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Introduction and motivation. Liquid crystal elastomers have been the object of growing

interest over recent years, because they constitute a new class of materials, combining the

elastic properties of conventional elastomers and the orientational properties of liquid crystals.

They are obtained by chemically linking liquid crystal polymer chains by means of a

crosslinking agent. The mesogenic groups can be either macroscopically disordered (poly-

domain sample) or macroscopically ordered ( mono-domain sample) in the liquid crystalline

state.

In contrast to their equilibrium properties, their dynamic properties are much less

understood. Recently it has been suggested that there is a separation of time scales by several

orders of magnitudes between the director relaxation and the network relaxation (1). Here we

demonstrate experimentally on the same system that this hypothesis does not work and that

the concept of soft elasticity (2) does not apply.

Theoretical overview. De Gennes (3) was the first to point out that it is important to

introduce new terms in the free energy, coupling the director rotations to the permanent

network and to perform the calculation of the shear modulus for n ⊥ v (⊥ geometry) and n // v

(// geometry), where n and v are the director and the velocity. He predicts a conventional

behavior for G’⊥ because of the absence of coupling between the director and the shear, and a

lowering of G’// associated with this coupling. The linearized hydrodynamic equations (ω = 0)

resulting from this picture have been derived by Brand and Pleiner (4).

Very recently, a viscoelastic theory (ω ≠ 0) has been developed by Terentjev and Warner

(2). This theory is based on the linear elasticity of a network in its low-frequency limit, and on

a  This text develops one particular aspect of the oral presentation dealing with the mechanical properties of
nematic elastomers and gels.
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an independent relaxation of the director. The essential part of the description is the

separation of time scales. It is assumed that the relaxation time of the director (10-2s) is much

greater than the time scale of the network which is of the order of the Rouse time (10-6s). As a

result, the complex shear modulus shows the conventional behavior of a rubber with a

frequency-independent G’ for the perpendicular geometry, and a step for G’ and G’’,

associated with the relaxation of the director for the parallel geometry. Measuring G as a

function of frequency is therefore a direct way of testing the theory. In addition, if the concept

of soft elasticity is introduced - shape changes without energy cost - it can be shown that G’

goes to zero in the hydrodynamic limit (2).

Experimental. The mono-domain nematic elastomer we investigated was synthesized in

the Institut für Makromolekulare Chemie, Freiburg, using the method described in (5). It had

90% of mesogens and 10% of  flexible crosslinkers. Its chemical structure is shown in Fig. 1.

Fig. 1. Chemical structure ( x = 90%, y = 10%)

The complex shear modulus G = G’ + iG’’ was measured as a function of frequency and

temperature using the piezo-rheometer described previously (6). The principle of this

apparatus consists in applying a very small strain ε (10-4) to the sample by means of a shear

piezoelectric ceramic, and measuring the transmitted stress σ using a second ceramic. The

complex shear modulus G of the sample is given by G = σ/ε. Due to the planar orientation of

the director within the film, it was possible to conduct experiments applying the shear parallel

or perpendicular to the director and to determine G// and G⊥. The sample was ~ 380 µm thick,

and had a surface area of ~ 0.8 cm2. It was placed into the cell at room temperature.

Results and discussion. Figure 2 gives the behavior of G’ at 1 Hz as a function of

temperature when the shear is applied in a direction perpendicular, respectively parallel, to the

director. It can be seen that G’ is isotropic at high temperature, but becomes anisotropic when

the temperature is reduced. The increase of G’// and G’⊥ for the lower temperatures, is an
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effect associated with the dynamics of the glass transition. The anisotropy of G’, which

appears around TNI ( TNI was determined by DSC), comes from a lowering of G’//. Clearly, G’//

is not zero, in contrast to ‘soft elasticity’, and is of the same order of magnitude as G’⊥, in

contrast to ‘semi-soft elasticity’. A similar anisotropy was also observed in ref. 1 but

interpreted as the signature of dynamic soft elasticity.

Fig. 2. Behavior of G’ as a function of temperature.

We shall now consider the behavior of the shear modulus as a function of frequency. As

already explained above, experiments as a function of frequency are the crucial test to

determine whether the time scales are separated or not. We shall examine the behavior in the

Fig. 3. Frequency variation of G’ and G’’.

nematic phase in the temperature range where the mechanical anisotropy is the highest. The

results obtained at T = 71.5°C for the perpendicular case are shown in Fig. 3a. It can be seen

that the mechanical response of the sample presents two components: one is hydrodynamic
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( G = G0 + iωη); the other, which appears at higher frequencies, depends on the frequency and

gives rise to a scaling behavior (G’~ G’’~ f 0.5). The key point is that the longest relaxation

time of the network is much slower (τ ~ 10-2s) than the conventional relaxation times of the

Rouse modes (τ ~ 10-6s). This dramatic increase of the relaxation time of the network is in

contradiction with the assumption made in refs.1 and 2. It comes from the fact that each

monomer bears a bulky mesogenic side group. In this respect, it should be noted that the

response of the sample is similar to that observed in the isotropic phase, except for a small

variation of the longest relaxation time of the network, which is a simple temperature effect.

Fig. 3b shows the results obtained at T = 71.5°C for the parallel case. Clearly, the behavior is

very similar to that for the perpendicular case. The step predicted by the Terentjev-Warner

theory is not observed, demonstrating that there is no separation of time scales between the

director and the network. This suggests that the relaxation time of the director is “embedded”

in the particularly slow Rouse times of the network.

Conclusions. To sum up we have demonstrated that the decoupling approximation

hypothesized in ref. 2 does not work, and that the measured relaxation time is the slowest

relaxation time of the network, as a whole. The ratio G’⊥/G’// is between 2 and 3, clearly

showing the non-soft behavior of these systems. Our results are consistent with the

hydrodynamic description of nematic elastomers (3, 4).
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