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We discuss the macroscopic behaviour of nematic liquid crystalline side-chain ela-

stomers. These systems are particularly interesting from a macroscopic point of view, since

they allow the occurence of relative rotations between the nematic director and the per-

manent elastomeric network. Both, the purely hydrodynamic as well as the electrohydro-

dynamic equations are presented. The differences and the similarities to the macroscopic

behaviour of nematic liquid crystalline side-chain polymers are clarified.
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1. Introduction

About fifteen years ago [1] liquid crystalline side-chain polymers have first been

synthesized. Since then their synthesis and the study of their properties has become a

rapidly growing field of polymer science (compare for example refs. 2 and 3 for reviews).

Although liquid crystalline side-chain elastomers have been synthesized only three years [4]

after the first report of liquid crystalline side-chain polymers, the number of investigations

on liquid crystalline elastomers was much smaller for many years [5-17], partly because it

was difficult to generate samples with homogeneous cross-linking density and reproducible

spatial homogeneity. The interest increased recently [18-31], especially because it became

possible to generate ’single crystal’ liquid crystalline elastomers either by two cross-linking

steps [26] or by orienting a nematic polymer in a magnetic field at the beginning of the cross-

linking reaction [27] and since cholesteric and chiral smectic elastomers show interesting

electromechanical effects [18,20-22,30,31].

While there has been a considerable amount of work on the nematic - isotropic

transition in nematic side-chain and main-chain elastomers [4,7,8,10,11,15-17,28,32,33],

comparatively few articles have addressed macroscopic mechanical and electromechanical

properties of nematic elastomers [5,12,14,19,29,34].

In this paper we will discuss theoretically the static and the dynamic macrosco-

pic and electrohydrodynamic properties of nematic side-chain elastomers. In this general

area the only piece of work we could find was the seminal contribution by de Gennes

[34], who introduced the concept of relative rotations in nematic gels and who presented

contributions to the generalized free energy coupling director rotations to the permanent

elastomeric network. Here we will generalize ref.[34] by allowing for couplings to external

magnetic and electric fields. In addition we will present dynamic equations for nematic

side-chain elastomers, assuming that the cross-linking density is sufficiently low so that

both, the nematic director and the strain tensor are legitimate hydrodynamic variables [35-

37]. As the cross-linking density is increased, the average distance between neighbouring
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reticulation points shrinks and the use of a director field as an independent macroscopic

variable is no longer justified. At sufficiently high cross-linking densities a solid-like hard

rubber with no additional director-type orientational degrees of freedom results.

After a general introduction to the method, which we use to set up the macroscopic

dynamic description of nematic liquid-crystalline side-chain elastomers (sec. 2), we intro-

duce the hydrostatic and static electromechanical effects in liquid crystalline elastomeric

phases in sec.3. In section 4 we give the dynamic and electrohydrodynamic equations and

in section 5 we critically discuss the limitations of the approach and give a perspective for

further generalizations.

2. Hydrodynamic and Electrohydrodynamic Equations

The derivation of hydrodynamic equations [35-37] is a well established procedure,

which yields balance equations describing the macroscopic response of a system in the long

wavelength, low frequency limit. Here long wavelengths means length scales large compared

to all microscopic lengths amd low frequencies refers to frequencies small compared to all

collisional frequencies.

In simple liquids and mixtures of miscible liquids [35] all hydrodynamic equations

are a consequence of conservation laws, namely of those for particle number, linear mo-

mentum, energy and concentration (the last in mixtures). In liquid crystalline phases [38],

additional quantities must be taken into account to characterize the low frequency, long

wavelength behaviour of these systems [36,37]. These additional hydrodynamic variables

are not related to conservation laws, but they are associated with spontaneously broken

continuous symmetries. For example, in low moelcular weight uniaxial nematic liquid

crystals [38] there is a preferred direction in space (characterized by the director n̂, a unit

vector that does not distinguish between head and tail), although the Hamiltonian of the

system is isotropic. Positional order in these systems is still short ranged just as for an

isotropic liquid. It turns out [36-38], that the deviations δni from the preferred direction
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n̂ are the hydrodynamic variables [36,37] associated with the spontaneously broken ro-

tational symmetry of nematic liquid crystals. As any true hydrodynamic variable, they

show only a slow response (ω → 0) in the homogeneous limit (k → 0) with diffusion as

the mechanism of dissipation. In a crystal, where one has long range positional order,

the displacement vector u becomes the variable associated with the broken translational

symmetry. This additional broken symmetry gives rise to the transverse acoustic phonons

in crystals. Similarly, in the field of liquid crystals, the displacement of smectic layers gives

rise to the second sound in smectic A and C [36].

For nematic side-chain elastomers made by cross-linking nematic side-chain poly-

mers, undoubtedly the displacement field must be kept as a hydrodynamic variable, since

the permanent network implies a finite shear modulus at vanishing frequency, a characteri-

stic feature of solids [36,37]. In order for the director variations δni to be good hydrody-

namic variables, it is important that the average distance between cross-linking points is

sufficiently large so that nematic order can be sensibly defined, a point already made in

ref.[34] and called weak nematic gels there. As the cross-linking density is increased, it

will no longer be possible to define a director field and eventually, further increasing the

cross-linking density, an ordinary strongly cross-linked rubber results.

Accordingly we focus here on nematic elastomers, which are weakly cross-linked

and for which therefore the director variations δni can be viewed as deviations from a

nematic director n̂. To take into account elastic effects, we will expand all potentials,

thermodynamic forces and the entropy production into powers of the strain tensor εij =

1
2 (∇iuj + ∇jui). This concept has turned out to be a useful one [15,28] at least in the

isotropic phase above the isotropic - nematic transition for elongations of the elastomers

by up to about 50% of its original length. It goes without saying that such an expansion

is only valid for sufficiently small strains.

In addition to considering the strain tensor and spatial variations of the director

field n̂, it has been pointed out by de Gennes [34], that it is also important to keep relative
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rotations of the director with respect to the elastomeric network. In ordinary solids local

rotations Ωij (where in linearized theory Ωij = 1
2 (∇iuj − ∇jui)) do not contribute to

the macroscopic behaviour, since the thermodynamic potentials must be invariant under

rigid rotations. Thus only gradients of local rotations are allowed to enter in the corre-

sponding expressions for ordinary solids, which are usually discarded, since they represent

higher order gradient terms. In nematic elastomers, however, these local rotations must

be split into two groups. First there are the rotations around the preferred direction n̂

(Ω‖ = niεijkΩjk). These do not involve, however, rotations relative to n̂ and are therefore

decoupled from the hydrodynamic variables. More importantly, however, there are two

rotations orthogonal to the first one (Ω⊥
i = njΩij with niΩ⊥

i = 0). These can give rise

to relative rotations (Ω̃i = δni − Ω⊥
i with n · δn = 0) and will play an important role

in the following sections, as they are used to construct contributions to the thermody-

namic potentials etc., a possibility that was first recognized in ref. [34]. We note that,

by construction, Ω̃i has the same transformation behaviour under n̂ → −n̂ as the director

itself.

We note in passing that the use of relative rotations is rather similar to the use of

relative translations of two displacement vectors along the same direction, a concept that

plays an important role in the characterization of the macroscopic behaviour of incommen-

surate solid systems [39]. We would like to stress that the relative rotations introduced

above are not linked to any additional independent hydrodynamic degrees of freedom - in

addition to the director deviations δni and the displacement field ui - since these relative

rotations are neither connected to a conserved quantity nor to a spontaneously broken

continuous symmetry. Thus they can be expected to relax at best on a long, but finite

timescale and belong to the class of so-called macroscopic variables (compare the following

discussion).

As truly hydrodynamic variables we have therefore the conserved quantities density

ρ, density of linear momentum g and energy density ε along with the variables associated
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with the spontaneously broken continuous symmetries, namely the displacement field u

(associated with the broken translational symmetry) and the director variations δni (as-

sociated with the broken rotational symmetry and where we have assumed that a director

field can be sensibly defined via a large enough reticulation distance and a sufficiently small

coupling via flexible spacers between the mesogenic units and the elastomeric backbone).

For mixtures this list has to be extended by the concentration variable c.

In addition to these truly hydrodynamic variables we will also consider in the fol-

lowing the influence of external electric fields and we will therefore keep the local elec-

tric field E (or, equivalently, the macroscopic polarization P or the electric displacement

D ≡ E + 4πP) as a macroscopic variable, which includes the electric charge conservation

law (compare, for example, ref.[40] for a detailed exposition on the incorporation of the

effects of electric fields into nematodynamics). In the main text we will use D as variable,

but in the Appendix we will list the equivalent formulas using E as the variable. Fur-

thermore we will keep in our list of macroscopic variables the relative rotations already

discussed above as well as variations of the modulus of the nematic order parameter to

allow for the fact that backbone fluctuations not only couple to orientational fluctuations

of the director but also influence the degree of nematic ordering. Thus, order fluctuations

δS may be slowed down considerably in elastomeric systems and are then relevant for a

macroscopic description (in contrast to low molecular weight systems, where δS is a fast

variable usually not kept in a macroscopic description except near the nematic to isotropic

phase transition).

In closing this section we would like to note that we will not consider throughout

the bulk part of this paper the effect that chain entanglements give rise to an additional

(in addition to the permanent network) transient network above a certain characteristic

frequency as it is already the case for polymer melts and solutions, regardless whether they

are isotropic or liquid crystalline [41-47]). This issue will be addressed briefly in section 6

in order not to overload the following presentation.
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3. Static Behaviour of Nematic Elastomers

To derive the complete set of hydrodynamic and electrohydrodynamic equations,

we make use of irreversible thermodynamics and general symmetry arguments including

the transformation behaviour of all thermodynamic quantities under time reversal, parity,

translations, rigid rotations, Galilean invariance [35-37, 48] and - for nematic side-chain

elastomers - under the replacement n̂ → −n̂.

The starting point of the general procedure is the local formulation of the first law

of thermodynamics, the Gibbs-Duhem relation [48] relating changes of the entropy density

σ to the other macroscopic variables. For nematic elastomers we have, incorporating all

the macroscopic variables listed above and assuming that all other (microscopic) variables

are in thermodynamic equilibrium on the relevant time and length scales

Tdσ = dε − µdρ − µcdc − vidgi − WdS + hidni − ψijdεij − L⊥
i dΩ̃i − EidDi (3.1)

Summation over repeated indices is implied in eq.(3.1) and all the following equations unless

specified otherwise. In the absence of any external fields the direction of n̂ is arbitrary

(because rotational symmetry is broken spontaneously) and homogeneous rotations dni

(with nidni = 0) do not cost energy. In that case hidni has to be replaced by −φijd(∇jni).

The thermodynamic conjugate quantities chemical potential µ, relative chemical potential

of the mixture µc, velocity vi, polarization Pi, temperature T , nematic molecular field

hi, elastic stress ψij , ’modulus field’ W and relative molecular field L⊥
i are defined via

eq.(3.1).

To determine these thermodynamic forces and thus the static properties of nematic

elastomers one expands the generalized energy density ε into the variables and then obtains

the forces by taking a variational derivative with respect to one variable while keeping all

other variables at a fixed value.

We find for the generalized energy for nematic elastomers E = E0 +
∫

dτε up to

quadratic order in the variables, where E0 contains all the terms already present in miscible
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mixtures of two simple liquids

ε =
1
2
cijklεijεkl + (χρ

ijδρ + χσ
ijδσ + χc

ijδc + χS
ijδS)εij

+
1
2
Kijkl(∇jni)(∇lnk) +

a

2
(δS)2 + (bσδσ + bρδρ + bcδc)δS

+
1
2
(

1
εE

)ijDiDj +
1
2
χijHiHj +

1
2
D1Ω̃iΩ̃i + D2Ω̃iεjknjδ

⊥
ik

+ eijk(∇inj)Dk + eS
ij(∇iδS)Dj + Mijk(∇inj)(∇kδS)

+ χN
ijkl(∇iDj)εkl + γN

ijkΩ̃k∇iDj

(3.2)

Certain additional electrostrictive and magnetostrictive effects that couple the fields

(quadratically) to the strain and to the relative rotations will be discussed in the Ap-

pendix. In eq.(3.2) the elastic tensor has the form familiar from uniaxial solids [36, 49,

50]

cijkl = c1δ
⊥
ijδ

⊥
kl + c2(δ⊥

ikδ⊥
jl + δ⊥

il δ
⊥
jk) + c3ninjnknl

+ c4(δ⊥
ijnknl + δ⊥

klninj) + c5(δ⊥
iknjnl + δ⊥

il nknj + δ⊥
jkninl + δ⊥

jlnkni)
(3.3)

with δ⊥
ij = δij − ninj . The tensor Kijkl is the usual Frank curvature elastic tensor [36-

38] Kijkl = K1δ
⊥
ijδ

⊥
kl + K2npεpijnqεqkl + K3δ

⊥
iknjnl. The static susceptibility tensors χρ

ij ,

χσ
ij , χc

ij and χS
ij describing static cross-couplings of density, entropy density, concentration

and order parameter to the diagonal part of the strain tensor as well as the (reciprocal)

dielectric and the diamagnetic susceptibility tensors (1/εE)ij and χij take the uniaxial

form χij = χ‖ninj + χ⊥δ⊥
ij . The contributions proportional to D1 and D2 containing

relative rotations betwen the elastomeric network and the director field are the ones that

have been given already by de Gennes in ref.[34]. The flexoelectric tensor is generally

written as [33] eijk = e1δ
⊥
ijnk + e3δ

⊥
jkni The contribution ∝ eS

ij , which couples gradients

of the modulus to the electric field, reads eS
ij = eS

⊥δ⊥
ij + eS

‖ ninj and the coupling Mijk

between gradients of the director and of the modulus [51] brings along one extra coefficient

Mijk = M(niδ
⊥
jk + nkδ⊥

ij). The contribution ∝ χN
ijkl represents a coupling between strains

and spatially inhomogeneous electric fields. This is a term not usually considered in solids,

but it might play a more important role in nematic elastomers, since these materials are
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frequently only weakly cross-linked and can also have highly polarizable groups in their

mesogenic units.

The tensor χN
ijkl assumes a slightly more complicated form [50] than eq.(3.3) since

it lacks the χN
ijkl = χN

klij symmetry, but it fulfils εE
jpχ

N
ipkl = εE

ipχ
N
jpkl provided we make use

of curlE = 0 (cf. App.). There is a corresponding coupling between gradients of electric

fields and relative rotations, where the tensor assumes the form γN
ijk = γ1niδ

⊥
jk + γ2njδ

⊥
ik,

containing only one parameter, if curl E = 0 is used, since then γ1ε
E
‖ = γ2ε

E
⊥, (cf. App.).

The new terms (∼ γN
ijk) are only possible, however, in systems that allow for the possibility

of relative rotations.

For the generalized forces L⊥
i , ψij , hi, W and Ei we find from eq.(3.2) by taking

the variational derivatives with respect to Ω̃i, εij , ni, S and Di while keeping all other

variables constant

L⊥
i =

δE

δΩ̃i

|... = D1Ω̃i + D2εjknjδ
⊥
ik + γN

jki∇jDk (3.4)

ψij =
δE

δεij
|... = cijklεkl + χρ

ijδρ + χσ
ijδσ + χc

ijδc + χS
ijδS

+
1
2
D2(Ω̃inj + Ω̃jni) + χN

ijkl∇kDl (3.5)

hkδ⊥
ik = − δ⊥

ik

δE

δnk
|... = h

(2)
i + δ⊥

ip∇j

(
Kpjkl∇lnk + ejpkDk + Mjpk∇kδS

)
(3.6)

W =
δE

δS
|... = aδS + χS

ijεij + bσδσ + bρδρ + bcδc − ∇k(Mijk∇inj) − ∇j(eS
ijDi)(3.7)

Ei =
δE

δDi
|... = (

1
εE

)ijDj + ejki∇jnk + eS
ij∇jδS − ∇j(χN

jiklεkl) − ∇j(γN
jikΩ̃k) (3.8)

For the remaining thermodynamic conjugates µ, µc and vi one can proceed in the same

way. In eq.(3.6) the non-divergence part of hi, h
(2)
i , contains the orientational effects that

fix the direction of n̂ in external fields, i.e. the dielectric and diamagnetic anisotropy effect

(∝ −(1/εa)δ⊥
ijnkDjDk − χaδ⊥

ijnkHjHk) as well as various other nonlinear orienting effects

on n̂ due to e.g. strains (∝ −εpjεkl(∂/∂ni)cpjkl) or due to the combined action of strains,

fields, relative rotations, gradients of S, gradients of n and gradients of the other variables.

Since strains can become rather large in elastomers, the orienting effect quadratic in the
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strains can be expected to be important.

The static susceptibilities contained in eqs.(3.4) - (3.8) are taken at constant D;

their relations to those at constant E are given in the Appendix.

4. Dynamic Behaviour of Nematic Elastomers

To derive the complete set of dynamic equations for the macroscopic variables and

thus to close the system of electrohydrodynamics for nematic elastomers we start from

the balance equations for all macroscopic variables. For the conserved quantities density,

density of linear momentum and concentration we have

ρ̇ + ∇igi =0 (4.1)

ġi + ∇jσij =0 (4.2)

ċ + ∇ij
c
i =0 (4.3)

where σij is the stress tensor and jc
i the concentration current. For the nonconserved fields

the balance equations take the form

ε̇ij + Xij =0 (4.4)

ṅi + Yi =0 (4.5)

Ṡ + Z = 0 (4.6)

˙̃Ωi + Y Ω
i =0 (4.7)

Ḋi + JP
i =0 (4.8)

σ̇ + ∇ij
σ
i =

R

T
(4.9)

In eqs.(4.4) - (4.9) Xij and Yi are the quasi-currents of the variables associated with bro-

ken translational (network) and rotational (director) symmetry. To guarantee rotational

invariance of the dynamic equation for the strain field, one must require Xij = Xji. Z

and Y Ω
i are the quasi-currents linked to temporal changes of the order parameter and of
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relative rotations, respectively. JP
i is the polarization current and jσ

i the entropy current.

The second law of thermodynamics requires positivity of the source term in eq.(4.9), i.e. of

the entropy production R/T , for dissipative processes. For reversible effects the dissipation

function R must vanish identically.

Of eq. (4.8) we will use the divergence part only, ∇̇iDi + ∇iJ
P
i = 0, which is the

charge conservation law, while we will discard the two complementary variables curl D,

which are relevant only for temporally rapidly varying electromagnetic fields. There is

no a priori reason why these very fast variables should be slowed down to hydrodynamic

time scales in elastomers. For the same reason we do not consider dynamical equations

for the magnetic fields. Within this assumption curl E will be eliminated in the entropy

production (4.19) and only symmetric gradients of E occur.

To close the system of macroscopic dynamic equations, one must link the currents

and quasi-currents in eqs.(4.1)-(4.9) to the thermodynamic forces discussed in the last

section. To achieve this we split all currents and quasi-currents into reversible (R = 0)

and irreversible (R > 0) contributions and discuss the two types separately.

We obtain for the linear, reversible parts of the currents, making use of general

symmetry and invariance arguments

gR
i = ρ0vi (4.10)

σR
ij = p δij − ψij + βijW − λ⊥

2
(L⊥

j ni + L⊥
i nj) − 1

2
(1 − λ)nihj

+
1
2
(1 + λ)njhi (4.11)

jcR
i = c0vi (4.12)

XR
ij = − Aij (4.13)

Y R
i = − εijkωjnk − λ(δ⊥

ijnk + δ⊥
iknj)Ajk (4.14)

ZR =βijAij (4.15)

Y ΩR
i = − λ⊥

2
(δ⊥

ijnk + δ⊥
iknj)Ajk (4.16)
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JPR
i = ρelvi (4.17)

jσR
i =σ0vi (4.18)

with the abbreviations Aij = 1
2 (∇ivj + ∇jvi) and ωi = 1

2εijk∇jvk. The reversible cross-

coupling βij between the modulus and velocity gradients is of the uniaxial symmetric form

βij = β‖ninj + β⊥δ⊥
ij .

To derive the dissipative contributions to the currents it is most convenient to start

with the expression for the dissipation function R. The dissipative currents are then

obtained by taking variational derivatives with respect to one thermodynamic conjugate

while keeping all others fixed. Expanding the dissipation function R to terms up to second

order in the thermodynamic forces we obtain

R = R0 +
∫

dτ
[1
2
γij(∇kψik)(∇lψjl) +

1
2
κwW 2 +

1
2γ1

(δ⊥
ijhihj)2

+ (∇jψij)(ζT
ik∇kT + ζc

ik∇kµc + ζW
ik ∇kW + ζE

ikEk) + ζE
ijkEk∇jhi

+ ζ12δ
⊥
ijL

⊥
i hj +

1
2
ζ⊥L⊥

i L⊥
j δ⊥

ij +
1
2
σE

ijEiEj + κE
ijEi(∇jT ) + DE

ijEi(∇jµc)

+ λWT
ij (∇jW )(∇iT ) + λWµ

ij (∇jW )(∇iµc) + ζΩE
ijk (∇iEj)L⊥

k

]
(4.19)

where R0 is the part of the dissipation function already present in binary fluid mixtures

of miscible liquids.

In eq.(4.19) all second rank tensors, i.e. γij , ζT
ij , ζc

ij , ζW
ij , ζE

ij , κE
ij , DE

ij , λT
ij and λWµ

ij

are of the uniaxial form αij = α‖ninj + α⊥δ⊥
ij . In addition to strain diffusion they include

coupling terms between strain gradients and gradients of temperature, chemical potential

of mixtures and of the order parameter molecular field and to electric fields as well. The

molecular field associated with relative rotations, L⊥
i , couples to the molecular field of the

director (∝ ζ12), to gradients of the electric field (∝ ζΩE
ijk ) and relaxes (∝ ζ⊥). The third

rank tensors in eq.(4.19), ζΩE
ijk , ζE

ijk are of the form (assuming curl E = 0)

ζijk = ζ(δ⊥
iknj + δ⊥

jkni) (4.20)
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and thus bring along only one dissipative coefficient each.

The dissipative parts of the currents are then obtained by taking the variational

derivative of the dissipation function with respect to the appropriate thermodynamic force

while keeping all other forces fixed ( indicated by . . .). We find for example

ZD =
δR

δW
|... = κwW − ζW

ik ∇k∇jψij − λWT
ij ∇j∇iT − λWµ

ij ∇j∇iµc (4.21)

Y D
i =

−δR

δ∇jΦij
|... = +

1
γ1

hjδ
⊥
ij − ζ12L

⊥
i (4.22)

XD
ij =

δR

δψij
|... = (4.23)

− 1
2

[
∇j

(
γik∇lψkl + ζT

ik∇kT + ζc
ik∇kµc + ζW

ik ∇kW + ζE
ikEk

)
+ (i ↔ j)

]
Y ΩD

i =
δR

δL⊥
i

|... = ζ⊥L⊥
i + ζ12hi + ζΩE

kji ∇kEj (4.24)

JPD
i =

δR

δEi
|... = σE

ijEj + κE
ij(∇jT ) + DE

ij(∇jµc) − ζΩE
jik ∇jL

⊥
k (4.25)

5. Conclusions and Perspective

In this article we have given the hydrodynamic and electrohydrodynamic equations

for nematic side-chain elastomers. We have emphasized the importance of relative rotations

on both, the static and the dynamic properties of nematic elastomers. The generalization

of the work presented here to other elastomeric liquid crystalline phases is under way and

will be presented elsewhere.

In contrast to nematic side-chain polymers the displacement field u turns out to be

a true hydrodynamic variable in nematic elastomers due to the presence of the permanent

network. Nevertheless there can be free ends of polymer chains in permanently cross-linked

networks, which might be connected dynamically to form an additional transient network

absent in the static limit and for sufficiently small frequencies. These processes will give

rise to additional dynamic degrees of freedom, which become relevant at frequencies above

the characteristic frequency for the dynamic glass transition. They will again have to be

14



described by the addition of the strain tensor associated with this transient network to the

list of macroscopic variables just as for ordinary polymers [42] and for nematic side-chain

polymers [43,44]. Thus the present description does not give as a special case a polymer

melt.

Another important issue is the question of the spatial homogeneity on smaller length

scales. Recent static and dynamic experiments in the groups of Finkelmann and Strobl

show, that the modulus and orientation of the nematic order parameter in the immediate

vicinity of the cross-linking points can influence substantially the macroscopic properties

of nematic elastomers. In the present paper we have assumed that the nematic order in

the ground state of the elastomer is spatially homgeneous. Thus our approach corresponds

to a coarse-grained description of these materials. What seems to be highly desirable

on the long term is a mesoscopic description forming a bridge between the macroscopic

approach presented here and the various microscopic pictures, e.g. from simulations, which

are not able as yet to accomodate the relevant timescales necessary for the description of

macroscopic phenomena as discussed in this paper.

Note added

Since this work has been finished, conventional rubber elasticity has been general-

ized to nematic elastomers [54] to incorporate cubic coupling terms involving the electric

field, director gradients and the Cauchy strain tensor. These cubic coupling terms corre-

spond to a strain dependence of the flexoelectric terms, that is to one possible nonlinear

generalization of the first term in the fourth line of eq.(3.2).
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Appendix

In the bulk of this manuscript we have used the electric displacement vector D as the

macroscopic variable and the (internal) electric field E then follows as a thermodynamic

conjugate by derivation of the energy. However, in the presence of external fields it is

more convenient to take E as variable and D as conjugate. This is acchieved by switching

from the energy density ε to the electric enthalpy density ε̃ via a Legendre transformation

ε̃ = ε − E · D [52]. The Gibbs relation then reads

Tdσ = dε̃ − µdρ − µcdc − vidgi − WdS + hidni − ψijdεij − L⊥
i dΩ̃i + DidEi (A.1)

and the electric enthalpy density is written as

ε̃ =
1
2
cijklεijεkl + (χρ

ijδρ + χσ
ijδσ + χc

ijδc + χS
ijδS)εij

+
1
2
K̃ijkl(∇jni)(∇lnk) +

a

2
(δS)2 + (bσδσ + bρδρ + bcδc)δS

− 1
2
εE
ijEiEj +

1
2
χijHiHj +

1
2
D1Ω̃iΩ̃i + D2Ω̃iεjknjδ

⊥
ik

+ ẽijk(∇inj)Ek + ẽS
ij(∇iδS)Ej + M̃ijk(∇inj)(∇kδS)

+ χ̃E
ijklEiEjεkl + χH

ijklHiHjεkl + χ̃N
ijkl(∇iEj)εkl

+ γ̃E
ijkEiEjΩ̃k + γH

ijkHiHjΩ̃k + γ̃N
ijkΩ̃k∇iEj

(A.2)

The material tensors denoted by a tilde in eq.(A.2) have the same form as their counterparts

(without the tilde) in eq.(3.2), but the susceptibility coefficients (with the tilde) contained

in the tensors are taken at constant E and are generally different from those in sec.3

(for the coefficients which are equal to those of sec.3 within the given expansion we have

omitted the tilde in eq.(A.2)). We have included χE
ijkl and χH

ijkl, the electrostrictive and

magnetostrictive tensors familiar from classical solids [50], which comprise six electro-

(magneto-) strictive coefficients in a uniaxial material (compare, for example, refs. [22]

and [50] for the explicit structure of the tensor). For nematic elastomers there are electro-

and magneto-strictive effects with respect to relative rotations (∝ γE,H
ijk ) in addition to

those more familiar ones with respect to elastic strains.
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Invoking curl E = 0 as a static Maxwell condition the tensor χ̃N
ijkl is symmetric

with respect to the first two indices and, thus, of the same structure as the electrostrictive

tensor, while γ̃N
ijk = γ̃N

jik implies γ̃N
ijk = γ̃(δ⊥

jkni + δ⊥
iknj). Performing in ẽijkEk∇inj a

partial integration, one obtains the same expression up to a global divergence. Therefore

one never has to deal, for the flexoelectric terms, with gradients of E, and thus, there is no

curl E contribution in the flexo-electric terms. However, if one linearizes in the director and

its gradients, then ẽ1 = ẽ3 in the bulk follows from partial integration and symmetrization

of ∇jEi [53].

The generalized forces are obtained from eq.(A.2) by variational derivation, e.g.

Di ≡ −(δ/δEi)
∫

ε̃ dτ while keeping all other variables constant

L⊥
i = D1Ω̃i + D2εjknjδ

⊥
ik + γ̃E

kjiEjEk + γH
kjiHjHk + γ̃N

kji∇kEj (A.3)

ψij = cijklεkl + χρ
ijδρ + χσ

ijδσ + χc
ijδc + χS

ijδS +
1
2
D2(Ω̃inj + Ω̃jni)

+ χ̃E
klijEkEl + χH

klijHkHl + χ̃N
klij∇kEl (A.4)

hi = δ⊥
ip∇j

(
K̃pjkl∇lnk + ẽjpkEk + M̃jpk∇kδS

)
− 1

2
δ⊥
iq

(
εpjεkl

∂cpjkl

∂nq
+ (∇jnp)(∇lnk)

∂Kpjkl

∂nq
+ 2D2

(
Ω̃qεjknjnk − Ω̃jεqkδ⊥

jk

))
− (

2δ⊥
ijnpnk − δ⊥

pjδ
⊥
ik − δ⊥

jkδ⊥
ip

)(
M̃(∇pnj)(∇kS) + γ̃ Ω̃j∇pEk

)
− njδ

⊥
ip

(
εaEpEj − χaHpHj

)
+

(
δ⊥
iknj + δ⊥

ijnk

)([
χρ

aδρ + χc
aδc + χS

a δS
]
εkj + ẽS

a Ej∇kδS
)

(A.5)

W = aδS + χS
ijεij + bσδσ + bρδρ + bcδc − ∇k(M̃ijk∇inj) − ∇j(ẽS

ijEi) (A.6)

Di = εE
ijEj − ẽkji∇knj − ẽS

ij∇jS − 2χ̃E
ijklEjεkl + χ̃N

jikl∇jεkl

− 2γ̃E
ijkEjΩ̃k + ∇j(γ̃N

jik Ω̃k) (A.7)

where in eq.(A.5) only the relevant transverse part of hi is considered. For the remaining

thermodynamic conjugates µ, µc and vi one can proceed in the same way.

Except for the additional strictive terms, the eqs.(A.3) -(A.7) are completely equiva-

lent to eqs.(3.4) -(3.8), where D has been chosen as variable. A direct comparison of these
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two sets of equations gives the relations between the static susceptibilities at constant E

(with tilde) to those at constant D (without tilde).

ẽS
‖ = εE

‖ eS
‖ ẽS

⊥ = εE
⊥eS

⊥

ẽ1 = εE
‖ e1 ẽ3 = εE

⊥e3

M̃ = M − e1e
S
‖ εE

‖ = M − e3e
S
⊥εE

⊥ K̃2 = K2 (A.8)

K̃1 = K1 − εE
‖ e2

1 K̃3 = K3 − εE
⊥e2

3

γ̃ = εE
‖ γ1 = εE

⊥γ2 χ̃N
ijkl = εE

jpχ
N
ipkl

If one would require at this point ẽ1 = ẽ3, this would imply the unphysical result

eS
‖ = eS

⊥

In the true thermodynamic equilibrium all the thermodynamic conjugates on the

left hand sides of eqs.(A.3)-(A.7) (or equivalently eqs.(3.4)- (3.8)) have to vanish, which

immediately gives δS = Ei = Ω̃i = εij = 0 with constant, but arbitrary director orienta-

tion (suppressing density, concentration and thermal degree of freedom for the moment).

Applying an external constant electric field (and assuming that the local electric field E

is also constant in this situation) the stationary state is given by L⊥
i = ψij = hi = W = 0

and e.g. Ei = E0δiz. The solution of these equations shows that the director n is either

parallel or perpendicular to E (depending on the sign of εa), that there is a finite elonga-

tional strain ε0ij , a change in the nematic order parameter δS0, but zero relativ rotation

Ω̃0
i = 0. For the case E ‖ n we find

ε0zz = E2
0N‖R−1

ε0⊥⊥ = E2
0N⊥R−1

δS0 = −a−1E2
0(χS

‖ N‖ + χS
⊥N⊥)R−1

D0
z = εE

‖ E0 + O(E3
0)

(A.9)

where
N‖ = χ̃E

42(c4 − a−1χS
‖ χS

⊥) − χ̃E
3 (c1 − a−1χS

⊥
2
)

N⊥ = χ̃E
3 (c4 − a−1χS

‖ χS
⊥) − χ̃E

42(c3 − a−1χS
‖

2
)

R = (c1 − a−1χS
⊥

2
)(c3 − a−1χS

‖
2
)(c4 − a−1χS

‖ χS
⊥)2

(A.10)
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A quite similar situation arises in an external magnetic field. To elastomers not

only electric or magnetic external fields can be applied in order to orient the director, also

externally imposed strains are an effective tool for that purpose. In that case an equilibrium

state requires L⊥
i = hi = W = Di = 0. Inspecting eq. (A.5) one finds that the torque on n

vanishes, if for a purely elongational external strain the director is parallel or perpendicular

to the dilation axis (depending on the sign of some linear combination of elastic constants

that are connected with the elastic anisotropy energy). In this case also a change in the

order parameter is induced. For an external shear strain n is perpendicular to the shear

plane and no change of the order parameter is obtained. For elastomers linear elasticity is

known to be a poor description even for small strains. The addition of cubic contributions

(∝ c
(3)
ijklmpεijεklεmp) turns out, however, to give good agreement with experimental results

[28] performed in the isotropic phase above a nematic-isotropic transition in a number

of nematic elastomers. This observation, together with the appropriate crosscouplings to

the other variables, opens the possibility that different orientations of the director are

energetically favoured depending on the strength of the external strain. Details will be

given elsewhere.
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