW ) + (i↔ j)]

(2.9)

¿From eq.(2.9) we read off immediately that XD
ij can be split into two parts, the

source terms (first line) and the symmetrized gradient terms (second line) of the form
∇jXi +∇iXj. In a solid the source terms all vanish, since the displacement is a true hy-
drodynamical variable there. ¿From classical elasticity theory of solids28 one knows that
the strain tensor must satisfy a compatibility condition to guarantee that a continuous
displacement field u(r, t) exists. This condition reads

εijkεlmn∇j∇mεkn = 0 (2.10)

and applies, because of eq.(2.6), also to Xij ( εijkεlmn∇j∇mXkn = 0 ) . Obviously, the
reversible part XR

ij and the symmetrized gradient part of XD
ij fulfill this condition, but not

the source terms. Thus, we are lead to the conclusion, that in polymers the compatibility
condition does not apply. This means that in polymers a displacement field in the usual
sense does not exist. Strains in the backbone conformation are not relaxed by displacing
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some lattice points to their equilibrium position (as in solids), but rather by the (slow)
motion of the entangled chains. The elasticity of polymers is therefore described by (six
independent) nonhydrodynamic variables εij , while the elasticity of solids can be reduced
to (three independent) hydrodynamic variables u. +)

3. Possible Experimental Tests of the Macroscopic Dynamics Approach

In this section we briefly discuss how two standard experiments in pscN differ from
the analogous experiments in lmwN on the one hand and conventional polymers on the
other. First we look at sound propagation. In lmwM the velocity of ordinary (first) sound
is isotropic (in the absence of external fields), despite the fact that the phase itself is
uniaxial. The reason is that the curvature elasticity of the director couples to the bulk
compression or dilation of the liquid only in order k2 and gives, thus, only a contribution
to the sound dispersion (ω ∼ k2) but not to the sound velocity (ω ∼ k). On the contrary,
the velocity of first sound in pscN is anisotropic at high frequencies, what has already been
verified experimentally,29,30 but becomes isotropic when sound is excited at low frequencies
(this prediction is yet to be confirmed experimentally). ¿From eq.(2.7) it is easily seen
that the elastic stresses (Ψij) and the nematic order ”force” (W ) contribute to the stress
tensor on equal footing with the ordinary compressibility and thus enter the sound velocity.
But both additional contributions depend manifestly on the direction n̂ rendering the
sound velocity anisotropic. However, both the elastic strain and the nematic order are
relaxational variables and for frequencies smaller than the inverse Maxwell and the order
relaxation time they die out and their contribution to the sound velocity is ineffective. The
first sound dispersion relation has the following structure (neglecting viscosity and other
ordinary sound damping mechanisms as well as the static and dynamic cross-coupling
terms proportional to χij and ξij)

ω2 =k2

[
∂p

∂ρ
+

c3

ρ0

ω2 − iωf1

ω2 − iωf2 − f3
2 +

β2
‖

ρ0

aiω

iω + aκw

]
(3.1a)

ω2 =k2

[
∂p

∂ρ
+

c1 + 2c2

ρ0

ω2 − iωf4

ω2 − iωf2 − f3
2 +

β2
⊥

ρ0

aiω

iω + aκw

]
(3.1b)

for k‖n̂ (φ = 0) and k⊥n̂ (φ = π/2), respectively. The coefficients fα are some linear
combinations of elastic constants cα divided by some transport parameters τα. ¿From
eq.(3.1) the following picture emerges: For large frequencies, both, elastic strains and

+) In Ref. 21 the application of the compatibility condition on isotropic polymers has
lead to some restrictions for the elastic moduli (eq.(2.13) there), which we now believe to
be unnecessary. As a consequence the Maxwell time for bulk compressional or dilational
strains is no longer equal to that for shear strains.
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the nematic order fluctuations contribute to sound propagation and these contributions
depend on φ, the angle between the wave vector and the director, thus rendering first sound
anisotropic. At ω = aκw the sound velocity changes (dispersion) and, below, nematic order
fluctuations no longer contribute to the sound velocity (only to the damping). A second
dispersion step is reached at the inverse Maxwell time, which is a function of the fα’s
and which depends on φ, and below which only (the isotropic) compressibility supports
sound propagation. Taking into account the cross-coupling terms (∼ χij and ∼ ξij) the
dispersion relation becomes even more involved and we refrain from writing down explicit
results.

This picture is also different from that in conventional polymers, where sound is
always isotropic (because of the lack of a director) and where only one dispersion step
exists in the validity range of a macroscopic description (because there are no nematic
order fluctuations).

In addition to ordinary first sound, there is also transverse sound in conventional
polymers above the inverse Maxwell time.21,23 On the other hand in lmwN there is no
tranverse sound at all, since director fluctuations do not lead to propagating waves.12 In
pscN the transverse sound dispersion relation is found from (2.5)-(2.8) for either φ = 0
and v⊥n̂ or φ = π/2 and v‖n̂

ω2 =
c5

ρ0

iω

iω + 4 c5
τ5

k2, (3.2)

which describes a propagating (anisotropic) mode in the high frequency limit only. Again
there is a dispersion step at ω = 4c5/τ5, while below this Maxwell frequency, which is
different from the Maxwell frequencies relevant for first sound, there is no propagation at
all and the dissipative behaviour of lmwN is regained. For general wave vector and velocity
directions also transverse sound velocity becomes anisotropic, while on the contrary, in
conventional polymers transverse sound velocity is isotropic.

The second example of different behaviour of lmwN, conventional polymers and pscN
we discuss briefly is flow alignment. In lmwN application of a stationary shear leads to a
stationary state, where the director is, within the shear plane, tilted from the shear velocity
direction by a constant angle Θ with cos 2Θ = 1/λ (except for some boundary layer), if
the flow alignment parameter fulfils | λ |> 1. Of course, this effect has no counterpart in
conventional polymers. In pscN a stationary flow alignment effect is possible. However,
the externally applied shear Γ ( = ∇xvz, where the director was parallel to the z-axis
before shearing) not only tilts the director, but also creates a (constant) elastic stress and
a (constant) nematic order ”force” (cf.(2.6)-(2.9))

4Ψxz =Γ
(
τ5 cos 2Θ + (τz + τx) sin2 2Θ

)
(3.3a)

2Ψxx =Γ sin 2Θ(τx cos2 Θ− τz sin2 Θ) + O(ξ2) (3.3b)

2Ψzz =Γ sin 2Θ(τz cos2 Θ− τx sin2 Θ) + O(ξ2) (3.3c)
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W =− Γ
2κw

sin 2Θ(βa + ξ⊥τx + ξ‖τz) + O(ξ2) (3.3d)

Here τx and τz stand for some complicated combinations of the transport parameters τα,
and O(ξ2) characterizes terms quadratic in the cross-coupling coefficients ξα. Subscripts
a denote anisotropic parts of second rank tensors, like ξa ≡ ξ‖ − ξ⊥. Due to the dynamic
cross-coupling between elasticity and nematic order fluctuations, not only the elastic shear
stresses, but also elastic bulk stresses are created (3.3b,c). The flow alignment angle is
given by

(cos 2Θ)−1 = λ +
1
2
ζnτ5 + O(ξ2) (3.4)

and acquires a contribution due to the dynamic cross-coupling between elasticity and
nematic orientation.

Apparently the solution (3.3) not only enhances the energy dissipation (cf. (2.8)), but
also leads to non-vanishing elastic stresses and a change in the nematic order. However
it is doubtful, whether the latter two effects can directly be detected by experiments. A
possibility to see the change in the energy dissipation seems to be studying oscillatory
shear, Γ ∼ exp(iωt). In that case the induced elastic strains and nematic order changes
are frequency dependent ∼ 1/(iωT + 1), where T is the appropriate Maxwell time and
the order relaxation time, respectively. For frequencies e.g. smaller than the Maxwell
frequency, the induced strain is in phase with the shear flow, giving rise to additional
energy dissipation, while well above, it is out of phase by π, as it would be in a gel or solid,
and is not dissipative. Thus, the energy dissipation, which is a measure for the energy that
has to be supplied to the system in order to maintain the shear flow, drops (mainly) at
the resonance frequency. The same happens at the inverse nematic order relaxation time.
Other experimentally detectable consequences of this macroscopic dynamics approach will
be discussed elsewhere.
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