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Abstract. In the hydrodynamic description of ferronematics there are various dynamic magnetic field
effects, linear in the field strength, that are negligible in usual nematics, but can play a role in ferronematics.
Here we investigate theoretically the influence of these new terms on the thermal convection (Rayleigh-
Bénard) and the viscous fingering (Saffman-Taylor) instability in ferronematics in the presence of a strong
magnetic field. We find that the instabilities are qualitatively changed due to the occurrence of a finite
vorticity component — a feature that is known from simple liquids in the case of a superimposed mechanical
rotation. We suggest to use the additional effects (cross-flow within convection rolls, oblique rolls, rotating
fingers) for measuring the phenomenological coefficients involved.

PACS. 61.30.-v Liquid crystals — 75.50.Mm Magnetic liquids

1 Introduction

Nematic liquid crystals doped with single-domain ferro-
or ferrimagnetic grains, usually denoted as ferronematics,
are of great interest for potential applications but also
under the scope of fundamental research. Starting with
the pioneering work of Brochard and de Gennes [1] the
idea came up to intensify the ponderomotive response of
a nematic liquid crystal by doping it with a small amount
of ferromagnetic particles. The strong orientational cou-
pling between the magnetic grains and the surrounding
nematogen matrix enhances the susceptibility of the di-
rector dynamics. Indeed, the magnetic-field strength nec-
essary to affect the director is decreased by several orders
of magnitude giving control over the orientational state of
the liquid crystal by magnetic fields as weak as 100 Oe.
This “superparamagnetic” response is the basis of many
applications.

Considerable efforts were undertaken in the prepara-
tion of various colloidal dispersions of ferromagnetic par-
ticles in liquid crystals during recent years. Starting with
the first report in 1970 of mixing magnetic grains with
the nematic phase of MBBA [2], there was a number of
reports on the production of mixtures of rod-like and disk-
like nematics with magnetic grains [2-5]. In many systems
investigated there were problems with chemical stability.
Recently, however, the preparation of stable ferronematic
systems has attracted increasing attention [6-14].

Apart from the strong response to external magnetic
fields that shows up in a possible dependence of all sus-
ceptibilities and transport parameters on the square of the
field strength, there are additional dynamic effects linear
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in the field strength [15]. In ordinary nematics those ef-
fects are always neglected, but in ferronematics with their
strong sensitivity to magnetic fields there is the expec-
tation that these effects are sufficiently enhanced. They
can be described as linear-field-dependent additions to or-
dinary dynamic material tensors describing, for example,
heat conduction, diffusion, electric conductivity, viscosity,
flow alignment and relaxation of the director. Since a mag-
netic field is odd under time reversal symmetry, these new
effects are reversible (non-dissipative) if the field-free part
of the tensor describes a dissipative effect and vice versa.
In isotropic systems a few of such effects are known (Hall
and Righi-Leduc effect [16]).

In the following we address the question what are
the consequences of these new linear-magnetic-field ef-
fects on hydrodynamic instabilities in ferronematics. In
particular, we consider the well-known Rayleigh-Bénard
and Saffman-Taylor instabilities and discuss how the gen-
eral features of these instabilities are changed qualitatively
due to the presence of the new contributions. The qualita-
tively new behavior can be used as a tool to measure the
new field-dependent material parameters involved [15].

In this work we disregard the magnetization as an in-
dependent dynamic degree of freedom, but assume that
it is relaxed to its equilibrium value and orientation on
the time scale under consideration. This is in the spirit
of the “rigid anchoring” approximation [1], implying that
the relative orientation of the director n and the local
magnetization M is fixed (being either parallel or per-
pendicular). However, with the synthesis of thermotropic
ferronematics [17] it became evident that this approxima-
tion might not be generally applicable. The orientations
of n and M were treated as separate degrees of freedom
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within the framework of a microscopic model [18] and in a
hydrodynamic description [19]. We also assume that there
is no spontaneous magnetization (true ferromagnetism),
that means there is no remanent magnetization in the ab-
sence of an external field. Although such a ferromagnetic
behavior is possible in principle [20], there is yet no ex-
perimental evidence for it.

2 Governing equations

As discussed in the Introduction we take the set of hydro-
dynamic equations given in [15] to describe ferronematics.
Since we will use them to discuss Rayleigh-Bénard and
Saffman-Taylor instabilities, we will apply the well-known
Boussinesq approximation [21], i.e. take the flow as in-
compressible and all material parameters as well as the
density as constant (pg), except for the buoyancy force.
We are then left with dynamic equations for the velocity
field v, the temperature T, and the director field n

ov; 1+
po(—, ot +v;Vjv;) = =Vip 4+ i Vi Vv + §>\kjivjhk
=V (@1 Vi) + pgi (1)
divo = 0 (2)
Cy 0T
TV(E + VT = ki V;V,;T (3)
on; 1 _
E + Ujani = _iAijijvk + (’Y 1>ijhj (4)

where on the r.h.s. of (3) dissipative nonlinearities (e.g.
“viscous heating”) have been neglected. Cy is the specific
heat at constant density, p is the pressure, g is the con-
stant gravity force, while h = 0e/On (with e the energy
density) and @;; = 0¢/0V jn; are the thermodynamic con-
jugates to homogeneous and inhomogeneous director re-
orientations [22]. The former describes the static response
to external fields, while the latter contains the Frank ro-
tational elasticity. The induced magnetization is assumed
to be fixed by the external field and is not a dynamic vari-
able. The concentration of magnetic particles is very low
and we neglect the Kelvin force.

The material tensors, in linear order of the external
magnetic field, are the sum of a constant part and a linear
one

Vijkl = Vi[j)kl + Vg'kl(H)v (5)
Kij = lﬂg + HZ(H), (6)
Nijk = Aifk + A (H), (7)
Neji = Mg = Meya(H), (8)

(Y D=5+ (7 HEH), (9)

and describe viscosity, heat conduction, flow alignment
and director relaxation, respectively. Their general form
is listed in [15,22] and will be given below, as far as
needed. Note that the thermodynamic nature of the dif-
ferent contributions changes from dissipative (superscript
D) to reversible (superscript R), or vice versa, since the

magnetic field transforms odd under time reversal. Thus,
the field-free contributions to the dynamics always have
a different time reversal behavior compared to those lin-
ear in the field, which in turn gives rise to the differ-
ent thermodynamic properties. This is reflected also in
the different symmetry properties (Onsager relations), i.e.

symmetric in the dissipative parts (nf;- = /1]13, Vi?kz =
y,?”j, (v "B = (v1) and antisymmetric in the re-

ij ji
(v ME(H) = —(y" 1% (H)) and in the difference between
Aijk and Ajjx in (1) and (4).

It is the purpose of this work to investigate the in-
fluence of the linear field contributions to the transport
tensors (and mainly that of l/gkl(H )) on various insta-
bilities. We do this in the approximation of very strong
fields, since in that limit there is the best chance that
the proposed new effects are observable. Specifically, we
assume that the director relaxes to its equilibrium orien-
tation, defined by the external field, on a time scale much
smaller than that of the other relevant variables. In that
case On; /0t = 0 and the director is clamped. The larger
the field the better is this approximation. For ordinary
nematics (5CB) the field necessary to clamp the director
is about 1 kGauss [23] and probably smaller for ferrone-
matics, since their response to magnetic fields generally is
stronger.

This approximation is similar in spirit to the incom-
pressibility assumption, where the density variations are
supposed to live on a much shorter time scale than the
other relevant variables (i.e. the relevant velocities are
much smaller than the sound velocity). When density
variations are not a dynamic variable, its conjugate, the
chemical potential or the pressure is no longer determined
thermodynamically. The pressure is used to guarantee the
incompressibility for all times, i.e. ddive/0t = 0, which
leads to a condition on V?p in eq.(1). Eliminating the di-
rector as a dynamic variable has the consequence that its
conjugate, h is not defined, but rather functions to guar-
antee n = const. for all times, thus reducing eq.(4) to

versible parts (k% (H) = —x£(H), z/f;‘?kl(H) = fylf‘zij(H),

1
5/\jklvkvz

where Ypum (Y™ )mg = 0py. Substituting this in (1) we re-
gain for this equation a form familiar from simple liquids

ov;
ool 5t (1)

but with an effective viscosity tensor

]’Li = Yji (10)

+v,;Vv;) =-Vp+ z/Jle Vv + pg;

eff
Viikl

(12)

Since we are concentrating on linear field effects eq.(12)
can be simplified

1.
= Vil + ZApjﬂpm)\mkz

eff _
Viikt =

ngl + Vi};kz(H) + )\ gﬂpm)\mkz
1

+ )‘ jz’ypm(H))‘ﬁlkl (13)
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where the v;; tensors are given by

D _ tr

Yij = MN9ij

2

R 7
Yij = _ﬁfijknkanl

1

2

7
_,yiR (Gijp + €iprnrn; — ejpknkni) Hp

2

(15)

Here the coefficients v{%, 44 are those introduced in [15].
The explicit forms of this effective viscosity tensor will

be discussed for the two cases n || H and n L H below.
The heat conduction equation (3) also contains a new

linear field effect through xf}(H) (6). However, in this

case the bulk effect vanishes, since both, me—} = 0, be-
cause of n = const and the Boussinesq approximation,
and k[IV;V;T = 0, because of x5 (H) = —x%(H). Thus,
this linear field effect will only appear in boundary con-
ditions, if they are formulated in terms of the heat flux.
We will not consider such boundary conditions in what
follows.

In the next section we will investigate how the
new terms (13) manifest themselves in the thermo-

gravitational instability.

3 Rayleigh-Bénard instability
3.1 The case when n || H

We consider an infinitely extended layer of ferronematic
liquid crystal bounded by two rigid parallel plates at dis-
tance h. The temperature of the plates is kept fixed at T3
and Tp > Ty (Fig. 1). An external magnetic field is im-

Fig. 1.
see text.

Sketch of the setup in the parallel case. For details

posed in z-direction (€,) and the gravitational force works
in —z-direction (g = —gé.). In the case of a positive mag-
netic susceptibility anisotropy x, > 0 the director tends
to align along the magnetic field. Homeotropic boundary
conditions for the director are helpful. We assume the
magnetic field to be strong enough that the director is
clamped

- (16)

and does not have an independent dynamics. The mag-
netic field in the sample is always taken as static and
uniform, and equal to the value of external field (eventu-
ally corrected by some demagnetization factor). Thus the
system is described by the effective Navier-Stokes equa-
tion (11), incompressibility (2) and heat conduction (3).

The trivial heat conduction state, without any flow
and a linear temperature profile is always a solution:

v=0 (17)
T(s) =~ gy (18)
ple) = (140, T1) (19)

with oy, = —(1/p)(9p/0T), the thermal expansion coeffi-
cient.

However, this solution is stable for small temperature
differences only and is subject to the Rayleigh-Bénard in-
stability, when the temperature difference exceeds some
threshold value. To find this threshold value in terms of
the material parameters involved, we study the stability
of small perturbations of the ground state (17-19) by lin-
earizing (2,3,11) around the conduction state

Vi eff
Oy = o + wiimViVio — g ap 06, (20)
8t9 —w = k‘ijvivj'e (21)
dive =0 (22)

Here v is the velocity field (w = v,), 6 is the deviation of
the temperature field from the linear profile (18) and p’
the pressure perturbation. The temperature conduction
tensor ki; = ki (05 —ning) + kynin; is related to the
heat conduction tensor k;; = (Cy /T)k;; and the effective

eff .
Viigl 18 connected

0 (12).

kinematic viscous tensor ufjfk’; = (1/po)
to the effective dynamic viscosity v;

The complicated tensors (5-9) that enter ,uf]fk]; can be

simplified in the special case n || H considered here with
the result

Po Mffk]; = v (0;10ik + dirdjk) (23)

+2(vr1 + v —2v3 + %'yl)\2) NN NN

+(v3 — v2)(ngmdix + nynkdi + ningdj + nimid;)

+2v1 (A= 126 5mmy + (A + 1)%6n my,)

+in (O = 1)(Gnin + dirngm)

—I—H(szei;@pnjnmp + EQREilpnjnknp)

+17§5jlpnmknp + Dfsjkpnmmp)

+ 0 H (2inpbjimp + €itpdirnp + €kpdiny + €j1pOinnp)
where for the field-free viscosities (14 2,3) the Harvard no-
tation [24] is used, A is the flow alignment parameter [25],

and 7y, the rotational viscosity [26]. The abbreviations 7%

and 77 that are related to the new field-dependent effects
are listed in the Appendix (A.1).
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We non-dimensionalize equations (20-22) by taking the
layer thickness h as length scale, h?/k, as time scale and
the difference Ty —T7 as temperature scale. With the usual
procedure [21] of taking (curl curl), as well as curl, of the
eq.(20) we get for w, £ = (curlv), and 0

Pirat (Az+92) w = (a0} 4+ bA202 + cA3) w + RaAy0

+Hy (eAy —07) 0.6 — Hy (Ay + 02) 0.€ (24)
D06 = (Ao +002) €~ Hy (ds — 02) D

+H, (Ay +07) 0w (25)
040 —w = 020 + a0 (26)

with the 2-dimensional Laplace operator Ay = (92 + 92).
The material dependent coefficients are a = (v + $7(1 +
M) /ve, b = (201 4 2vp — 23 + B (A2 + 1)) /10, ¢ =
(3 + 37(L = X)) /va, d = 0 /73, e = DY /P}}, and o =
k) /KL, with Ra the Rayleigh number Ra = gh3ay,(Ty —
T1)/(v2ky) and Pr the Prandtl number Pr = vy/k, .
The magnetic field enters in the non-dimensional form
Fl = D;”H/l/g and HQ = ERH/I/Q.

One can see that in addition to the degrees of free-
dom that are necessary to describe the Rayleigh-Bénard
instability in usual nematics, there is also &, the z - com-
ponent of the vorticity. This situation is similar to the
case of the thermal instability in a rotating layer of sim-
ple liquids [21]. In both cases the time reversal symmetry
is broken by the external (flow or magnetic) field. In our
geometry we expect a roll pattern due to the spatial up-
down or mid-plane symmetry that is still present. In such
a pattern the z-component of the vorticity is manifest as a
crossflow in the x —y plane as shown in Fig. 2. Measuring
this component of the velocity can serve as a direct indi-
cation of the presence of the new field-dependent terms in
the viscosity tensor. Although ferrofluids are rather dark
and flow is difficult to view directly, reflecting tracer par-
ticles may be used.

We have determined the threshold of the stationary
instability taking for example the material parameters of
MBBA liquid crystals. Assuming non-slip boundary con-
dition we use the method suggested in [27]. On Fig. 3 one
can see the threshold as a function of the non-dimensional
magnetic field H = Hy+Hy = HwF+vE+ vl +3vf) /vy
for the case 7{* = vt = v = pft = U® (this additional as-
sumption is made for representative reasons only). For low
fields the threshold is a quadratic function of the magnetic
field, which is to be expected, since the Rayleigh number is
a scalar while the magnetic field is a vector. This quadratic
field dependence is not specific for the new contributions
in the viscosity tensor, since any (trivial) H?-dependence
of material parameters would produce such an effect. The
H effect on Ra, is rather small. In order to get a 3% in-
crease, H has to be about 0.5 requiring the field H and
the typical £ to be so large that Hv% is about one order
of magnitude smaller than the ordinary shear viscosity vs.

The high value of the threshold without field is due to
our assumption of quenched director orientation, which

s

; (O O D D

Fig. 2. The effect of the new field-dependent terms in the effec-
tive viscosity tensor on the convection roll pattern. The flow
due to the non-zero vorticity component is shown by arrows
on the top; at the bottom the arrows are in opposite direction.
The orientation of the rolls is chosen to be the y-direction,
arbitrarily.

leads to the presence of the additional terms )‘;Ifjﬂ;?m)‘ﬁkl

in the viscosity tensor (13). For very high fields, which

. —4/3
are probably beyond experimental reach, Ra, ~ / ,

asymptotically. Comparing with the case of a Rayleigh-
Bénard experiment under rotation in simple fluids [21],
where an oscillatory instability is possible for very low
Prandtl numbers, we expect the instability to be always
stationary here, since Pr > 1 in nematics. In the rotation
case, the stationary rolls are known to be subject to the
Kiippers-Lortz secondary instability into a non-stationary
state at even higher Rayleigh number Ra > Ra, [28], and
this behavior can be expected here in the ferronematic
case, too.

Ra / ///
5000 /

4750 | yd

4500 : H

0 05 1

Fig. 3. The critical Rayleigh number Ra. as a function of the
magnetic field H (parallel case).
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3.2 The case when n 1L H

When the magnetic susceptibility anisotropy is negative
Xa < 0, the director field tends to be perpendicular to
the magnetic field. This is the typical case for lyotropic
systems. Here, in principle also concentration and mixture
effects have to be taken into account. They are known to
play a considerable role in thermal instabilities in isotropic
ferrofluids (cf. e.g. [29]), but their inclusion here is way
beyond the scope of the present work.

To consider the influence of the new magnetic field de-
pendent terms we consider the geometry shown in Fig. 4.
As in the previous case we have an infinite layer of ferrone-
matics subject to a temperature gradient across the layer.
An external magnetic field is imposed along the temper-
ature gradient (z-direction,) while the nematic director is
oriented perpendicular (y-direction). We assume that also
a strong electric field is applied, in order to clamp the
director in its equilibrium orientation. Thus, like in the
preceding section, director reorientations are neglected. In
this case the equations describing linear stability analysis
are again given by Eqs.(20-22), where the effective vis-
cosity tensor (13) now takes the form (A.2) given in the
Appendix.

He

E§
Fig. 4. Sketch of the setup in the perpendicular case. For
details see text.

We also assume that the magnetic field dependent con-
tributions come only from the viscosity tensor, i.e. we ne-
glect all A? in (A.3). Otherwise we need to explore a pa-
rameter space of very high dimension. This is not reason-
able at present, since those parameters are unknown and
we are interested in qualitative effects only. In this case the
magnetic field enters the equations through two material
dependent dimensionless coefficients

Hy = (Wl —vE+vfH/v,

Hy=(wl+vE—2fF —vE _30BH/1, (27)

which contain combinations of the v (a = 1...8) intro-
duced in [15]. If no magnetic field is present, the behavior
of the system is that of a pure simple liquid and the con-
vection sets in at Ra. = 1708, because the heat focusing
effect of nematics [30] is suppressed by clamping the direc-
tor. Comparing with the case n || H the clamped nematic

degree of freedom now is inoperative with respect to the
onset of the instability, but sets the direction of the rolls.

If we switch on the external magnetic field, the new
dynamic field-dependent terms come into play and the in-
stability picture changes considerably. To study this prob-
lem in more detail we use a three dimensional analysis in-
troduced in [31]. The velocity field is represented by two
scalar potentials f and g

0.0.f + ayg
ayazf - awg
=05 0pf — 0,0y f

v =

(28)

Due to the homogeneity in the lateral directions we
can take all fields to be of the form {f,g,0} =
{f(2),9(2),0(2)}exp{ikr + iwt}, where k is a two-
dimensional wave vector in the x — y plane. Substituting
(28) into the linearized equations (20-22) and taking curl,
as well as (curl curl), of (20) we get the linear system of
equations

) (f
L(Ra, kg, ky,w,H1, H2) | g
0

=0 (29)

where L is a linear differential operator of eighth order
with respect to z. The explicit form of Eqs.(29) is pre-
sented in (A.4-A.6) in the Appendix. No-slip boundary
conditions translate into

f0)=f(1)=f'(0)=f'(1)=0
9(0)=g(1) =0
6(0) = 6(1) =0 (30)

To find the threshold of a stationary instability we take
w = 0. At any given values of k, k,, H1,and H» the prob-
lem is to find the value Ra such that the boundary value
problem (29-30) has a nontrivial solution. The function
Ra(ky, ky) is then minimized to find the threshold Ra.

for the given values of H; and Ho.

The solution of this problem was accomplished using
the shooting method presented in Ref. [27]. Here the sys-
tem of linear differential equations is solved using a ma-
trix representation of the solution. The parameters were
taken as those for MBBA liquid crystals. In order to sim-
plify the presentations of the results we take Hy = 0
(H, = H). This additional assumption does not change
the qualitative picture of the instability, nor does it affect
the limiting cases H = 0 and H — oo. In the case of zero
magnetic field the minimum of the function Ra(k,,k,) is
on the line k, = 0, which corresponds to rolls aligned
along the nematic director. The critical Rayleigh number
is then Ra. = 1708 as expected [30]. Increasing slightly
the strength of the magnetic field leads to an increase in
Ra, but k,, is still zero. When the value of H exceeds some
critical value H, the minimum of the function Ra(ky, k)
shifts to a finite k£, # 0. On Fig. 5 the dependence of k,
and k, on H is presented. The appearance of a finite ky

above H, is accompanied by a strong drop of k. The crit-
ical H, already corresponds to a rather large field H, for
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Fig. 5. The wave vector components k, and k, corresponding
to the minimum of the function Rac(kz,ky) as a function of
the magnetic field H.

which the product with a typical £, HvE is almost of
the order of the shear viscosity vs.

When the magnetic field is increased further above H,
finally k; = 0. The minimum of Ra(k;,k,) is then along
the line k, = 0 and the rolls are aligned perpendicular to
the director. Any further increase of H does not change the
position of the rolls, nor the value of the critical Rayleigh
number. The threshold value as a function of the magnetic
field is presented in Fig. 6.

Analyzing these results we can predict the correspond-
ing flow patterns. First, when H < H, the convective
rolls are aligned along the electric field. When the mag-
netic field exceeds this lower critical value Hy, the rolls
get oblique with respect to the electric field and the angle
between the rolls and the electric field increases with in-
creasing magnetic field. At the point when the magnetic
field reaches the upper critical value H;, the rolls are per-
pendicular to the electric field and stay so for any higher
field. Note that the director is always parallel to the elec-
tric field (and perpendicular the external magnetic field).
Thus, in the intermediate magnetic field regime the direc-

Ra

2000 - —

1900

1800 7
/ S—

S H

0 0.5 1 15

1700

Fig. 6. The critical Rayleigh number Ra. as a function of the
magnetic field H (perpendicular case).

tor is oblique to the roll orientation, while in the high field
regime it is perpendicular. It is possible that this high field
regime cannot be reached in actual experiments.

We have looked numerically for an oscillatory instabil-
ity, but did not find any. Since this search could be done for
a limited parameter range only, this is no proof for a gen-
eral absence of an oscillatory instability. In principle, the
set of equations (29,30) can support non-trivial solutions
at a finite frequency w # 0, since it is not self-adjoint.

4 Saffman-Taylor instability

Another useful tool to study the new linear field depen-
dent contributions in the effective viscosity tensor is flow
in a Hele-Shaw cell. When a viscous fluid is displaced by
a less viscous one in the narrow space of a Hele-Shaw cell
the Saffman-Taylor instability arises [32]. We consider a
radial Hele-Shaw cell (Fig. 7), which consists of two par-
allel transparent plates at a distance d. The gap between
them is filled with a high viscosity fluid, in our case a fer-
ronematic. The low viscosity one (usually air) is injected
through an inlet at the center of the upper plate. A mag-

ferronematic

Fig. 7. The setup of a radial Hele-Shaw cell. For a ferronematic
the external magnetic field leads to the rotation of the fingers
shown by the arrow.

netic field is imposed perpendicular to the plates (in z-
direction) strong enough for the nematic director to be
clamped. Here we again assume that the magnetic sus-
ceptibility anisotropy is positive and the director field is
aligned parallel to the external field.

The description of the fluid motion far from the in-
terface follows the usual lines [33]. Neglecting the inertia
terms in the Navier-Stokes equation (11) we have

ip = po 5}yl 0,0k vy (31)

where pouffka is given by (23) and the pressure gradient
is constant along the radial directions. Since the gap d
is small, we can neglect all derivatives of the velocity ex-
cept those along the z-direction. Integrating (31) twice
and taking the mean with respect to z-direction we get a
linear relation between the mean velocity and the pressure
gradient

d2
RECEEND)
with A =3+ 17(1 —A)?
B = H(vf + %)

A(Sij — Beijz)aj (32)

V; =
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where 74 and 7% are given in Eq.(A.1). In cylindrical co-
ordinates (r, 8, z) there is — apart from the usual radial
component of the mean velocity v, parallel to the pressure
gradient — now also an azimuthal mean velocity compo-
nent vy perpendicular to the pressure gradient, due to the
new linear field terms in the effective viscosity tensor.

We will now consider how this azimuthal component
of the velocity changes the picture of the Saffman-Taylor
instability in the radial Hele-Shaw cell. Without perturba-
tions the interface between the ferronematic liquid and the
air is a circle with radius R(t) (measured from the point
of injection) that increases in time according to the radial
velocity (normal to the interface) v, = v,.. The tangential
velocity, can be related to the normal one

B
A

We investigate the linear stability of this interface with
respect to azimuthal shape distortions “fingers”) by as-
suming the interface to be located at r(6,t) = R(t) +
¢(0,t), with small perturbations ¢(6,t). The time evolu-
tion of these perturbations is related to perturbations, dv,,,

in the normal velocity by the linearized kinematic condi-
tion

v =vg = —Up (33)

0i¢ +v7Vr( = dv, (34)

taken at the undistorted interface R(t). Here the tangen-
tial velocity v enters, since the distorted interface is no
longer circular. Since the function {(6,t) has to be peri-
odic in 6 in order to have a well-defined interface, we can
decompose it into discrete modes

m=0oo

<(97t) = Z Cm(t) COS(mQ + ¢m(t))

m=1

(35)

and make the linear stability analysis for each Fourier
mode separately. We have allowed for a (still unknown)
phase ¢, (t) for each mode. For the perturbations of the
normal velocity we can write in linear approximation

m=0o0

Son =3 Conlt)im(6,1) cos(mb + (1))

m=1

(36)

where f[i,,(0,t) is an operator with respect to §. The ac-
tual form of this operator depends on the details of the
boundary conditions [34]. We will assume for simplicity
that fi,,(6,t) is independent of vr. This is justified as long
as the interface forces are not drasticaly altered by the
magnetic field. Then it has the usual form

2

fim (6, 1) = a(R(t), m) + b(R(t), m) 705

(37)
where the explicit expressions for the functions a(m) and
b(m) are rather involved and are the subject of special in-
vestigations (see for example [35]) due to the non-trivial
physical mechanism involving the capillary force. How-
ever, since we are interested in the qualitatively new ef-
fects due to the finite tangential velocity vy, the special
form of a(m) and b(m) is unimportant here.

Substituting (35) and (36) into (34) and taking into
account (37) we get for ¢, and ¢,

Cn(8) = =4 () G (1) (38)
O = —m s (39)
where vr is taken at R(t). Here u,, = —a(R(t),m) +

m2b(R(t),m) = 0 defines implicitly the most unstable
mode. This pattern of fingers is rotating with angular ve-
locity mur/R(t) due to the time evolution of the phase
¢(t). Within our assumptions the phase evolution (39) is
completely decoupled from that of the amplitude and the
details of a(m) and b(m) are unimportant. The amplitude
equation (38) is independent of the new viscosity contribu-
tions and all previous investigations of the Saffman-Taylor
instabilities for simple nematic liquid crystal (see for ex-
ample [32]) are valid in this respect also for ferronematics.
But in addition to the amplitude amplification there is the
rotation of the growing fingers with angular velocity

. m@ B
Pm = 2nR(t)2d A

(40)
where we have used eq. (33) to express vy by v,. The flow

rate of the injected air, @), is related to the normal velocity
of the interface by Q = 2wd R(t) vy,.

5 Conclusion

We have discussed typical hydrodynamic instabilities in
ferronematics under the aspect of qualitatively new ef-
fects due to the linear magnetic-field contributions to the
dynamics of those materials. In Rayleigh-Bénard instabil-
ities with the temperature gradient adverse to gravity we
find, in addition to convection flow in the form of one-
dimensional rolls, a vorticity flow. As a consequence, in
the homeotropic case (the director parallel to the field)
the streamlines are oblique to the roll cross-section, while
in the planar case (the director perpendicular to the mag-
netic, but parallel to an electric field) the rolls themselves
are tilted with respect to the director depending on the
magnetic field strength. In the Saffman-Taylor viscous fin-
gering instability of a growing interface between fluids of
different density, the new linear magnetic-field contribu-
tions lead to a rotation of the finger structure. All these
effects exist in principle in any nematic liquid crystal, since
they are connected to the nematic degree of freedom, only,
and not to the magnetization as an independent variable.
In ordinary nematics, however, the interaction with mag-
netic fields is very weak and those effects have never been
observed. In ferronematics, where the static response to
magnetic fields is known to be enhanced by several or-
ders of magnitude, one can expect that the influence of
the magnetic field on the dynamics is also increased and
strong enough to make the effects described here measur-
able.
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Appendix A.

Appendix A.1. The form of the coefficients 7% and 7%

Here we express the abbreviations #7£ and 7 introduced

in (23) by the coefficients introduced in [15]:

71 1 1) 2
S I O |
4<75 4§ ( )

SR AP 4 APY A

“R
ol = vl vt ol -

2

ﬁ§_uf+u§+2y§f<%+%)@+1)2

—ﬂ(A?H?Hf)(AH)
vy =0y

2

vy = vy + v "‘2’/8_11(71{:5 153) (A—1)

— SO D) (-
ot =l 1l (A1)

Appendix A.2. The effective viscosity tensor in the
case whenn L H

With H = He, and n; = d;, we get

Po ijfk]; =V
+2(v1 + v — 23 + %%/\2) NN NNy
+(v3 — v2)(nymidix + nynedu + ningkdj + i)
+271 (A= 1)285mimy + (A + 1)%6m;my,
+(\? — 1)(6jmink + (5iknjnl))
-H (ﬁﬁéimnjnknl + ﬁﬁéﬂnmknl — ﬁﬁékznjnml
—ﬁﬁélwnjnkni + ﬁﬁ@xnl&k — ﬁg,dlxnjcgik
0550201 — Doy OkatjOst + DayOiznidji

~R ~R ~R
7V2a5kxni5jl =+ VQa(Sixnl(sjk — Vza(sl:cnifgjk

~R ~R ~R R
+V3a6k:cnl6ij =+ V3b§l$nk6ij — ngémnj(skl — V3a6jzni5kl)

VB H (eipanjng + eanjng + €jrning + €jx2min)
+UP H (gik2051 + €126 + £5120ik + €jk20i1)

+H (ﬁglsiky (8211 + 01215) + Dipeiny (6j2mk + Ogany)
D82 1y (8120 + Opamii) + DGE jhoy (8121 + 61277))

with the abbreviations

pR = R _ % (AP = AP + AD) (A + 1) — 22D )

pR = R % (AP = AP +AD) (A = 1) — 222 ))

7g = vf = L= DAY
73 = v = L+ 1AP
7gh = v + L= DAY

(600K + Sudjn) (A.2)

v =l %(A + DAY
Véz = 1/8 %2)\?

vl =l %(A +1)AY

it = dL
pR = R 4 Loy 1)aD (A.3)

4

Appendix A.3. The linear stability problem in the case
whenn | H

In this appendix we present the explicit form of the linear
stability problem for the case when n L H. It can be
expressed in the form (29):

- ((% (A= 1)2 + V3> k2 + Vka) ke
%y + 205 + 1 L+ AQ)) K22
1)) ki + 20kt ) 1

(Fa+n +V3)kw+z/2k2)f

(2V1 + 2v9 — 33 — — (/\2

(1+\) +u2+2y3)k§k§f

(1+2) +2y2+u3)k§kgf

+
»&\ﬁ »lk‘ﬁ »Jk‘ﬁ w\ﬁ

+(
+(
~(
(3
(3
( A= 1)%— 1 +1/3) koky g

( (1—2)—3)2) +2V1+1/2—31/3)k ky g
- (71 A—1)% vy + V3) ko3 g

+iky (k2 +k2) ((Hok2 + H1k) g— Hig")

+ (k2 + k})gap 0

|

=iw (kI + k) <k2 + k- jz) f (A.4)

~ (B =17 = va ) kaky £

(RO )RS

(% B A1) (1+X) -1 —vat 3u3) koky f
+ ( % A1)+ ug) k24 I/gkm) q
—( BO-1+R20+2)) g

(k§k2 (201 + 20) — vy (k2 — kf,)z) g

+iky (k3 + k) (Hok; + H1k2) f — Hy f")
= iw (k2 + k;) g (A.5)

510" (kuR2+ (g +ha) K 04 T

(kg + k) f

= iwd (A.6)
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